Hardware Evolution

4C57/GI06 Evolutionary Systems

Tim Gordon
What is Hardware Evolution?

- The application of evolutionary techniques to hardware design and synthesis
- It is NOT just hardware implementation of EA
- Also called: Evolvable Hardware
 Evolutionary Electronics
Where is Hardware Evolution?

• Many learning algorithms are inspired by nature
 - GA/GP
 - ANNs
 - Immune Systems
 - Ant Colony Optimisation

• Nature also inspires hardware designers
 - Spiking ANNs
 - Fault tolerance
 - Design Optimisation
How is Evolution Applied?

- Digital Hardware Design = Logic Synthesis + Mapping
- Both processes involve optimisation steps
- Most interest in evolving design + mapping at once
HE Example: Reconfigurable Hardware

• There are chips where the behaviour of all the components can be programmed
• There are chips where the interconnections between the components can also be programmed
• The program that places a circuit design on the chip is called a bitstream.
• Once written, the chip will stay configured with the design until bitstream is rewritten
• One type of reconfigurable chip is a Field Programmable Gate Array
Field Programmable Gate Array

- FPGAs are 2D arrays of cells
- Cells are called Configurable Logic Blocks
- CLBs connected together with wires to/from nearest neighbours
- Each cell contains logic, and switches to select inputs & outputs
The logic within CLBs is usually several lookup tables (LUTs) + other stuff

This example has 2x 4 Input LUTs, labelled F and G

A 4-input LUT can implement any logical function of 4 inputs

The logical function of LUT is defined by the truthtable output bits

A LUT can be programmed by setting the corresponding bits in the bitstream

F LUT Truthtable:

<table>
<thead>
<tr>
<th>Inp1</th>
<th>Inp2</th>
<th>Inp3</th>
<th>Inp4</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Output = AND(Inp1, Inp2)

G LUT Truthtable:

<table>
<thead>
<tr>
<th>Inp1</th>
<th>Inp2</th>
<th>Inp3</th>
<th>Inp4</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bitstream fragment:

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```
Inputs Example

- Inputs can be selected from the LUT outputs of 4 neighbouring cells
- An input is selected by a special configuration multiplexer
- 8 possible inputs = 3 bits per MUX
- Inputs programmed by setting corresponding configuration bits in the bitstream
Bitstream Example

- Bitstream consists of a concatenation of all configuration bits
- Example shows bitstream fragment for 1 CLB

Bitstream fragment:

<table>
<thead>
<tr>
<th>CLB Input Bits</th>
<th>F LUT Bits</th>
<th>G LUT Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>000010011100</td>
<td>0000000000001111</td>
<td>0101010101010101</td>
</tr>
</tbody>
</table>

…….
Evolving an FPGA design

- A circuit can be evolved using a GA
- The chromosome is the bitstream
- Each individual is evaluated in 2 steps:
 1. Configure FPGA with bitstream/chromosome
 2. Test configured FPGA by applying all possible input combinations, using output for fitness
Example: 2 Bit Adder Evaluation

- Task is to evolve a 2 Bit adder
- Adds 2x 2 bit numbers together
- 4 inputs, 2 outputs
- Create a truth table of all possible inputs / outputs
- Pick input and output points on FPGA
- Pass all possible input combinations one at a time
- Measure total number of output bits correct for each input combination
- Fitness = sum(correct output bits)
- Set of all input combinations called training set
Example of an Evolved Adder

- This example actually implements carry in/out too
- Has been simplified to show a logic gate implementation
- Evolved in 2 CLBs
Is it practical?

- For most real-world hardware problems, human designers outperform evolution.
- Solving the problems that limit HE is an active area of research.
- This research discussed later.
- BUT
 - Hardware evolution does have niches.
Why? 1. Lowers Costs

- Automatic design = low cost hardware
- Low design cost makes low volumes more acceptable
- HE + field-reconfigurable hardware allows one-off designs (Kajitani et al. 1999)

- Integrated circuit manufacture is not perfect
- Variations in manufacture result in substandard performance
- Evolution can tune circuits to take account of variations
- This improve yields (Mukarawa et al. 1998)
One-off design e.g.: Myoelectric arm controller

- Traditionally user must learn to control arm
- Task is to learn to control actuators from nerve signals
- Inputs are Fourier transformed nerve data (training set) from user
- Outputs are control signals for actuator
- Successfully evolved circuits to control arm for individual users
- Circuit automatically implemented on reconfigurable chip
- Hardware solution is small & light
Why? (2) Poorly Specified Problems

