
Local Transit Policies and the Complexity of

BGP Stability Testing

Marco Chiesa Luca Cittadini Giuseppe Di Battista Stefano Vissicchio

Dept. of Computer Science and Automation, Roma Tre University

{chiesa,ratm,gdb,vissicch}@dia.uniroma3.it

Abstract—BGP, the core protocol of the Internet backbone, is
renowned to be prone to oscillations. Despite prior work shed
some light on BGP stability, many problems remain open. For
example, determining how hard it is to check that a BGP network
is safe, i.e., it is guaranteed to converge, has been an elusive
research goal up to now.

In this paper, we address several problems related to BGP
stability, stating the computational complexity of testing if a given
configuration is safe, is robust, or is safe under filtering. Further,
we determine the computational complexity of checking popular
sufficient conditions for stability.

We adopt a model that captures Local Transit policies, i.e.,
policies that are functions only of the ingress and the egress
points. The focus on Local Transit policies is motivated by the
fact that they represent a configuration paradigm commonly used
by network operators. We also address the same BGP stability
problems in the widely adopted SPP model.

Unfortunately, we find that the most interesting problems are
computationally hard even if policies are restricted to be as
expressive as Local Transit policies. Our findings suggest that
the computational intractability of BGP stability be an intrinsic
property of policy-based path vector routing protocols that allow
policies to be specified in complete autonomy.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1] is not guaranteed

to converge: it can fail to find a stable routing either because

there does not exist any [2] or because of bad ordering of

messages [3].

Since the effects of BGP oscillations can range from

performance degradation [4] to denial of service [5], BGP

stability attracted lots of research interest. Necessary [6] and

sufficient [7], [3] conditions for stability have been found and

changes to the protocol [8] or limitations to the expressiveness

of the policies [9], [10] have been proposed. However, chang-

ing the protocol faces severe deployment issues. Moreover,

enforcing sufficient conditions for stability may be incompat-

ible with the need for expressiveness and autonomy that BGP

was designed to address. For these reasons, the problem of

checking a given BGP configuration for stability has also been

deeply studied. As an example, it has been shown that deciding

whether a given BGP configuration admits a stable routing is

NP-hard [11], [3].

In this paper we consider several fundamental problems

related to BGP stability: (i) SAFETY [11], [3], i.e., the problem

of verifying that a BGP configuration is guaranteed to con-

verge. (ii) SUF [6] and ROBUSTNESS [3], i.e., the problems

of verifying that a safe BGP configuration is guaranteed

to converge under any filtering action and any link failure,

respectively. (iii) NO-DW [3] and NO-DR [12] i.e., the problems

of verifying that a BGP configuration does not contain a

dispute wheel and a dispute reel, respectively. The absence

of a dispute wheel is a sufficient condition for SAFETY while

the absence of a dispute reel is a characterization for SUF.

We study the complexity of the above problems within three

different models for BGP policies: (i) The widely adopted

SPP model [3], that captures arbitrarily complex BGP policies.

(ii) The 3-SPP model, that captures the so-called Local Transit

policies [13], a very common configuration paradigm where

policies are functions only of the ingress and the egress points.

(iii) The 2-SPP model, a simplified version of 3-SPP, where

either only the ingress point, i.e., the BGP neighbor that

announced the route, is considered. In all three cases we adopt

the well-known SPVP [3] model for BGP dynamics.

We exploit those models to study how expressive BGP

policies can be in order to allow an efficient static assessment

of BGP stability, assuming that ASes fully preserve their

autonomy. Unfortunately, we find that the most interesting

problems are computationally hard even if policies are re-

stricted to be Local Transit only. First, solving a long standing

open problem [11], [3], we prove that SAFETY is coNP-hard

both in SPP and in 3-SPP. Second, we prove that SUF is coNP-

complete in SPP and that ROBUSTNESS is coNP-hard both

in SPP and in 3-SPP. Third, we show that even the NO-DW

problem, which can be solved efficiently in SPP [7], is coNP-

complete in 3-SPP. Also, we find that the NO-DR problem is

coNP-complete both in SPP and in 3-SPP. As a side effect,

since any 3-SPP configuration can be expressed in the model

proposed in [11] without changing the size of the input, our

negative results can be extended to the model in [11].

Stimulated by the above list of negative results, we inves-

tigate whether stability problems can be made tractable by

sacrificing the expressive power of policy configurations, while

preserving ASes’ autonomy. Eventually, we find that SAFETY

is solvable in polynomial time in 2-SPP, where policies are so

restricted that they are unsuitable for practical uses.

The rest of the paper is organized as follows. Section II

reviews related work in the field of BGP stability. In Sec-

tion III, we introduce the models we use in this paper. In

Section IV and V, we study the complexity of SAFETY and

NO-DW respectively, while Section VI studies NO-DR, SUF,

and ROBUSTNESS. Finally, we conclude in Section VII.

II. RELATED WORK

In [11] a BGP model is proposed where policies are

described by means of functions that implement import

and export filters, similarly to real-world BGP configu-

ration languages. Several important complexity results are

proved: (i) checking if a BGP network has a stable routing

(SOLVABILITY) is NP-complete, (ii) deciding whether a BGP

network can be trapped in a permanent oscillation is NP-hard,

and (iii) deciding whether a BGP network has a stable routing,

i.e., it is solvable, under any combination of link failure is NP-

hard. The complexity of SAFETY is left open.

In [3] the SPP model is introduced. BGP policies are ex-

pressed by explicitly enumerating and ranking all the permitted

paths. In this setting, it is shown that SOLVABILITY is NP-

hard. This result could not be evinced from [11], as translation

from one model to the other might take exponential time. The

complexity of SAFETY and ROBUSTNESS is left open.

In [14] it is proved that the coexistence of two stable states

implies the existence of an oscillation. Policies are modeled

with SPP. Although the model for BGP dynamics is slightly

different from SPVP, the result also holds in SPVP [14].

In [10] a model is used in which BGP policies are applied

consistently network-wide based on a classification of neigh-

bors into groups. In this setting, a polynomial time algorithm

is given to check whether the structure of the classes can lead

to specific BGP policies in which oscillations are possible. The

3-SPP model is similar to the one used in [10] in that it also

limits the expressiveness of BGP policies, however it is more

general since it allows each AS to preserve its autonomy.

In [15] SAFETY is claimed to be PSPACE-complete. How-

ever, the adopted model assumes that ASes are omniscient,

that is, upon activation they can immediately know the AS-

paths that are being used by every other AS, without the need

to exchange BGP messages. This assumption makes it very

hard to apply the results to any realistic model of BGP.

III. BGP MODELS

This section describes the well-known Stable Paths Problem

(SPP) formalism [3] and defines k-SPP, a variation of SPP

which is suitable to study how policy expressiveness impacts

the computational complexity of stability problems.

