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Abstract. The problem of cosegmentation consists of segmenting the
same object (or objects of the same class) in two or more distinct im-
ages. Recently a number of different models have been proposed for this
problem. However, no comparison of such models and corresponding op-
timization techniques has been done so far. We analyze three existing
models: the L1 norm model of Rother et al. [1], the L2 norm model of
Mukherjee et al. [2] and the “reward” model of Hochbaum and Singh [3].
We also study a new model, which is a straightforward extension of the
Boykov-Jolly model for single image segmentation [4].
In terms of optimization, we use a Dual Decomposition (DD) technique
in addition to optimization methods in [1, 2]. Experiments show a signif-
icant improvement of DD over published methods. Our main conclusion,
however, is that the new model is the best overall because it: (i) has
fewest parameters; (ii) is most robust in practice, and (iii) can be opti-
mized well with an efficient EM-style procedure.

1 Introduction

The task of Figure-Ground segmentation is a widely studied problem in computer
vision. Given a single image there are techniques that attempt to automatically
partition the image into multiple objects and background. If the goal is to have
a single object segmented, i.e. a binary segmentation, there is the natural am-
biguity of which object is the desired one. In this case interactive segmentation
techniques must be considered where the user gives additional hints.

There are many interesting application scenarios where multiple images are
available. This means each image depicts the “same” foreground object in front
of potentially arbitrary backgrounds. In contrast to the single image case, the
task of segmenting the common object automatically in all images is now well-
defined. This task is called “cosegmentation” and was first addressed in [1].
Let us be more precise on the definition of the “same” foreground object. In
this paper we use the definition of [1–3] where the only constraint is that the
distribution of some appearance features of the foreground region in each image
have to be similar. The appearance features can encode different information,
like color and texture, and various similarity measures can be envisioned. This
definition allows for a wide range of applications. One application is to create a
visual summary from personal photo collections, by segmenting automatically all
instances of the same object, e.g. a person and a dog [5]. Another application is
to use the segmentation of the common object to efficiently edit all occurrences
of this object in one step, e.g. by changing its contrast [6]. The practical challenge
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in the case of segmenting the same object is that distributions may not match
exactly, due to changes in illumination, in viewpoint or object (self-)occlusion.
Our definition of cosegmentation can potentially also be used for segmenting
different objects of the same class. An example of an unsupervised object-class
recognition and segmentation system is [7], where more features are used other
than appearance, e.g. shape. It can be expected that for most object classes,
appearance features alone are not strong enough, hence this application is out
of the scope of this paper.

Very recently in [8] the authors used a different formulation of the cosegmen-
tation problem. They casted it into a clustering problem with two cluster. They
show results for image pairs and for multiple images of objects of the same class.

It is worth mentioning that several recent papers considered a simplified
cosegmentation problem where user interaction is available. In [5] the authors
segment several images of the same object, assuming one of those images is hand-
segmented. They model local appearance and edge profiles from the segmented
image in order to “transduct” such segmentation into the remaining images. In
[9, 6] the user input is in the form of foreground/background scribbles in one or
many images from the collection. In [9] the authors discuss how the choice of the
seed image influences the performance of their method. In [6] a way of guiding
the user interactions is presented. We envision that the insights of this paper
will also help to improve the task of interactive cosegmentation.

The goal of this paper is to examine theoretically and practically different
models and optimization methods for cosegmentation. To achieve this we limit
ourselves to the task of cosegmenting two images only, with color as the only ap-
pearance feature, and where distributions are expressed in terms of histograms.
We consider three existing models [1–3], which differ only in the distance mea-
sure between the two color histograms. We also consider a new model, which
is a straightforward extension from a single to multiple images of Boykov-Jolly
[4]. For a fair comparison we improved on existing optimization methods for the
models in [1, 2]. We achieved this by using a Dual Decomposition technique. For
a quantitative comparison we built a dataset of 100 image-pairs with varying
levels of complexity by simulating changes in scale and illumination.