- Can’t easily *design* solution to these problems
- When applied to ANN-type problems
 - Faster operation and design
 - Easier to analyse
- HE tends to evolve feed-forward networks of logic gates for such problems: avoids some problems
 - e.g. classifiers (Higuchi, Iwata et al. 1996)
 - image filters (Sekanina 2003)
Myoelectric Arm Revisited

- Evolved 1 control circuit for each actuator
- 200 training patterns of each movement
- 800 training patterns of no movement
- Slightly better than 64 node backprop ANN - 85% rather than 80%
- Much faster learning (80 ms rather than 3 hours on 200MHz PC)
Why? 3. Adaptive Systems

- HE + reconfigurable hardware = real-time adaptation
- Can adapt autonomously to changes in environment
- Useful when real-time manual control not possible
 - E.g. spacecraft systems (sensor processing)
- Non-critical systems are more suitable
 - E.g. data compression systems
 - plant power management
 - ATM cell scheduling
Image Compression Example

- Pixels in an image tend to tightly correlate with their neighbours
- Pixel value can usually be predicted from neighbours
- Compressed image = prediction function + error at each pixel (lossless)
JPEG Compression

- Prediction function based on surrounding pixels
- Image is broken into blocks
- For each block a prediction function is selected

\[
\begin{array}{c|c|c}
\text{g}(i-1,j-1) & \text{g}(i,j-1) & \text{g}(i+1,j-1) \\
\text{g}(i-1,j) & \text{g}(i,j) & \\
\end{array}
\]

Fig. 3. Prediction of \(g(i, j) \) from neighboring four pixels.

Table 1. Prediction function for JPEG lossless coding.

<table>
<thead>
<tr>
<th>No.</th>
<th>Prediction Function (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(g(i-1,j))</td>
</tr>
<tr>
<td>2</td>
<td>(g(i,j-1))</td>
</tr>
<tr>
<td>3</td>
<td>(g(i-1,j-1))</td>
</tr>
<tr>
<td>4</td>
<td>(g(i, j) + g(i, j-1) - g(i-1, j-1))</td>
</tr>
<tr>
<td>5</td>
<td>(g(i-1, j) + (g(i, j-1) - g(i-1, j-1))/2)</td>
</tr>
<tr>
<td>6</td>
<td>(g(i, j-1) + (g(i-1, j) - g(i-1, j-1))/2)</td>
</tr>
<tr>
<td>7</td>
<td>((g(i-1, j) + g(i, j-1))/2)</td>
</tr>
</tbody>
</table>
Hardware Evolution Compression

- Prediction function is *evolved* on reconfigurable hardware
- Evolve a circuit for each 16x16 block:
 - Input: image data, 4 pixels x 8b = 32 inputs, all 256 training cases
 - Output: predicted pixel
 - Fitness: compare predicted with raw, sum(error for 16x16 block)
 - Aim is to minimise error

- Each circuit = compression function for a 16x16 block
- Total compressed image size = sum(chromosome bits for each circuit + error bits for each pixel)
• Similar performance to JPEG, ANN compression
• Improved method is ISO standard for high-speed image compression in printers

Fig. 5. Comparison between EHW, NNs and JPEG compression systems. A) Original Lenna image. B) JPEG compression (bpp=0.5, SNR=26.5 db). C) NN compression (bpp=0.7, SNR=26.95). D) EHW compression (SNR=28.54, bpp=0.88).
Why? 4. Fault Tolerance

- Fabrication techniques not 100% reliable
- Miniaturisation increases risk of operational faults (power fluctuations, radiation)
- Redundancy is expensive
- Adaptive fault recovery by evolution + reconfiguration is one solution
- Designed-in fault tolerance is another
Why? 5. Design Innovation

• Traditional digital hardware design uses well-trodden rules.
• The rules don’t actually search the entire space of all circuits
• It may be possible to use old technologies more efficiently
• It isn’t possible to determine useful general design rules for some technologies
 – Analogue Design
• New technologies and designs paradigms don’t have rules in place yet
 – Programmable logic: convenient
 – Nanoelectronics: small & efficient
 – Shared component designs: efficient, low power
Can Evolution Really Innovate With Standard Technologies?