A. SPP

SPP models a BGP network as an undirected graph G =
(V,E), where vertices V = {0, 1, . . . , n} represent ASes and

edges in E correspond to BGP peerings between ASes. Vertex

0 is a special vertex in that it is the destination every other

vertex attempts to establish a path to. Since different desti-

nations are independently handled by BGP [1], 0 is assumed

to be the only destination, without loss of generality. A path

P is a sequence of k + 1 vertices P = (vk vk−1 . . . v1 v0),
vi ∈ V , such that (vi, vi−1) ∈ E for i = 1, . . . , k. Vertex vk−1

is the next hop of vk in P . For k = 0 we obtain the trivial path

(v0) consisting of vertex v0 alone. The empty path represents

inability to reach the destination and is denoted by ǫ. The

concatenation of two nonempty paths P = (vk vk−1 . . . vi),

k ≥ i, and Q = (vi vi−1 . . . v0), i ≥ 0, denoted as PQ,

is the path (vk vk−1 . . . vi vi−1 . . . v0). We assume that

Pǫ = ǫP = ǫ, that is, the empty path can never extend or be

extended by other paths.

SPP models BGP import/export policies and the BGP deci-

sion process by explicitly listing and ranking all permitted

paths. More precisely, each vertex u ∈ V is assigned a

set of permitted paths Pu which represent the paths that u

can use to reach 0. All the paths in Pu are simple (i.e.,

without repeated vertices), start from u and end in 0. The

empty path, representing unreachability of 0, is permitted at

each vertex u 6= 0. Vertex 0 can reach itself only directly,

hence P0 = {(0)}. Let P =
⋃

u∈V Pu. For each u ∈ V , a

ranking function λu : Pu → N determines the relative level

of preference λu(P) assigned by u to path P . If P1, P2 ∈ Pu

and λu(P2) < λu(P1), then P2 is preferred over P1. Let

Λ = {λu|u ∈ V }.

The following conditions hold on permitted paths of each

vertex u ∈ V − {0}:

(i) ∀P ∈ Pu, P 6= ǫ: λu(P) < λu(ǫ) (unreachability of 0 is

the last resort);

(ii) ∀P1, P2 ∈ Pu, P1 6= P2 : λu(P1) = λu(P2) ⇒ P1 =
(u v)P ′

1, P2 = (u v)P ′

2, (strict ranking is assumed on all

paths but those with the same next hop).

An instance S of SPP is a triple (G,P,Λ).
A path assignment is a function π that maps each vertex

v ∈ V to a path π(v) ∈ Pv , representing the fact that the BGP

process running at vertex v is selecting π(v) as its preferred

path to reach the destination. We always have π(0) = (0).
BGP dynamics are modeled by a distributed algorithm

called Simple Path Vector Protocol (SPVP) [3], which com-

putes a path assignment πt at each iteration t. Since we

consider discrete time, iterations and time are interchangeable

concepts. SPVP works as follows (details can be found in [3]).

Vertex 0 keeps announcing its presence to its neighbors. Every

other vertex u collects announcements from its neighbors,

discards those announcements containing paths that are not

in Pu, and stores non-discarded announcements in a data

structure called rib int. In particular, rib int(u ⇐ v) contains

the latest accepted announcement from neighbor v. Thus, u

can select a path in the following set:

choicest(u) =

{

{(u v) rib int(u ⇐ v)} if u 6= 0
{(0)} if u = 0

Let W be the set of paths accepted by u from its neighbors.

At this point, u selects the best ranked path in W according

to its ranking function λu:

best(W,u) =

{

argmin
P∈W

λu(P) if W 6= ⊘

ǫ if W = ⊘

If this operation updated u’s selected path, then u sends

announcements to all its neighbors. Notice that, at any time

t, SPVP computes a path assignment πt such that each vertex

selects the best available path.

120

10

321

30

320 210

20

432
4 3 1

0

2

Fig. 1. An instance of the 3-SPP model.

Given an SPP instance, we say that πt is a stable path

assignment if, ∀u ∈ V : πt(u) = best(choicest(u), u), that

is, every vertex has settled to the best possible choice and

cannot switch to a better ranked alternative. The order in which

announcements are exchanged among vertices is modeled

in SPVP by activation sequences [3]. When edge (u, v)
is activated, vertex v receives u’s best path, stores it in

rib int(v ⇐ u), and recomputes its best path. Simultaneous

activations are allowed. An activation sequence is fair if any

edge (u, v) is eventually activated after u has sent a message to

v. In the following, we consider only fair activation sequences.

As shown in [16], simplifying the definition of activation

sequences (e.g. by activating vertices instead of edges or

by not allowing simultaneous activations) leads to inability

to model a subset of the possible routing oscillations. It

has been shown [7] that, possibly depending on the specific

activation sequence, the SPVP algorithm might oscillate indef-

initely, never converging to a stable state. An SPP instance S

is safe [7] if SPVP is guaranteed to eventually reach a stable

path assignment on S for any fair activation sequence.

B. 3-SPP and k-SPP

SPP can model every possible BGP policy specification.

However, since it requires explicit listing and ranking of

all paths, it is mostly a theoretical model. In fact, network

operators configure BGP policies without knowing the entire

network topology. Also, the size of an SPP instance is bound

to the size of P , which can be exponential in |V |.
Several models have been proposed in alternative to SPP,

either adopting a more realistic specification of policies

(e.g., [11]) or limiting the expressiveness of the policies that

can be expressed in the model (e.g., [10]). However, these

models either have the same expressive power of SPP or have

important limitations (see Section II).

We now describe 3-SPP, a variant of SPP in which vertices

are forced to rank and filter announcements on the basis of the

first 3 hops in the path. This model allows ASes to specify

Local Transit policies [13], that is, policies in which ASes

define filters based on neighbor pairs (e.g., paths received from

neighbor x should not be exported to neighbor y).

We now formally define the 3-SPP model. Let G = (V,E)
be defined as for standard SPP instances. Each vertex u ∈ V ,

with u 6= 0, is assigned a set of permitted path fragments

P̃u such that (u 0) can be in P̃u if (u, 0) ∈ E and paths

(u v w) can be in P̃u if u, v, and w are distinct vertices in V

and (u, v), (v, w) ∈ E. The only permitted path fragment at

vertex 0 is P̃0 = {(0)}. To reach 0, a vertex u ∈ V −{0} can

use any path P = (u v1 . . . vn 0), starting with a fragment

in P̃u and obtained by concatenating any permitted fragment

at each vertex vi, with i = 1, . . . , n. Path fragments contain

exactly 3 vertices except for the case of 0 and of its neighbors,

which can reach 0 directly. Let P̃ =
⋃

u∈V P̃u.

Each vertex u ∈ V − {0} ranks path fragments in P̃u

according to a function λ̃u : P̃u → N which assigns a level of

preference to paths starting with a fragment in P̃u. Namely,

if λ̃u((u v w)) < λ̃u((u x y)) then any path starting with

(u v w) is preferred to any path starting with (u x y).
Similarly to the SPP model, the empty path is always

permitted, i.e., ǫ ∈ P̃u, ∀u ∈ V − {0}, and unreachability

is the last resort, i.e., ∀P ∈ P̃u, P 6= ǫ: λ̃u(P) < λ̃u(ǫ).
Differently from the SPP model, two path fragments can

have the same rank even if they have a different next hop.

Moreover, paths through the same neighbor always have the

same rank, i.e., if (u v w) and (u v z) are two path fragments

in P̃u then λ̃u((u v w)) = λ̃u((u v z)). Any deterministic

criterion (e.g., shortest path) can be used to break ties.