The paper is organized as follows. Section 2 introduces the four different mod-
els and discusses some of their properties. Since the optimization for some models
is NP-hard, it is important to choose the best possible optimization procedure.
In Sect. 3 we review such methods. In Sect. 4 we compare experimentally both
the models and the optimization methods and conclude which are the better
performing methods.

2 Models

We start this section by introducing some notation:

– xp ∈ {0, 1} is the label for pixel p, where p ∈ P = P1 ∪ P2 and P1, P2 are
respectively the set of pixels in image 1 and image 2. We use letter k ∈ {1, 2}
for denoting the image number.

– zp is the appearance of pixel p (e.g. color or texture) and such measurement
is quantized into a finite number of bins. Variable b ranges over histogram
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bins (b ∈ {1, ..., B} where B is the total number of bins), and Pkb denotes
the set of pixels p in image k whose measurement zp falls in bin b.

– ℎk is the empirical un-normalized histogram of foreground pixels for image
k: it is a vector of size B with components ℎkb =

∑

p∈Pkb
xp.

As stated earlier, one of the goals of this paper is to compare different coseg-
mentation models that have been previously proposed. Such models fit into a
single framework, where the cosegmentation problem is formulated as an energy
optimization, with an energy of the following form:

E(x) =
∑

p

wpxp +
∑

(p,q)

wpq∣xp − xq∣+ �Eglobal(ℎ1, ℎ2) (1)

Jointly, the first two terms form the traditional MRF term for both images, where
wp is the unary weight for each pixel and wpq is the pairwise weight. The last
term, Eglobal, encodes a similarity measure between the foreground histograms
of both images and � is the weight for that term.

Following [1], we will use a ballooning term for the first term, constant for
every pixel: wp = �. This biases the solution to one of the possible labels and it
is important to prevent trivial solutions (i.e. both images being labeled totally
background or foreground). If the bias is not present (i.e. if wp = 0 and the
energy does not have unary terms) such trivial solutions are always a global
optimum of the energy. Alternatively, in [2, 3] the authors used user interaction
to compute pixel-dependent unary terms [10]. We are interested in automatic
cosegmentation so unary terms based on user interaction are not available.

The second term is a contrast sensitive smoothness term whose weight is

given by wpq =
(�i+�c exp−�∥zp−zq∥

2)
dist(p,q) with � =

(

2
〈

(zp − zq)
2
〉)−1

, where ⟨⋅⟩

denotes expectation over the image and �i, �c are respectively the weight for
Ising prior and for the contrast sensitive term.

The models differ in the way the term Eglobal in equation (1) is defined.

Model A: L1-norm This model was first introduced in [1] and it was derived
from a generative model. The global term in the energy was defined as follows:

Eglobal =
∑

b

∣ℎ1b − ℎ2b∣ (2)

where the L1-norm is used to compute foreground histograms similarity.

Model B: L2-norm This formulation was introduced in [2] and it was defined
as follows:

Eglobal =
∑

b

(ℎ1b − ℎ2b)
2

(3)

It is similar to the previous formulation in equation (2), with the difference that
the norm used to measure histogram similarity is the L2-norm instead of the L1-
norm. The authors motivate this change by arguing that such a model has some
interesting properties and allows the use of alternative optimization methods.

Model C: Reward model In [3] the authors used the following global term:

Eglobal = −
∑

b

ℎ1b ⋅ ℎ2b (4)

They motivate the use of such a model by replacing the penalization term with
a rewarding term.
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Recall that the original formulation in [2, 3] uses pixel-dependent unary terms,
while we use a constant ballooning force: wp = �.

Both model A and model B lead to NP-hard optimization problems [1], while
model C leads to a submodular problem that can be efficiently optimized with
graph cuts [3].

Model D: Boykov-Jolly model The last model that we consider is a nat-
ural extension of the generative model for binary image segmentation in [4, 1,
11]. These papers use a separate appearance model for each of the two regions
(background and foreground). In our case we have three regions - two separate
backgrounds and one common foreground. Accordingly, we introduce three ap-
pearance models - �B1 , �B2 and �F . This leads to a generative model with the
posterior described by the following energy function:

E
(

x, �B1 , �B2 , �F
)

=
∑

(p,q)

wpq∣xp − xq∣+ �
∑

k

∑

p∈Pk

U(xp, �
B
k , �F ) (5)

where

U(xp, �
B , �F ) =

{

− log(Pr(zp∣�
F )) if xp = 1

− log(Pr(zp∣�
B)) if xp = 0

(6)

Since we are interested in automatic cosegmentation, the appearance models
�B1 , �B2 and �F are not available in advance. In order to compute them, we
minimize energy (5) jointly over segmentation and appearance models using an
EM-style technique proposed in [11].