• Traditional design works from the top down
• Design rules limit interactions between components to a tractable level
• Evolution tinkers with designs from the bottom up
• Hence it might be searching non-traditional areas of space
• More on whether it actually can later
Classifying HE – Level of Constraint

- Both software and hardware design rely on abstraction
- Abstraction simplifies large problems
- When we use a design abstraction we need to make sure the hardware actually behaves according to the abstraction
- i.e. we need to *constrain* the hardware to particular behaviours
- Constraints are spatial (granularity), spatial (interconnection) or temporal
Constraint – Spatial, Granularity

• All traditional design methodologies use encapsulation
• Designers like to describe their problems with large well-understood units
• Digital designers encapsulate collections of transistors into gates, gates into adders, registers etc.
• Analogue designers encapsulate collections of components into amplifiers, filters etc.
• This limits the interactions within the circuits
• Interactions can only take place between the interfaces of the chosen units
 – i.e. the internals of one unit can’t interact with another

• Hence it actually constrains the types of circuit we explore
Constraint - Temporal

- Digital circuits are made of transistors
- Digital design abstracts transistors (and other larger granularity units) to perfect switches
- Transistors are actually analogue devices
- They take time to saturate
- We have to be sure this has happened
- Signals also take time to travel along wires
- A clock can tell us when it’s safe to accept a signal
- Clock constrains us to using a very limited segment of circuit’s behaviour
Constraint: Spatial, Interconnection

- Clocking every component would be extremely restrictive
- Feedforward networks of gates will always eventually behave as expected
- We can avoid using a clock in areas of circuit that are feed-forward only
- Combinational logic design is constrained to feed-forward only
- Only a suitable approach for some areas of circuit, a few problems
Hardware Constraint Space

- There is a lot of design space that is not traditionally explored
Classifying HE – Evaluation Strategy

• Early HE used evaluated circuits in simulation: *Extrinsic HE*

• Simulating logical abstractions is efficient

• Simulating low-constraint HE is computationally expensive

• Simulating low-constraint is difficult
Evaluation Strategy (2)

- Evaluating with a programmable logic device is called *Intrinsic HE*

- Disadvantages are:
 - Limited reconfigurability
 - Speed of reconfiguration
 - Destructibility
 - Limited topology and granularity
 - Limited observability

- The most versatile programmable logic device is the FPGA

- Commercial FPAAs also available but to date limited by one or more of the above
- Only a few research platforms actually designed for evolution
Innovation Research – Traditional vs. Evolutionary Search

- Traditional design decomposes from the top down into known sub-problems
- Applies constraints to ensure design behaves like known sub-problems

- Evolution works from the bottom up
- Evolution uses fitness to guide performance
- Not directed by prior knowledge
- Oblivious to complexities of the interactions within the circuit
Relaxing Constraints

- There may be innovative circuits in space beyond traditional design.
- But can evolution actually manipulate circuit dynamics / structure when traditional constraints are relaxed?
- Gates have delays measured in ns.
- Inputs and outputs of interest are often much slower.
- Traditionally temporal constraints are used to achieve this.
- Can evolution manipulate fast components into a configuration that behaves more slowly?
Evolving an Oscillator

- Evolved a network of high-speed gates at to behave as a low frequency oscillator (Thompson, Harvey et al. 1996)
- Few constraints: none on connectivity or temporal, gate level granularity
- Aim: Oscillate every 0.5ms, using gates with 1-5ns delays

- Fitness =
 1. Measure time b/w each oscillation
 2. Calculate difference b/w oscillation time & 0.5ms
 3. Sum error over 10ms (simulated) evaluation time
Chromosome Structure

- Defines network of gates
- Array of 100 segments as shown in table
- Each segment describes a component + connections

Table 1: Node functions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFFER</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>NOT</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>AND</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>OR</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>XOR</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>NAND</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>NOR</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>NOT-XOR</td>
<td>![Symbol]</td>
</tr>
</tbody>
</table>

Table 2: Genotype segment for one node.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>Junk</td>
</tr>
<tr>
<td>5-7</td>
<td>Node Function</td>
</tr>
<tr>
<td>8</td>
<td>Pointer to First Input</td>
</tr>
<tr>
<td>9</td>
<td>Direction</td>
</tr>
<tr>
<td>10-15</td>
<td>Addressing Mode</td>
</tr>
<tr>
<td>16</td>
<td>Pointer to Second Input</td>
</tr>
<tr>
<td>17</td>
<td>Direction</td>
</tr>
<tr>
<td>18-23</td>
<td>Addressing Mode</td>
</tr>
<tr>
<td></td>
<td>Length</td>
</tr>
</tbody>
</table>
Best Circuit Evolved
Oscillator Performance