An instance S̃ of 3-SPP is a triple (G, P̃, Λ̃). An example 3-

SPP instance is depicted in Fig. 1 using a graphical convention

analogous to that used in [3]. The list beside each vertex

u represents the permitted path fragments in P̃u sorted by

increasing values of λ̃u. For example, vertex 2 can use path

fragments in P̃2 = {(2 1 0), (2 0)} to reach 0 and prefers

(2 0). The empty path and P̃0 are omitted for brevity. Vertex

3 decides not to propagate the path received from 0 to 2,

and permitted paths fragments at vertex 2 result from filtering

action performed by 3 and ranking configured at 2. Observe

that path fragment 432 at vertex 4 models two distinct paths

from 4 to 0, namely 4320 and 43210, that have the same rank.

The 3-SPP model can be generalized to the k-SPP model,

where permitted path fragments defined at each vertex contain

k hops. The number of path fragments at each vertex is

O(nk−1), where n = |V |, hence the size of an instance of k-

SPP is O(nk). It is easy to verify that, given a specific tie break

criterion, an instance of k-SPP can be uniquely translated to

an instance of SPP (e.g., by concatenating path fragments to

generate permitted paths at each node), while the opposite is

in general not true. In other words, k-SPP allows us to trade

policy expressiveness for policy succinctness.

IV. THE COMPLEXITY OF THE SAFETY PROBLEM

The SAFETY problem is defined as follows: given an SPP

instance, is it safe? In this section we study the computational

complexity of SAFETY in the SPP model, in the 3-SPP model,

and in the 2-SPP model.

A. Safety is coNP-Hard in the SPP and in the 3-SPP models

We now prove that SAFETY is coNP-hard in the SPP

model using a reduction from SAT COMPLEMENT [17].

In order to prove such a result, we first need to

show some technical properties regarding the SPP in-

stance of Fig. 2, which we call TWISTED gadget.

TWISTED has vertex set V = {0, x, x̄, a, b, c1, . . . , cm}
and edge set E = {(0, a), (0, b), (a, x), (b, x̄), (x, x̄)} ∪
{(c1, x), (c1, x̄), . . . , (cm, x), (cm, x̄)}. Policies are as de-

scribed in Fig. 2. Vertices ci, with i = 1, . . . ,m, also have

x x̄

0

a c1

axx̄b0

a0

bx̄xa0

b0

xa0

xc10

...

xcm0

xx̄b0

x̄b0

x̄c10

...

x̄cm0

x̄xa0
P 1

m

...

P cm
m

cm0

cm b

P 1

1

...

P c1

1

c10

Fig. 2. TWISTED gadget.

links to another portion of the network not explicitly shown

in Fig. 2. Each path P
j
i passes through the portion of the

network that is not shown and is ranked better than (ci 0).
We now prove two important properties of TWISTED.

Lemma 4.1: For each activation sequence, there do not exist

two instants t′ and t′′ such that πt′(x) = (x x̄ b 0) and

πt′′(x̄) = (x̄ x a 0).
Proof: Suppose, for a contradiction, that there exists an

activation sequence such that πt′(x) = (x x̄ b 0) and πt′′(x̄) =
(x̄ x a 0). Denote by tP the first time when path P = (v . . . 0)
is selected by vertex v. By definition of SPVP, we have that

ta0 < txa0 < tx̄xa0 and tb0 < tx̄b0 < txx̄b0. Since vertex 0
can never withdraw path (0), vertex a (b) cannot select the

empty path after ta0 (tb0).

Suppose txx̄b0 ≥ txa0. Note that, after ta0, vertex a can

withdraw path (a 0) only by announcing path (a x x̄ b 0).
However, a cannot select path (a x x̄ b 0) because this would

imply taxx̄b0 ≤ txa0 ≤ txx̄b0 < taxx̄b0, hence a contradiction.

On the other hand, if vertex a does not withdraw path (a 0)
then vertex x never selects path (x x̄ b 0) because of the

availability of the better ranked path (x a 0).
Then it must be txx̄b0 < txa0 and, by symmetry, tx̄xa0 <

txb0. A contradiction: txa0 < tx̄xa0 < tx̄b0 < txx̄b0 < txa0.

Lemma 4.2: For each fair activation sequence, if a vertex

cj and a time t′ exist such that ∀t > t′ πt(cj) = (cj 0),
then a time t′′ exists such that ∀t > t′′ πt(x) = (x a 0) and

πt(x̄) = (x̄ b 0).
Proof: By definition of fair activation sequence, there

must exist a time t1 > t′ after which paths (x cj 0) and

(x̄ cj 0) are always available to vertices x and x̄, respec-

tively. This indefinitely prevents vertex x from selecting path

(x x̄ b 0) and vertex x̄ from selecting path (x̄ x a 0).
As a consequence and because of the fairness, there must

exist a time t2 > t1 such that vertex a can only select path

(a 0) and vertex b can only select path (b 0). Analogously,

there must exist a time t3 > t2 after which paths (x a 0) and

(x̄ b 0) are always available at vertices x and x̄.

The statement follows by noting that (x a 0) is the most

preferred by x and (x̄ b 0) is the most preferred by x̄.

We now use the TWISTED gadget and the results from

Lemmas 4.1 and 4.2 to reduce the opposite of the SAT problem,

namely SAT COMPLEMENT, to SAFETY. Let F be a logical

formula in conjunctive normal form with variables X1 . . . Xn

and clauses C1 . . . Cm. We construct an SPP instance S in

x1 x̄1

0

a1

c1

a1x1x̄1b10

a10
b1x̄1x1a10

b10

x1a10

x1c10

...

x1cm0

x1x̄1b10

x̄1b10

x̄1c10

...

x̄1cm0

x̄1x1a10

x1x̄1b10

x̄3x3a30

x̄4x4a40

x6x̄6b60

c10
cm

b1

xn x̄n

an

anxnx̄nbn0

an0
bnx̄nxnan0

bn0

xnan0

xnc10

...

xncm0

xnx̄nbn0

x̄nbn0

x̄nc10

...

x̄ncm0

x̄nxnan0

bn

x̄1x1a10

x̄2x2a20

x4x̄4b40

c10

Fig. 3. Reduction from SAT COMPLEMENT to SAFETY.

polynomial time with respect to the size of the SAT COMPLE-

MENT instance as follows (see Figure 3).

For each clause Ci, add a vertex ci to S. For each variable

Xi, add a copy of the TWISTED gadget with x, x̄, a, and b

replaced by xi, x̄i, ai, and bi, respectively. In the copy, for

each clause Cj , (xi cj 0) ∈ Pxi and (x̄i cj 0) ∈ P x̄i . For

each vertex cj , path (cj xi x̄i bi 0) ∈ Pcj if literal Xi is in

Cj and path (cj x̄i xi ai 0) ∈ Pcj if literal X̄i is in Cj . Path

(cj 0) is the least preferred path at each vertex cj , while the

relative preference among other paths is not significant.

Theorem 4.1: SAFETY is coNP-hard in the SPP model.

Proof: Consider a logical formula F and construct the

corresponding SPP instance S = ((V,E),P,Λ) as described

above. We now prove the statement in two parts.