Model D is quite similar to the model used by Batra et al. [6] for interactive
cosegmentation; the only difference is that Batra et al. used a single background
model for all images. Model D also bears some resemblance to the generative
model of Rother et al. [1] but there are some differences. In [1], the motivation was
model selection, since two competitive models were considered: one where both
images shared the same foreground appearance model and another where they
had independent appearance models. The segmentation was then chosen so that
the first model had higher posterior probability. In our case, we consider only a
single model and try to find jointly the segmentation and appearance models that
maximize the posterior probability. This formulation should be more appropriate
when we know in advance that the two images have a common object. Also, it
appears to lead to a simpler optimization problem: generalizing an EM-style
procedure to the model in [1] is not straightforward.

2.1 An alternative formulation of model D

To gain more insights into model D, we express its energy in a different way
using the approach in [12]. It is known that for a fixed segmentation x, optimal
histograms that minimize energy (5) are simply the empirical histograms:

�Fb =
ℎ1b + ℎ2b

H1 +H2
�Bkb =

ℎkb

Hk

(7)

where we introduced the following notation: Hk =
∑

b ℎkb is the total number
of foreground pixels in image k, ℎkb = ∣Pkb∣ − ℎkb is the number of background
pixels in image k belonging to bin b, and Hk = ∣Pk∣ −Hk is the total number of
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background pixels in image k. Note, all quantities ℎkb, ℎkb, Hk, Hk are functions
of the segmentation x (recall that ℎkb =

∑

p∈Pkb
xp).

Following [12], we plug histograms (7) into the energy (5). Then the energy
becomes of the form (1) with no unary terms (wp = � = 0) and the following
global term:

Eglobal =
∑

b

� (ℎ1b + ℎ2b) +
∑

k,b

�
(

ℎkb

)

− � (H1 +H2)−
∑

k

�
(

Hk

)

(8)

where �(z) = −z log z is a concave function.
In the case of a single image the Boykov-Jolly model prefers assigning pixels in

the same bin either entirely to the background or entirely to the foreground [12];
this leads to “compact” histograms. A similar fact holds for model D (the proof
is entirely analogous to that in [12]).

Proposition 1. Function (8) has a minimizer x such that for each (k, b), pixels
in Pkb are either all labeled as 0 or all labeled as 1.

2.2 Remarks on model properties

Before presenting an experimental comparison of the models, we would like to
give some informal remarks which may give insights into their relative perfor-
mance. We will first consider models A, B and D, and come back to model C at
the end.

We believe that a fundamental difference of model D from other models is
that it takes into account the prior knowledge that all regions are represented by
compact histograms. For the case of a single image, the bias of the Boykov-Jolly
model was discussed in [12]: it prefers segmentations in which pixels that fall
in the same bin are assigned to the same segment (background or foreground),
and among such segmentations the model picks the most balanced one, i.e. the
segmentation in which the areas of the background and the foreground match.
We conjecture that these properties carry over to the cosegmentation case. It
can be shown, for example, that if the two images are identical and all bins are
of the same size (i.e. ∣Pkb∣ = const for all k, b) then the global term will be
minimized by a segmentation in which exactly half of the bins are assigned to
the foreground. Due to a bias towards balanced segmentation we did not use the
“ballooning force” for model D, i.e. we chose � = 0, which produced reasonable
results. In contrast, the other models required this extra parameter � in order
to avoid trivial solutions.

Unlike model D, models A and B do not impose any penalty if pixels in the
same bin, Pkb, are assigned to two different segments. We argue that this has
both pros and cons, as illustrated by two scenarios below.