- Evolution really can find potentially useful circuits (low-speed behaviour) with no design constraints (only high-speed gates)
Relaxing Constraints – Intrinsic

• Can this be achieved with real hardware?
• Evolved circuit to discriminate between two frequencies
• To discriminate b/w frequencies circuit must measure oscillations over a (relatively) long time
• Evolved entire bitstream for a 10x10 cell area of FPGA
• Only real, fast-saturating FPGA gates available
Thompson’s Frequency Discriminator

- 1 input, 1 output
- No clock signal available
- Fitness:
 - Maximise difference b/w output voltage when 1kHz or 10kHz signals applied
Can Evolution Find Innovative Circuits?

- Circuits that could not be found using traditional design abstractions are innovative
- Solution has high performance
- Uses less gates than traditional designs
- Analysis shows internal non-digital behaviour

∴ Innovative
Problems with innovative circuits

• Important to understand how a circuit works
• Some behaviour defies analysis
• Not portable
 – Fails on other FPGAs
 – Fails when temperature changed
• These problems have to be tackled before evolved innovative circuits are useful
Innovation in Digital Design Space

• Are there innovative circuits that don’t break the digital design constraints?
• Expt. repeated with clock as additional input
• Solutions used clock, simulated perfectly on logic simulator
• Analysis revealed solution could not be discovered by traditional top-down design
Innovation – New Technologies

• Traditional design maps to AND, OR gates
• FPGAs use XOR, LUTs and MUXs
• Can evolution make better use of these gates?
• Evolved 3 bit multipliers
 – i.e. multiplies 2x 3bit numbers together
Conventional 3 Bit Multiplier

26 gates
Evolved 3 bit multiplier

- Fewer gates than traditional design
- Makes much greater use of MUX than traditional design

Figure 18: Evolved three-bit multiplier (21 gates = 14 two-input gates + 7 MUX).
Innovation – Complex Technologies

- Traditional analogue design is difficult as it has few rules – good potential target for HE
- Mutating a digital circuit often causes a big change in fitness
- Mutating an analogue circuit usually only causes a small change in fitness
 ∴ Usually more evolvable than digital
- BUT
 - FPAAs are small, restricted topology
 - Simulation is computationally expensive
 - Simulator has to be very good, e.g. no infinite currents, voltages
- Huge range of circuits evolved, e.g. filters, amplifiers, computational circuits (i.e. sqrt, log etc)
HE Research - Generalisation

- Evolution is an inductive learner
- Inductive learners infer hypotheses from observed training examples
- Impossible to train using all possible combinations of input signals for big problems
- Generalisation vital if HE is to rival traditional design
- Generalisation to unseen operating conditions must also be considered
 - i.e. portability
Approaches to Generalisation

• Hope for the best
• Constrain representation to circuits that generalise well
• Reward circuits that generalise well through fitness function
 – Evolution must infer the structure along with the primary task
 – More opportunity for innovation
Generalisation to Unseen Inputs

• For some problems feedforward HE outperforms backprop ANNs on pattern recognition (e.g. Myoelectric arm)
• Square root function generalises well too
• So hoping for the best can work

BUT

• Arithmetic circuits don’t generalise well
• Applying random subsets of training cases to reward general circuits doesn’t work
• Why?
Input Generalisation Explained

- Arithmetic functions: all input cases and all bits contain some unique information
- They all contribute equally to fitness
- Square root: low order bits contribute less to fitness, can be ignored to some extent
- Pattern recognition: redundant data within input set
- Redundancy is the key
- Most real-world problems likely to have redundancy, but it’s a big difficulty
Generalisation to Unseen Environments

• Circuits are expected to function under a range of conditions:
 – Temperature
 – Power fluctuations
 – Fabrication variations
 – Electronic surroundings
 – Output load

• Portability a particular problem for unconstrained HE, intrinsic or extrinsic
Unseen Environments – Constraining Representation

• Digital design imposes timing constraints to ensure digital operation
• VLSI foundries test process + set timing, environmental constraints accordingly
• Exhaustive testing not possible for HE
• Restricting circuit structure to traditional constraints solves problem