If F is unsatisfiable then S is safe.

Consider any fair activation sequence and assume that all

vertices cj select a path P 6= (cj 0) infinite times. Let W =
{xi ∈ V | ∃cj , ∃t : πt(cj) = (cj xi x̄i ai 0)} and Z = {x̄i ∈
V | ∃cj , ∃t : πt(cj) = (cj x̄i xi bi 0)}. Consider the boolean

assignment M such that Xi is assigned to TRUE if xi ∈ W ,

and Xi is assigned to FALSE if x̄i ∈ Z. Lemma 4.1 ensures

that Z ∩W = ⊘. By construction of S, each clause in F is

satisfied by at least a variable in M , that is a contradiction.

Then there must exist a time t′ and a vertex ck such that

∀t > t′ πt(ck) = (ck 0). By Lemma 4.2, this implies that

there exists a time t′′ > t′ after which each vertex xi always

selects path (xi ai 0) and each vertex x̄i always selects path

(x̄i bi 0). The fairness of the activation sequence guarantees

that, eventually, each vertex cj permanently selects (cj 0),
each vertex ai permanently selects (ai 0), and each vertex bi
permanently selects (bi 0). It is easy to check that such a path

assignment is stable. Since any fair activation sequence leads

to a stable path assignment, if F is unsatisfiable then S is safe.

If F is satisfiable then S is not safe.

Let M be a boolean assignment that satisfies F . We now

show that S has at least two stable path assignments.

Let π′ be a path assignment such that π′(xi) = (xi ai 0),
π′(x̄i) = (x̄i bi 0), π′(ai) = (ai 0), π′(bi) = (bi 0), and

π′(cj) = (cj 0), where i = 1, . . . , n and j = 1, . . . ,m. It is

easy to check that π′ is a stable path assignment.

Also, consider path assignment π′′ defined as follows. For

each variable Xi such that M(Xi) = ⊤, let π′′(xi) =
(xi x̄i bi 0), π′′(x̄i) = (x̄i bi 0), π′′(ai) = (ai xi x̄i bi 0),
π′′(bi) = (bi 0). For each variable Xi such that M(Xi) = ⊥,

let π′′(x̄i) = (x̄i xi ai 0), π′′(xi) = (xi ai 0), π′′(ai) =
(ai 0), π

′′(bi) = (bi x̄i xi ai 0). Each vertex cj selects in π′′

the most preferred among paths in set Rj = {(cj xi x̄i bi 0) ∈
Pcj |M(Xi) = ⊤} ∪ {(cj x̄i xi ai 0) ∈ Pcj |M(Xi) = ⊥}.

Observe that ∀j Rj 6= ⊘ since each clause is satisfied by at

least one variable in M . We now show that path assignment

π′′ is stable. Each vertex cj , j = 1, . . . ,m, selects the best

ranked path in Rj and, by construction, no better alternative

is available at cj . For each variable Xi such that M(Xi) = ⊤
(M(Xi) = ⊥) vertices ai (bi) and x̄i (xi) select their best

ranked path, while vertices bi (ai) and xi (x̄i) cannot select

any other path except the one defined by π′′.

We conclude that, if F is satisfiable, then S has two stable

path assignments. The statement follows by Theorem 3.1
of [14], which proves that any SPP instance with two distinct

stable path assignments is not safe.

Theorem 4.2: SAFETY is coNP-hard in the 3-SPP model.

Proof: We can use the same reduction from SAT COM-

PLEMENT to SAFETY applied in Theorem 4.1. In fact, the SPP

instance constructed in the reduction can be easily translated

into a 3-SPP instance, since every permitted path at each vertex

is uniquely identified by the first three hops in the path. The

reduction proves the statement.

B. Safety can be efficiently checked in the 2-SPP model

The 2-SPP model allows ASes to only specify path frag-

ments of length 2. In other words, policies can be specified

only on a per-neighbor basis: all paths from the same neighbor

are either accepted or filtered and are equally preferred. As in

3-SPP, any arbitrary deterministic criterion can break ties. By

applying the technique in [18], it can be shown that every 2-

SPP instance has at least a stable path assignment π and π

can be computed in polynomial time. Observe, however, that

2-SPP allows configurations that are not safe, e.g., the famous

SPP instance DISAGREE [11] can be represented in 2-SPP.

Given a 2-SPP instance S̃ = (G = (V,E), P̃, Λ̃), a path

fragment (u v), with u, v ∈ V , is consistent if there exists

a sequence of permitted path fragments P1, P2, . . . , Pn in

P̃ such that (u v)P1P2 . . . Pn(0) is a simple path on G.

Consistency of a given path fragment can be trivially checked

in polynomial time. In the following, we consider only 2-SPP

instances in which all permitted path fragments are consistent.

We show an algorithm, called NH-GREEDY, that efficiently

solves SAFETY in 2-SPP. NH-GREEDY is an adaptation of the

greedy algorithm in [3]. NH-GREEDY incrementally grows a

set of stable vertices for which convergence is guaranteed. The

set of stable vertices at iteration i of NH-GREEDY is denoted

by Vi. At iteration i NH-GREEDY also computes a partial path

assignment π∗

i , that is, a path assignment where ∀u 6∈ Vi

π∗

i (u) = ǫ. At the beginning, V0 = {0} and π∗

0(0) = (0). Let

Hi be the set of vertices u 6∈ Vi such that the most preferred

path fragment is either Bu = ǫ or Bu = (u v), where v ∈ Vi.

If Hi is not empty, then Vi+1 = Vi ∪Hi, π
∗

i+1(u) = π∗

i (u) if

u ∈ Vi, and π∗

i+1(u) = Buπ∗

i (u) for each u ∈ Hi. Otherwise,

if Hi is empty, NH-GREEDY terminates. At each iteration, NH-

GREEDY either inserts at least one vertex in Vi or terminates,

hence it terminates after at most |V | iterations. If NH-GREEDY

terminates after k iterations with Vk = V then we say that it

succeeds, otherwise it fails. Being derived from the algorithm

in [3], NH-GREEDY inherits the properties shown in [19]. In

particular, this implies that NH-GREEDY is correct, i.e., after k

iterations each vertex v ∈ Vk is guaranteed to eventually select

path π∗

k(v) in any fair activation sequence. As a consequence,

if NH-GREEDY succeeds then the 2-SPP instance is safe. We

now show that if NH-GREEDY fails the instance is not safe.

Let G′ = (V,E′) be the directed graph such that (u, v) ∈ E′

iff (u v) ∈ P̃x. Given a partial path assignment π and a vertex

u such that P̃u 6= {ǫ} and π(u) = ǫ, the ideal path Pπ
u of u

in π is the simple path from u to 0 obtained by performing

a depth-first visit on G′ starting from u. Vertices are visited

according to Λ̃, i.e., the neighbor with the highest preference

is visited first. By definition, Pπ
u = (w1 . . . wn v1 . . . vm),

where w1 = u, vm = 0, n ≥ 1, m ≥ 1, (u w1) is the most

preferred fragment in Pu, π(wi) = ǫ for i = 1, . . . , n, and

π(vj) = (vj . . . vm) for j = 1, . . . ,m. Intuitively, the ideal

path of u traverses the best ranked neighbor of u and such

that all vertices wi ∈ Pπ
u select the best-ranked simple path

that extends a path in π and ends in 0. Observe that such a

path must exist because all path fragments are assumed to be

consistent, i.e., (u w1) generates at least a path on G.