Scenario 1 Assume that the background colors do not overlap with the fore-
ground nor with the other background. Furthermore, suppose that the fore-
ground regions in the two images match only partially, for example, due to an
illumination change or scaling. Thus, we have ∣Pkb∣ > ∣Pkb∣ for some bin b where

k ∈ {1, 2}, k ∕= k. Models A and B will bias ∣Pkb∣ − ∣Pkb∣ pixels to an incorrect
label. In contrast, model D should not be affected; it will assign all pixels in Pkb

and Pkb to the foreground, as desired.
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Scenario 2 Let us now assume that we have “camouflage” in one of the images,
i.e. colors of the background and the foreground overlap. Thus, we again have
∣Pkb∣ > ∣Pkb∣, but now the behavior of models A and B will be correct, while
model D will try to incorrectly assign all pixels in Pkb to the foreground (or to
the background).

We conclude that without camouflage model D should cope better with illu-
mination and scale changes than model A and especially than model B. On the
other hand, models A and B should be more robust to a camouflage in one of
the images.

Let us now return to model C. Assume for simplicity that there are no pair-
wise terms. The energy can then be written as E(x) =

∑

b Eb(ℎ1b, ℎ2b) where

Eb(ℎ1b, ℎ2b) = �(ℎ1b + ℎ2b)− �ℎ1b ⋅ ℎ2b

We must have � > 0, otherwise all pixels would be assigned to the foreground.
Minimizing Eb over [0, n1b] × [0, n2b] where n1b = ∣P1b∣, n2b = ∣P2b∣ gives the
following rule: if n1b ⋅ n2b/(n1b + n2b) ≤ �/� then assign pixels in P1b ∪ P2b to
the background, otherwise assign these pixels to the foreground. This reliance
on the harmonic mean of n1b and n2b can lead to unexpected results (Fig. 1). In
our experiments we found that model C performs considerably worse than the
other models.

Input images Model A Model B Model C Model D

Fig. 1. Synthetic example illustrating the properties of the different models.
The input images have only 3 different colors.

3 Optimization Methods

In this section we discuss several optimization methods that can be used for the
models discussed in the previous section.

3.1 Trust region graph cut (TRGC)

This method was proposed in [1] for model A and it can be viewed as a discrete
analogue of trust region methods for continuous optimization. TRGC can be
applied to energy functions of the form E(x) = E1(x) + E2(x) where E1(x)
is submodular and E2(x) is arbitrary. It works by iteratively replacing E2(x)
with a linear approximation and it produces a sequence of solutions with the
guarantee that in each iteration the energy does not go up.

In [1] the authors used TRGC inside an iterative scheme for cosegmentation
that alternated between updating the segmentation for each image individually
while the foreground histogram of the other image was fixed. This method re-
quires a segmentation for initialization. In our experiments we observed that its
performance is very dependent on that initialization.

We used the implementation of this method from [1]. We also adapted it to
model B, i.e. replaced L1 norm with L2 norm.
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3.2 Quadratic pseudo boolean optimization

In [2] the authors observed that model B is represented by a quadratic pseudo-
boolean function. Indeed, histograms ℎ1 and ℎ2 depend linearly on x: ℎkb =
∑

p∈Pkb
xp. Therefore, expanding expression (ℎ1b − ℎ2b)

2 yields a sum of lin-
ear terms and quadratic terms of the form cpqxpxq, some of which are non-
submodular. Mukherjee et al. [2] formulated a linear programming relaxation of
the problem, which is equivalent to the roof duality relaxation [13, 14] for the
quadratic function E(x). This relaxation can be solved via a maxflow algorithm,
and it yields a partial solution: the nodes are divided into labeled and unlabeled,
with the guarantee that the labels of the labeled nodes are optimal. An impor-
tant question is how to set the segmentation for unlabeled nodes. Mukherjee
et al. [2] use the segmentation obtained by minimizing energy E(x) without
the global term Eglobal. In our experiments we use a constant ballooning force
(wp = �), so this procedure assigns the same label to all unlabeled nodes.

Note that, model C is also represented by a quadratic function, but unlike
the previous case this quadratic function is submodular. Therefore, model C can
be optimized exactly by a single call to a maxflow algorithm [3].

