
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Liveness & Progress

2© Wolfgang Emmerich, 1998/99

Outline

� Liveness
� Progress
� Progress Specification in FSP
� Progress-Analysis of LTS
� Priorities

2

3© Wolfgang Emmerich, 1998/99

Motivation

� Problem with single lane bridge:
� Cars cannot pass from north to south if

there is a continuous stream of cars from
south to north!

� We would like to guarantee that cars will
eventually cross the bridge.

� In more general terms this is referred to
as liveness

4© Wolfgang Emmerich, 1998/99

Liveness

� A liveness property asserts that
something good eventually happens.

� We want to specify liveness for our FSP
models

� We want to analyze our FSP models to be
certain that the liveness properties hold

� General form of liveness requires
consideration of temporal precedence
relationship between states

� We use more restricted form of progress

3

5© Wolfgang Emmerich, 1998/99

Progress

� A progress property asserts that whatever
state a system is in, it is always the case
that a specified action will eventually be
executed

� Progress is the opposite form of starvation
� Notion of progress is sufficiently powerful

to capture wide range of liveness
properties

� Progress properties are simple to specify
in FSP

6© Wolfgang Emmerich, 1998/99

Progress Properties in FSP

� Specification of progress needs
assumption of a fair scheduling policy.

� If a transition from a set is chosen
infinitely often and every transition in the
set will be executed infinitely often, the
scheduling policy is said to be fair.

� progress P={a1,a2,…,an} defines a
progress property P which asserts that in
an infinite execution at least one of the
actions a1, a2, …, an will be executed
infinitely often.

4

7© Wolfgang Emmerich, 1998/99

Example: Tossing Coins

COIN = (toss -> heads -> COIN

| toss -> tails -> COIN).

progress HEADS = {heads}

progress TAILS = {tails}

1 20

toss

tails

toss

heads

8© Wolfgang Emmerich, 1998/99

Example: Tossing Trick Coins

TWOCOIN = (pick->COIN | pick->TRICK),
COIN = (toss -> heads -> COIN

| toss -> tails -> COIN),
TRICK = (toss->heads->TRICK).

progress HEADS = {heads}

progress TAILS = {tails}

4 53

toss

tails

toss

heads
1 20

heads

pick

pick

toss

5

9© Wolfgang Emmerich, 1998/99

Progress Analysis

� We can automate analysis of progress
properties

� A set of states where every state is
reachable from every other state in the set
and no state has transitions to states
outside the set is a terminal set of states.

� Terminal set of states can be found using
a graph algorithm that searches for a
strongly connected component.

LTSA

10© Wolfgang Emmerich, 1998/99

Default Progress Properties

� Default progress properties assert in a
system with fair choices that every action
in the alphabet will be executed infinitely
often.

� Default progress properties of example:
progress p1 = {pick}

progress p2 = {toss}

progress p3 = {heads}

progress p4 = {tail}

� How many violations? LTSA

6

11© Wolfgang Emmerich, 1998/99

Priorities

� Default progress analysis of single lane
bridge does not reveal violation.

� Problem is scheduling policy. Cars
arriving in the south get ‘priority’ if there
are already northbound cars on the bridge

� To detect such progress violations we
have to reflect such priorities in the FSP
model

LTSA

12© Wolfgang Emmerich, 1998/99

High Priority in FSP

� ||C = (P||Q)<<{a1,…,an} specifies a
composition in which the actions a1,…,an

have higher priority than any other action
in the alphabet of P||Q including the silent
action tau. In any choice in this system
which has one or more of the actions
a1,…,an labelling a transition, the
transitions labelled with lower priority
actions are discarded.

7

13© Wolfgang Emmerich, 1998/99

Low Priority in FSP

� ||C = (P||Q)>>{a1,…,an} specifies a
composition in which the actions a1,…,an

have lower priority than any other action
in the alphabet of P||Q including the silent
action tau. In any choice in this system
which has one or more transitions not
labelled by a1,…,an, the transitions
labelled by a1,…,an are discarded.

14© Wolfgang Emmerich, 1998/99

Simplification of LTS

� Priorities simplify the LTS resulting of the
composition.

� Example:
NORMAL=(work->play->NORMAL

|sleep->play->NORMAL).

||HIGH=(NORMAL)<<{work}.

||LOW= (NORMAL)>>{work}.

� Use of priorities lead to more realistic
liveness checks.

LTSA

8

15© Wolfgang Emmerich, 1998/99

Summary

� Liveness
� Progress
� Progress Specification in FSP
� Progress-Analysis of LTS
� Priorities
� Next session: Progress Analysis of

Single-Lane Bridge