Assume that NH-GREEDY fails on a 2-SPP instance S̃ after

k iterations with partial path assignment π∗

k and let u be any

vertex in V − Vk.

Lemma 4.3: There exists a stable path assignment π̄ on S̃

such that u selects its ideal path, i.e., π̄(u) = P
π∗

k
u .

Proof: We construct a sequence of partial path assign-

ments π1, π2, . . . , π̄ by iteratively growing π∗

k. Let P
π∗

k
u =

(u w1 . . . wn v1 . . . vm) be the ideal path of vertex

u in π∗

k. Let π1(u) = P
π∗

k
u , for each wi ∈ P

π∗

k
u let

π1(wi) = (wi . . . wn v1 . . . vm) and for each v ∈ Vk

let π1(v) = π∗

k(v). Then, we consider any other vertex z such

that π1(z) = ǫ and z ∈ V −Vk (if one exists, otherwise stop).

Given Pπ1
z the ideal path of z, we construct the (partial) path

assignment π2 by extending π1 as above. Since V is finite, we

eventually find a path assignment π̄ defined for each v ∈ V .

We now show that π̄ is stable. Suppose, for a contradiction,

that there exists a vertex v that has an alternative path towards

0 that is preferred to π̄(v). By construction, v must either be

in Vk or be part of the ideal path of some vertex x. In the first

case, being π̄ an extension of π∗

k, v is guaranteed to select

path π̄(v). In the latter case, by definition of ideal path, v

can not have a better-ranked alternative, since the depth-first

visit analyzes paths at each vertex in a decreasing order of

preference. In both cases, we have a contradiction.

Theorem 4.3: SAFETY can be solved in polynomial time in

the 2-SPP model.

Proof: Given a 2-SPP instance S, S is safe if and only

if NH-GREEDY succeeds. We have already discussed that if

NH-GREEDY succeeds S is safe. On the other hand, if NH-

GREEDY fails after k iterations, it is possible to build two

distinct stable path assignments. In fact, let u be any vertex

in V − Vk. Lemma 4.3 ensures that there exists a stable path

assignment π′ such that π′(u) = P
π∗

k
u . Path P

π∗

k
u must be in the

form P
π∗

k
u = P ′(z v)P ′′ where z 6∈ Vk and v ∈ Vk. Observe

that z 6= u, since u 6∈ Vk. Consider the stable path assignment

π′′ such that π′′(z) = P
π∗

k
z , constructed as in Lemma 4.3.

Obviously, π′ 6= π′′ at least for vertex z since z 6∈ Vk. Since

two distinct stable path assignments exist, by Theorem 3.1

of [14] S is not safe.

V. SEARCHING FOR DISPUTE WHEELS

In Section IV we proved that SAFETY turns out to be a

computationally hard problem. A possible way to overcome

the unfeasibility of testing SAFETY could be verifying if at

least sufficient conditions for SAFETY are satisfied.

In [3] a celebrated sufficient condition for SAFETY has

been introduced. Namely, it has been shown that safety is

guaranteed if the BGP network does not contain a dispute

wheel (DW), a particular structure that involves cyclic prefer-

ences which cannot be simultaneously satisfied. In the SPP

model, a DW Π = (~U , ~Q, ~R) is a sequence of vertices
~U = (u0 u1 . . . uk−1) and sequences of nonempty paths
~Q = (Q0 Q1 . . . Qk−1), called spoke paths, and ~R =
(R0 R1 . . . Rk−1), called rim paths, such that:

(i) Ri is a path from ui to ui+1

(ii) Qi ∈ Pui

(iii) RiQi+1 ∈ Pui

(iv) λui(Qi) ≥ λui(RiQi+1)

where all indexes are to be intended modulo k. Since an

instance of k-SPP can be uniquely translated into an SPP

instance, we can extend the definition of DW as follows: we

say that an instance of k-SPP contains a DW if its translation

to SPP contains a DW. Verifying the absence of a DW in a

BGP network is referred to as the NO-DW problem. In the

SPP model NO-DW can be solved in polynomial time [7] by

finding a cycle in an auxiliary graph called dispute digraph,

whose construction takes polynomial time.

In the following, we analyze the computational complexity

of NO-DW in the 3-SPP model. We do it in two steps. First, we

deal with the basic problem of deciding whether a given vertex

of a 3-SPP instance can establish a path to 0. We call this

problem PATH and we show that it is NP-complete. Second,

we exploit such a result to prove that NO-DW in the 3-SPP

model is coNP-complete.

PATH is NP-complete since it is possible to reduce 3-SAT to

PATH. Let F be a 3-SAT formula with variables X1, . . . , Xn

and clauses C1, . . . , Cm. We construct a 3-SPP instance as

follows. For each variable Xi we insert vertices vi, xi, and

x̄i, and we build a gadget having edges (vi, xi) and (vi, x̄i).
For each clause Cj we build a gadget consisting of vertices

v1

0

x1 x̄1

x1c1,2v2

v1x1c1,2
v1x̄1c1,1

x̄1c1,1cm,1

vn

xn x̄n
xn...

vnxn...

vnx̄n...

x̄n...

c1

c1,1 c1,2

c1,1c2c2,1
c1,1c2c2,2
c1,1c2c2,3
c1,1cm,1v2

c1c1,1c2
c1c1,2c2
c1c1,3c2

c1,3

c2
c2c2,1c3
c2c2,2c3
c2c2,3c3

v2
v2x2...

v2x̄2...

vn+1

vn+1c1c1,1
vn+1c1c1,2
vn+1c1c1,3

cm+1
cm+10

c1,2c2c2,1
c1,2c2c2,2
c1,2c2c2,3
c1,2v2x2

c1,2v2x̄2

c1,3c2c2,1
c1,3c2c2,2
c1,3c2c2,3
c1,3...

...

cm

cm,1 cm,2

cm,1cm+10
cm,1cm+10
cm,1cm+10
cm,1v2x2

cm,1v2x̄2

cmcm,1cm+1

cmcm,2cm+1

cmcm,3cm+1

cm,3

cm,2cm+10
cm,2cm+10
cm,2cm+10
cm,2...

...

cm,3cm+10
cm,3cm+10
cm,3cm+10
cm,3...

...

Fig. 4. Reduction from 3-SAT to PATH.

cj and cj,k and edges (cj , cj,k), (cj,k, cj+1) with k = 1, 2, 3.

Also, we add to the instance vertices vn+1, cm+1 and 0, and

edges (cm+1, 0) and (vn+1, c1). Fig. 4 shows an example of

the construction, where variable gadgets are on the left side

while clause gadgets are on the right side.

Intuitively, vertex vi attempts to establish a path to 0 via xi

(x̄i) if the corresponding 3-SAT variable Xi is TRUE (FALSE).

Vertices cj,k are called literal vertices because each of them

represents one of the three literals that appear in clause Cj .