3.3 Dual Decomposition (DD)

Dual Decomposition (DD) is a popular technique for solving combinatorial op-
timization problems [15], which proved to be very successful for MRF opti-
mization [16–19, 12]. The idea of DD is to decompose the original problem into
smaller, easier subproblems that can be efficiently optimized. Combining the so-
lution of such subproblems yields a lower bound for the initial problem. This
lower bound is then maximized over different decompositions. We applied this
technique to models A, B and D as described below.

Dual decompositions for models A and B Let us write the corresponding
optimization problems as follows:

min
x,y

EMRF (x) +
∑

b

g(yb) (9a)

s.t. yb =
∑

p∈P1b

xp −
∑

p∈P2b

xp ≡
∑

k,p

abpxp b = 1, ..., B (9b)

where g is a convex function: g(y) = �∣y∣ for model A and g(y) = �y2 for model
B. Coefficients abp are defined as follows: abp = 1 if p ∈ P1b; abp = −1 if p ∈ P2b

and abp = 0 otherwise.

We form a standard Lagrangian function by relaxing constraints (9b) and
introducing a Lagrangian multiplier �:

L(x,y,�) = EMRF (x) +
∑

b

g(yb) +
∑

b

�b

(

yb −
∑

p

abpxp

)

(10)

Minimizing the Lagrangian over (x,y) gives a lower bound on the original prob-
lem:
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�(�) = min
x,y

L(x,y,�) (11a)

= min
x

⎡

⎣EMRF (x)−
∑

p,b

abp�bxp

⎤

⎦+
∑

b

min
yb

[g(yb) + �byb] (11b)

�(�) ≤ E(x) (11c)

In order to obtain the tightest bound, we need to solve the following maximiza-
tion problem:

max
�

�(�) (12)

This problem is dual to (9b). Function �(�) is concave; similar to [17–19], we
use a subgradient method to maximize it. In order to compute a subgradient for
a given vector �, we need to solve 1+B minimization subproblems in (11b). The
first subproblem requires minimizing a submodular energy with pairwise terms,
which can be efficiently done using graph cuts. Solving subproblems for bins b
is straightforward.

It remains to specify how to choose a primal solution x. Let xt be a minimizer
of the first subproblem in (11b) at step t of the subgradient method. Among
labelings xt, we choose the solution with the minimum cost E(xt).

Dual decompositions for model D We obtained a lower bound by relaxing
constraints Hk =

∑

p xk and using the fact that Hk ≡ ∣Pk∣ − Hk. Details are
very similar to those in [12].

4 Experimental results

In this section we describe the experimental results. We start by giving details
on the setup used to compare the different models. In section 4.1, we compare
the performance of the different optimization methods, and in section 4.2, using
the best optimization procedure for each model, we compare the performance
and robustness of such models.

Dataset Given the difficulty in acquiring ground truth data for the cosegmenta-
tion problem, we used composites of 40 different backgrounds with 20 foreground
objects from the database in [20], for which high quality alpha mattes are avail-
able. The database in [20] has more than 20 images; we selected objects with
fewer transparencies. Representative images out of these 20 pairs are shown in
Fig. 2.

We resized the images so that their maximum side is 150 pixels. Some of
the models and optimization methods discussed are limited to small images, in
particular, model C and QPBO. Both these optimization methods require the
construction of graphs that grow quadratically with the size of the image.

The use of exactly the same foreground object in both images ensures that
the histograms over pure foreground pixels match. The choice of such simplified
dataset is justified by the intuition that if the models and optimization methods
fail in this scenario, they will also fail in a realistic scenario where the foreground
histograms may differ. In section 4.2 we also test more realistic scenarios by
varying the size and illumination in one of the images.
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Fig. 2. Some of the images in the dataset. These images are composites using the
same foreground.

Choosing weights � and �. The choice of weights for the different terms in
the energy greatly affects the performance of the methods. We test the different
models with different combinations of these weights. In order to reduce the search
space, we fix �i = 1 and �c = 50 for all methods, similar to what is done in [1]. As
for parameters � and �, we used leave-one-out cross-validation for each model,
where parameters are allowed to take values in a discrete domain3. Results are
given in section 4.2. For comparison, we also report results when the weights for
each image are chosen optimally according to GT.