BUT at the expense of innovation
Environmental Generalisation – Biasing Fitness

• One solution – define an “Operational Envelope” of operating conditions & evaluate population at different points within it
 – non-portable solutions are automatically penalised

• Thompson’s tone discriminator re-evolved using “Operational Envelope” approach

• Each evaluation carried out on 1 of 5 FPGAs chosen at random:
 – Held at different temperatures
 – Different power supplies
 – Made in different factories

• Evolved solutions were
 – Robust across whole temperature range of envelope
 – Portable to unseen FPGAs
 – Portable to unseen power supplies

∴ Introducing bias towards generalisation can work well
Generalisation – Simulation Issues

• Circuit simulation is important - allows analysis
• Logic simulators don’t model all the processes unconstrained evolution might make use of
• Might not simulate on low-abstraction simulator too!
 – might make use of fabrication, power supply variations etc.
 – these are difficult to replicate in a simulator
• Extrinsic solutions might not work in real life
 – low-abstraction simulators often allow infinite currents voltages
 – Evolution often makes use of these
Generalisation – Mixtrinsic Evolution

• Can do something similar to the operational envelope:
 – During evolution use intrinsic and extrinsic evaluation
 – Evaluate circuits at random on either platform
 – Non-portable solutions are automatically penalised
 – This is called *mixtrinsic* evaluation

• Could do reverse: *reward* circuits that are not portable between intrinsic and extrinsic
 – Might promote innovative solutions
Fault Tolerance

• Operation in the presence of faults is another environmental condition
• Introducing faults during evaluation improves fault tolerance: just like Operational Envelope
• EA search bias can cause inherent fault tolerance to certain conditions
• How?
Representational Fault Tolerance

- EAs optimise the *population* not individual
- Population likely to contain many mutants of good circuit
- EA is drawn to area where best + mutants are all high fitness
- If representation is chosen so mutation has same effect as common fault
 - Circuit is identical to mutant
 - Mutant still has high fitness because of above
Representational FT: Example

- Hardware often implemented as a finite state machine
- State transitions for FSM can be encoded in RAM
- We could evolve hardware by evolving the RAM bits
- Single Stuck At faults are a common operational fault
- SSA fault would have the same effect on the FSM as a mutation
Historical Fault Tolerance

- Introduce fault that breaks best solution (Layzell and Thompson 2000)
- Some of population usually robust to fault
- EA theory says population should have converged. What’s going on?
- Earlier best solutions were inherently different designs
- Crossover often combines these with new best
- Current best is descendent of both designs
- Info about old best retained in population
- Crossover vital to this phenomenon
Populational Fault Tolerance

• Population diversity can also allow fault tolerance
• Shown by evolving population of oscillators with no shared evolutionary history (no crossover)
• Faults in one individual did not affect whole population
• Nicheing might be able to combine PFT & HFT
HE Research - Evolvability

• Evolvability covers improving:
 – Solution quality
 – Search performance
 – Scalability
• Representation is crucial
• Search space size not as important as order of search
• Changes in circuit geometry, I/O positioning often affect performance greatly.
Function Level Evolution

• Aims to improve performance by reducing search space

• Use domain knowledge to select high-level building blocks, e.g. add, sub, sin

• Disadvantages:
 – Requires designer with domain knowledge
 – Not hierachical modularity
 – An abstraction that imposes constraint
 – Traditional building blocks might not be evolvable
Neutral Networks

- EAs converge to suboptimal solutions on large search spaces
- Traditional thinking says evolution stops when population converges
- Not necessarily true
- NNs are networks of genotypes with identical fitness
- Genetic drift along NNs allows escape from local optima
- \[\therefore \] Evolution continues after genetic convergence
- Many circuit representations have a good deal of neutrality
- Improves fitness for many HE problems
Incremental Learning

• Break down problem into sub-problems
• Learn solution to 1st sub-problem
• Learn solution to 1st + 2nd sub-problem
• Learn solution to 1st + 2nd + 3rd sub-problem
• Can be automated
• Requires some form of sensible problem decomposition
 – Requires some domain knowledge
Dynamic Representations

• Variable length representation proposed to reduce search space
• Short representation = small search space
• Start with short representation – reduces initial search space
• Several researchers have taken similar approach
 – Each gene mapped directly to a Boolean function (product term)
 – Genes ORed in final solution
 – Genes added/removed either by evolutionary operators or another heuristic
• Improved performance for some pattern recognition problems reported