Consider literal Xi, i = 1, . . . , n. Let P =
(vi xi cj1,k1

. . . cjn,kn
vi+1) be the path from vertex vi to

vertex vi+1 that traverses all the literal vertices cjp,kp
such

that the corresponding literal in clause Cjp is X̄i. If there

are no such literals, then path P simply consists of edges

(vi, xi) and (xi, vi+1). We add to the graph constructed so

far all the edges of P . We apply exactly the same procedure

for literal X̄i. We then get from path P all the ordered triples

of consecutive vertices and add each triple (u v w) to P̃u.

For example, in Fig. 4 there is a path (v1 x̄1 c1,1 cm,1 v2)
because we assume, without loss of generality, that the first

literal both in C1 and in Cm is X1. For each vertex cj , set

P̃cj only contains paths (cj cj,k cj+1), with k = 1, 2, 3 and

for each vertex cj,k, we add to P̃cj,k paths (cj,k cj+1 cj+1,l),
with l = 1, 2, 3. This construction ensures that if vertex vi
attempts to establish a path to 0 via xi (x̄i), it cannot use

a path including cj,k iff X̄i (Xi) is the k-th literal in Cj ,

representing the fact that clause Cj cannot be satisfied by

literal cj,k. We define P̃vn+1 = {(vn+1 c1 c1,k)|∀k = 1, 2, 3}
and P̃cm+1 = {(cm+1 0)}.

Function λcj,k , where j = 1, . . . ,m and k = 1, 2, 3, is

such that paths (cj,k cj+1 cj+1,l), with l = 1, 2, 3, are better

ranked than others. Preferences at vertices vi, xi, x̄i and cj ,

where i = 1, . . . , n+1 and j = 1, . . . ,m+1, can be assigned

arbitrarily. It is easy to check that the instance of 3-SPP can

be built in polynomial time.

Lemma 5.1: PATH is NP-complete in the 3-SPP model.

Proof: Consider the construction depicted in Fig. 4. We

now show that vertex v1 can establish a path to 0 iff the

corresponding 3-SAT formula F is satisfiable.

Observe that every path P from v1 to 0, if any, must be

in the form P = AB where A = (v1 . . . v2 . . . vn+1) and

B = (vn+1 c1 c1,j1 . . . cm cm,jm0). Since vertex vi must

choose either xi or x̄i and there is only one path connecting xi

(x̄i) to vi+1, path A can be mapped to a boolean assignment

for F . By construction, only literal vertices cj,k can appear

twice in P , since they can appear both in A and in B.

Now, if P = AB exists, then every cj can reach 0 via one of

its neighbors cj,1, cj,2 and cj,3 which is not traversed by path

A. By construction, this implies that the boolean assignment

mapped to path A satisfies at least one literal in every clause,

hence F is satisfiable.

On the other hand, if there is no path P from v1 to 0, then

for any choice of path A there exists a vertex cj that is unable

to reach 0 via any of its neighbors because they all appear in A.

By construction, this implies that for each boolean assignment

there exists a clause Cj that is false, hence F is unsatisfiable.

The above arguments prove that PATH is NP-hard. NP-

completeness follows by noting that a path P from v1 to 0 is

a succinct certificate for PATH because P has polynomial size

and it takes polynomial time to check if P can be generated

by any fragment of v1.

We now use the reduction as above for proving that NO-DW

is coNP-complete. First of all, we the 3-SPP instance built in

the reduction does not contain any DW.

Lemma 5.2: The 3-SPP instance S constructed in the re-

duction from 3-SAT to PATH (see Fig. 4) contains no DW.

Proof: Suppose, for a contradiction, that S contains a

DW and assume that no vertex ci can appear in any rim path.

We now show that rim paths of such a DW do not form a

cycle, that is a contradiction since concatenating rim paths

must result in a cycle by definition of DW (each rim path

connects a pivot vertex with its successor).

By construction, permitted paths of all the vertices in S are

subpaths of P = P1 . . . Pn (vn+1 c1) Q1 . . . Qm (cm+1 0).
Paths Qi are such that Qi = {ci ci,j ci+1}, where j is either 1,

2, or 3. Each path Pi starts at vi, ends in vi+1, and traverses xi

(x̄i) and all the vertices cj,k such that the corresponding literal

in clause Cj is X̄i (Xi). This implies that Pj∩Pj+1 = {vj+1}
for each j, and Pj ∩ Pk = ⊘, if k 6∈ {j, j + 1}. Since no rim

path can contain a node ci, all the rim paths must be subpaths

of P1 P2 . . . Pn. However, since vertices vi are ordered and

all paths Pi intersects only at vertices vi, no cycle among rim

paths can be built, yielding a contradiction.

The proof is completed by showing that no vertex ci can

appear in any rim path of any DW Π. In fact, suppose that

there exists a non empty set of vertices Z = {cj , . . . , ck} such

that each vertex ci ∈ Z appears in one or more rim paths.

Obviously, cm+1 cannot belong to Z. Consider, among all the

vertices in Z, the vertex ch with the highest index. Let R be

a rim path in which appears ch and let R[ch] be the subpath

of R starting from ch. By definition of ch and by construction

of S, R[ch] can only be (ch ch,h′), with h′ = 1, 2, 3. In fact,

all permitted paths at ch are sequences of vertices ci and ci,j ,

such that i > h and ch+1 cannot appear in R[ch] by definition

of ch. Hence, vertex ch,h′ must be a pivot vertex of Π, and

its spoke path must be a path (ch,h′ ch+1 . . . 0) since it

must be extended by a permitted path of ch. By definition

of DW, the rim path of ch,h′ should be one among paths

(ch,h′ ch+1 . . . 0), that is, ch+1 is also on a rim path. This

leads to a contradiction, because ch is defined to be the vertex

with the highest index among those appearing in a rim path.

Theorem 5.1: NO-DW is coNP-complete in the 3-SPP

model.

Proof: We prove the statement by reducing 3-SAT COM-

PLEMENT to NO-DW. Let F be a logical formula with

variables X1, . . . , Xn and clauses C1, . . . , Cm. We con-

struct an instance S̃ = ((V,E), P̃, Λ̃) of 3-SPP as fol-

lows. Let S̃′ = ((V ′, E′), P̃ ′, Λ̃′) be the 3-SPP instance

constructed as above (see Fig. 4). Let V = V ′ ∪ {1, 2},

let E = E′ ∪ {(1, v1), (1, 2), (2, 0)}, let P̃ = P̃ ′ ∪
{(1 v1 x1), (1 v1 x̄1), (2 0), (1 2 0), (2 1 v1)} and let

Λ̃ = Λ̃′∪{λ̃1, λ̃2}, where λ̃1 is such that path (1 2 0) is most

preferred and λ̃2 is such that path (2 1 0) is most preferred.

Intuitively, we added two extra vertices 1 and 2, and defined

policies such that a DW exists in S̃ only if 1 can establish a

path to 0. By applying the same arguments as in the proof

of Lemma 5.1 we therefore have that S̃ has no dispute wheel

iff F is unsatisfiable. This implies that NO-DW is coNP-hard

in the 3-SPP model. The proof is complete by noting that a

DW on S̃ is a succinct disqualification for NO-DW, that is, a

succinct proof that S̃ is a negative instance.