In section 4.1 we are only interested in comparing optimization methods, so
we fix the weights in an ad-hoc way. For model A, we choose � = 5 and � = −2,
for model B, � = 2 and � = −10 and for model D, � = 1.

Histograms We use histograms over RGB colors, using 16 bins for each color
channel. Note that, in previous papers where some of the models were introduced,
other appearance features were used [1, 3]. Since our dataset is constructed such
that the foreground histograms over color are very similar, we expect that none
of the models is negatively affected by this choice of histogram quantization.

4.1 Results comparison for optimization algorithms

Here we compare the optimization methods reviewed in section 3. We start by
comparing Dual Decomposition with TRGC for models A and B. Since TRGC
is an iterative method that requires as input an initial segmentation, we test
this method with three different starting points. First, we use the solution of
DD as a starting point. The second starting point is a random segmentation
whose foreground histogram is constructed by having each bin take the minimum
value over the corresponding bins in the full histogram of both images, i.e.,
ℎb = min(∣P1b∣, ∣P2b∣). Third, we initialize TRGC with the ground truth (GT).
GT is not available at test time, and we report results only for comparison.

3 For model A and model B we test 16 different configurations, where � ∈
{0.01, 0.1, 1, 10} and � ∈ {−0.01,−0.1,−1,−10}. Since some of these configurations
lead to trivial solutions, we handpick 8 other intermediate configurations that look
more promising. Thus, there are 24 possible combinations of weights.

Model C allows the use of parametric maxflow for parameter learning. Fixing �,
we efficiently compute solutions for all possible values of � using parametric maxflow.
We test 4 different values for �: 0.001, 0.01, 0.1 and 1.

Model D only has one free parameter, �, and we test 12 different values for this
weight: 0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 30, 40 and 100.
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The results for model A are shown in the first part of Table 1. Note that in
[1], where TRGC was proposed, DD was not used as a starting point. For this
model, the difference between TRGC-DD and DD is very small, since TRGC
starting with DD only improves the energy for two images.

Table 1. Comparison of optimization methods for Models A and B. We
compare TRGC (using 3 different initial solutions), Dual Decomposition, and QPBO
(only for model B). For each model, the first row shows for how many images each
method gives the best energy. The second row is the gap between the energy and the
lower bound (LB) obtained by DD. The values are normalized: first we add a constant
to each term of the energy so that the minimum of each term becomes 0, and then
scale the energy so that the lower bound corresponds to 100. The last row is the error
rate: percentage of misclassified pixels over the total number of pixels.

TRGC
DD QPBO

From DD From hist From GT

M
o
d
el

A Best energy: # cases 20 0 0 18 -

Distance from LB 100.24 106.5 101.15 100.24 -

Error rate 3.7% 8.1% 3.2% 3.7% -

M
o
d
el

B Best energy: # cases 13 0 7 3 0

Distance from LB 101.59 107.56 101.77 104.20 197.29

Error rate 3.93% 5.96% 2.85% 3.92% 51.77%

The results for model B are shown in the second part of Table 1. Although
QPBO also provides a lower bound, we used the lower bound obtained by Dual
Decomposition since in our experiments, it was always better than the one pro-
vided by QPBO.

We conclude that a combination of DD and TRGC, using DD solution as a
starting point for TRGC, is the best performing method for both model A and
B, and this is the method used in the next section for model comparison.

Surprisingly, the performance obtained for the QPBO method contrasts with
the one reported in [2], since for this experiment the number of pixels left un-
labeled by this method was 90%. Note that in [2], the authors used a different
spatially varying unary term which may induce differences. They also report that
the performance of the method deteriorates when weight � is increased. In the
case considered, where wp is constant, small values of � lead to trivial solutions.