VI. SAFETY UNDER FILTERING AND ROBUSTNESS

In this section we study the computational complexity of

safety under filtering and robustness.

Problem SAFETY UNDER FILTERING (SUF) [6] is defined

as follows: given an SPP instance S, will S remain safe

under arbitrary filtering of paths? Similarly, the ROBUSTNESS

problem [3] requires that the input SPP instance be safe even

under arbitrary link failures. It has been proved in [12] that

the two problems are distinct, as there exist SPP instances that

are robust but not safe under filtering.

It is known [12] that an SPP instance is safe under filtering

iff it does not contain a dispute reel (DR). Intuitively, a dispute

reel is a dispute wheel such that spoke paths form a tree T and

rim paths never intersect T nor contain more than two pivot

vertices. Let P [v] denote the subpath of P starting at vertex

v. A dispute reel (DR) is a dispute wheel such that

(i) (Pivot vertices appear in exactly three paths) – for each

ui ∈ ~U , ui only appears in paths Qi, Ri and Ri−1.

(ii) (Spoke and rim paths do not intersect) – for each u 6∈ ~U ,

if u ∈ Qi for some i, then no j exists such that u ∈ Rj .

(iii) (Spoke paths form a tree) – for each distinct Qi, Qj ∈ ~Q,

if v ∈ Qi ∩Qj , then Qi[v] = Qj [v].

SUF, ROBUSTNESS and DR are defined in the SPP model.

The definition of DR can be extended to k-SPP by translating

the considered k-SPP instance to SPP. SUF and ROBUSTNESS

are defined in 3-SPP as the problems of determining if an

input 3-SPP instance is safe even under arbitrary filtering of

path fragments or under arbitrary link failures, respectively.

It is easy to check that a 3-SPP instance is robust iff the

corresponding SPP instance is robust. On the contrary, it is

not known if a SUF 3-SPP instance corresponds to a SUF SPP

instance, nor if the absence of a DR is a characterization for

SUF in the 3-SPP model.

A. No Dispute Reel is CoNP-Complete

We now prove that NO-DR is coNP-hard by reducing 3-SAT

COMPLEMENT to SAT in polynomial time. Refer to Fig. 5 for

an example of the reduction.

Let F be a logical formula, with variables X1, . . . , Xn and

clauses C1, . . . , Cm. For each variable Xi, we add to the SPP

instance a gadget consisting of three vertices, namely ai, xi,

and x̄i, and four edges, namely (xi 0), (x̄i 0), (ai xi) and

(ai x̄i). Vertices xi and x̄i have no permitted paths other than

(xi 0) and (x̄i 0), respectively. Permitted paths at vertex ai are

Pai = {(ai xi 0), (ai x̄i 0)} and the ranking among them is

not significant. Intuitively, ai represents variable Xi. Gadgets

corresponding to variables are at the bottom of Fig. 5.

For each clause Cj , we add to the SPP instance a gadget

containing vertices cj , cj,i, and edges (cj , cj,i) and (cj,i, cj+1),
where i = 1, . . . , 3. Intuitively, vertex cj (clause vertex)

represents clause Cj while vertex cj,i (literal vertex) represents

the i-th literal in Cj . Further, if Xl appears in the i-th

literal in Cj , then we add an edge (al, cj,i), and we set

Pcj,i = {(cj,i cj+1 0), (cj,i al xl 0)} if literal represented

by cj,i is Xl, P
cj,i = {(cj,i cj+1 0), (cj,i al x̄l 0)} otherwise.

Among the two paths in Pcj,i , (cj,i cj+1 0) is the most

preferred. The permitted paths at vertex cj are (cj 0) plus

the extension of the longest path permitted at each vertex cj,i,

i = 1, . . . , 3. Path (cj 0) is the least preferred path, while the

ranking of other paths can be arbitrary. Gadgets corresponding

to clauses are placed at the top of Fig. 5.

Observe that the SPP instance built in the reduction contains

several DWs. Vertices ai, xi, x̄i can not be pivot vertices of

any dispute wheel, since they only have direct paths to 0.

In fact, by arbitrarily picking exactly one literal vertex cj,i for

each clause vertex cj , we construct a DW where pivot vertices

are all clause vertices and the selected literal vertices.

For any DW Π, each pivot appears in exactly three paths

and spoke paths never intersect rim paths, hence conditions (i)

and (ii) of the definition of DR are satisfied. However, spoke

paths are not guaranteed to form a tree (condition (iii) of the

definition of DR), so DWs are not guaranteed to be DRs.

Since spoke paths in Π only share vertices ai, condition (iii)

is satisfied only if there are no two distinct spoke paths Q1 and

Q2 in Π such that Q1 = (. . . ai xi 0) and Q2 = (. . . ai x̄i 0),
which represents the fact that variable Xi cannot be TRUE

and FALSE at the same time.

Theorem 6.1: NO-DR is coNP-complete in the SPP model.

Proof: Consider a logical formula F and construct the

corresponding SPP instance S as described above.

If F is unsatisfiable then S does not contain a DR.

a1

0

x1 x̄1
x10

a1x10

a1x̄10

x̄10

an

xn x̄n
xn0

anxn0

anx̄n0

x̄n0

c1

c1c1,1anxn0

c1c1,2a4x̄40

c1c1,3a1x̄10

c10

c1,1

c1,1c20

c1,1anxn0

c1,2

c1,2c20

c1,2a4x̄40

c1,3

c1,3c20

c1,3a1x̄10

c2

c2c2,1...

c2c2,2...

c2c2,3...

c20

cm

cmcm,1a3x̄30

cmcm,2a4x40

cmcm,3a5x̄50

cm0

cm,1

cm,1c10

cm,1a3x̄30

cm,2

cm,2c10

cm,2a4x40

cm,3

cm,3c10

cm,3a5x̄50

Fig. 5. Reduction from SAT COMPLEMENT to SUF.

Suppose, for a contradiction, that S contains a DR Π. Then,

condition (iii) ensures that, for each ai, either path (ai xi 0)
or path (ai x̄i 0) is a subpath of all spoke paths that traverse

vertex ai. This property allows us to construct a boolean

assignment for F by setting variable Xi to TRUE if there

exists a spoke path Q′ = (. . . ai xi 0) or to FALSE if there

exists a spoke path Q′′ = (. . . ai x̄i 0).
As we already observed, Π contains exactly one literal

vertex for each clause vertex. By construction of S, we

have that the boolean assignment corresponding to Π satisfies

at least one literal in each clause in F , contradicting the

hypothesis that F is unsatisfiable.

If F is satisfiable then S contains at least one DR.

Consider a boolean assignment M that satisfies F . We will

now show a DR Π = (~U , ~Q, ~R) in S. Vertices cj must be

pivot vertices, that is, u2j−1 = cj and Q2j−1 = (cj 0) for

j = 1, . . . ,m. For each literal vertex cj,i, if its least preferred

path is (cj,i ai xi 0) and M(Xi) = ⊤ then we set u2j =
cj,i, Q2j = (cj,i ai xi 0), R2j−1 = (cj cj,i), and R2j =
(cj,i cj+1). We set u2j , R2j and R2j−1 to the same values

also if the least preferred path of cj,i is (cj,i ai x̄i 0) and

M(Xi) = ⊥, however in this case we set a different spoke

path Q2j = (cj,i ai x̄i 0). Whenever multiple literal vertices

cj,i for the same clause vertex cj satisfy the above conditions,

we arbitrarily pick only one among them.

It is easy to see that, since each clause in F is satisfied by

at least one literal, Π is a DW. Moreover, by construction of Π
we have that for each vertex ai only one among (ai xi 0) and

(ai x̄i 0) can be traversed by spoke paths in Π, hence satisfying

condition (iii) of the definition of DR. Conditions (i) and (ii)

are trivially satisfied by Π. Hence, Π is a DR.

CoNP-completeness follows from noting that a DR on S is

a succinct disqualification for NO-DR.

We now state the complexity of NO-DR in 3-SPP.

Theorem 6.2: NO-DR is coNP-complete in the 3-SPP

model.

Proof: Observe that all the permitted paths in SPP in-

stance built in the reduction 3-SAT COMPLEMENT to 3-SPP are

entirely identified by the first three hops. Hence, an analogous

reduction can be applied from 3-SAT COMPLEMENT to 3-SPP.

The statement follows from the fact that a DR on a 3-SPP

instance is a succinct disqualification for NO-DR.

B. Complexity of Safety Under Filtering and Robustness

Since the absence of a DR is a characterization of SUF in

the SPP model, we can state the following theorems.

Theorem 6.3: SUF is coNP-complete in the SPP model.

Proof: The statement directly follows from Theorem 6.1

considering that the absence of a DR is a necessary and

sufficient condition for SUF in the SPP model [12].

Theorem 6.4: SUF is coNP-hard in the 3-SPP model.

Proof: Let S be the SPP instance in Fig. 5 and construct

the 3-SPP instance S′ by truncating all paths in S with length

greater than 3. Since each permitted path in S is identified

by its first three hops, there is a one-to-one mapping between

permitted paths in S and permitted paths in S′. This implies

that each filter in S can be mapped to a unique filter in S′.

We conclude that S′ is SUF iff S is SUF, hence a construction

analogous to that described in Section VI-A can be applied to

reduce from 3-SAT COMPLEMENT to SUF in 3-SPP.

In general, SUF implies ROBUSTNESS, while the opposite

does not hold [12]. However, observe that the SPP instance

in Fig. 5 is SUF iff it is also robust. In fact, filtering a path

P = (u v . . . 0) at vertex u is equivalent to removing edge

(u, v) from the graph. This property allows us to reduce 3-

SAT COMPLEMENT to ROBUSTNESS using the same reduction

used in Theorem 6.3.

Theorem 6.5: ROBUSTNESS is coNP-hard in the SPP

model.

Since a 3-SPP instance is robust iff the corresponding SPP

instance is robust, we can directly extend Theorem 6.5.

Theorem 6.6: ROBUSTNESS is coNP-hard in the 3-SPP

model.

VII. CONCLUSIONS

The design of BGP as a protocol where ASes interact

in full autonomy poses a fundamental tradeoff between the

expressiveness of routing policies and risks of routing oscil-

lations. Restricting the expressiveness of routing policies can

be done either dynamically, e.g., by extending the protocol

with oscillation-detection capabilities, or statically, e.g., by

limiting the expressive power of BGP configuration languages.

Unfortunately, the first option is affected by severe deployment

issues. Prior contributions that explored the second option

(e.g., [9]) devised restrictions on BGP policies that guarantee

convergence, but affect both the autonomy and the expressive-

ness, e.g., by forcing ASes to filter certain paths.

In this paper we take a different approach, which can be

summarized by the following question: assuming that ASes

preserve their autonomy, how expressive can policies be in

order to allow an efficient static assessment of BGP stability?

2-SPP 3-SPP SPP

SAFETY P coNP-hard coNP-hard

NO-DW ? coNP-complete P [7]

NO-DR ? coNP-complete coNP-complete

SUF ? coNP-hard coNP-complete

ROBUSTNESS ? coNP-hard coNP-hard

TABLE I
COMPLEXITY OF BGP STABILITY PROBLEMS IN DIFFERENT MODELS.

P STANDS FOR POLYNOMIAL TIME SOLVABLE.

Unfortunately, we find that the most interesting problems

about BGP stability are computationally intractable if ASes

fully preserve their autonomy and are allowed to specify

policies as expressive as Local Transit policies. Table I sum-

marizes the results. While such results are primarily related

to BGP, they can be generalized to any policy-based path

vector routing protocol. Our findings show that computational

tractability of BGP stability can be achieved by restricting

the expressiveness of the policies alone, preserving ASes’

autonomy. Determining whether there exist restrictions that

keep the policies expressive enough for practical uses remains

an interesting open problem.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
RFC 4271, 2006.

[2] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” Computer Networks, vol. 32, no. 1, 2000.

[3] T. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. on Networking, vol. 10,
no. 2, pp. 232–243, 2002.

[4] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A measurement
study on the impact of routing events on end-to-end Internet perfor-
mance,” in Proc. SIGCOMM, 2006.

[5] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?! It
must be BGP,” in Computer Communication Review, 2007.

[6] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of auton-
omy for the expressiveness of policy routing,” IEEE/ACM Trans. on

Networking, vol. 15, no. 6, 2007.
[7] T. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-

vector protocols,” in Proc. ICNP, 1999.
[8] C. T. Ee, V. Ramachandran, B.-G. Chun, K. Lakshminarayanan, and

S. Shenker, “Resolving inter-domain policy disputes,” in Proc. SIG-

COMM, 2007.
[9] L. Gao and J. Rexford, “Stable internet routing without global coordi-

nation,” in Proc. SIGMETRICS, 2000.
[10] A. D. Jaggard and V. Ramachandran, “Robustness of class-based path-

vector systems,” in Proc. ICNP, 2004.
[11] T. Griffin and G. Wilfong, “An analysis of BGP convergence properties,”

in Proc. SIGCOMM, 1999.
[12] L. Cittadini, G. D. Battista, M. Rimondini, and S. Vissicchio, “Wheel

+ ring = reel: the impact of route filtering on the stability of policy
routing,” in Proc. ICNP, 2009.

[13] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in Proc. SIGCOMM, 2009.

[14] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in Proc. INFOCOM, 2009.

[15] A. Fabrikant and C. Papadimitriou, “The complexity of game dynamics:
Bgp oscillations, sink equilibria, and beyond,” in Proc. SODA, 2008.

[16] L. Cittadini, “Understanding and detecting BGP instabilities,” Ph.D.
dissertation, Università degli Studi “Roma Tre”, 2010.

[17] C. Papadimitriou, Computational complexity. Addison-Wesley, 1994.
[18] J. Feigenbaum, R. Sami, and S. Shenker, “Mechanism design for policy

routing,” Distributed Computing, vol. 18, no. 4, pp. 293–305, 2006.
[19] L. Cittadini, M. Rimondini, M. Corea, and G. Di Battista, “On the

Feasibility of Static Analysis for BGP Convergence,” in Proc. IM, 2009.