In order to better understand why QPBO fails, we ran the method with
a fixed ballooning force, � = −10, and different values of �. In Table 2, we
show the percentage of pixels that were labeled one, zero, or left unlabeled. For
intermediate values of �, the number of unlabeled pixels is more than 90%. For
such values, QPBO is not reliable as an optimization method. On the other
hand, for extreme values of �, QPBO labels more pixels, but the resulting model
is not meaningful, for example, for the case � = 10−3, all pixels for all images
considered were labeled 1.
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Table 2. QPBO results. Percentage of pixels labeled 1, 0 or left unlabeled by the
QPBO method for different values of weight �.

� 10−3 10−2 10−1 100 101 102 103

Labeled 1 100 64.49 9.52 0.18 0.03 0.03 0.03

Labeled 0 0 0 0 0 22.68 25.66 24.22

Unlabeled 0 35.51 90.48 99.82 77.30 74.31 75.75

Dual Decomposition for model D We compared two different optimiza-
tion methods for model D: the EM-style iterative procedure of [11] and a DD
approach. For the EM-style optimization, we initialized the color models in
the same way as discussed before for TRGC initialization when taking the his-
tograms’ intersection. Since DD provides a lower bound, we compared the gap
between the lower bound and the energy obtained by both models. For DD this
gap is 109.5 and for the EM-style optimization it is 103.4. The average gap is
reduced to 103.2, if the best method is chosen for each image. This is very similar
to the gap obtained by the iterative technique and we conclude that the improve-
ment of using DD is only marginal for this problem and we report results using
the EM-style optimization.

4.2 Results comparison for models

In this section we compare the four different models. We present results for three
different cases. In the first case, we use the original images (some of the images
are shown in Fig. 2), where the same foreground is composed with two different
backgrounds. This is the simplest case and the error rate is reported in the first
row of Table 3.

In the second case, we consider images of different sizes, reducing one of the
images to 90% and 80% of the original size. This leads to a more complicated
cosegmentation problem, where the object has different sizes in both images.

In the third case, in order to simulate illumination changes, we add a constant
to all RGB values (ranging from 0 to 255) of one of the images. We show results
for two different values of this constant: 3 and 6.

In Table 3, we also present the histogram similarity for the different cases.

This similarity is given by: 100−100×
∑

b
∣ℎGT

1b −ℎGT
2b ∣

∑
b
ℎGT
1b

+ℎGT
2b

where ℎGT
k is the histogram

of image k computed over foreground ground truth pixels. This similarity can
be seen as a rough measure of the difficulty of the problem, and the higher it is,
the simpler the problem.

From the results presented in Table 3 we take the following statistically
significant observations:

– Models A, B, and D perform similarly for the simplest case.
– Model C is the worst performing model since it produces in every case con-

siderably higher error rates.
– Model D is the most robust to changes in size and illumination.
– Comparing both models based on histogram distances, the L1-norm (Model

A) is more robust than the L2-norm (Model B), for the cases where there
are small variations of foreground.



12 S. Vicente, V.Kolmogorov, C. Rother

Table 3. Error rate using leave-one-out cross-validation. We compare the error
rate for the different methods in 3 different scenarios. We also report the standard
error of estimating the mean of the error rate. For the first case we use the original
composites. In the second case we consider images of different sizes, reducing one of
the images to 90% and 80% of the original size. In the third case, in order to simulate
illumination changes, we add a constant to all RGB values of one of the images, 3 and
6. The last column shows the similarity of the foreground histograms of both images.

Model A Model B Model C Model D
Histogram

similarity

Original images 4.6% ±0.8 3.9% ±0.7 22.0% ±3.9 4.3% ±0.3 93.4

Resized to 90% 4.7% ±0.4 5.7% ±0.8 16.3% ±2.4 4.9% ±0.5 84.6

Resized to 80% 7.8% ±1.3 9.7% ±1.4 17.4% ±3.0 5.1% ±1.0 74.2

RGB +3 4.4% ±0.4 7.1% ±1.1 21.4% ±4.3 3.7% ±0.3 84.6

RGB +6 5.5% ±0.5 12.3% ±1.7 20.3% ±2.5 4.0% ±0.4 76.3

Some methods may be affected negatively by the way the weighting param-
eters are chosen, since image measurements are not taken into account. In order
to fairly compare the methods without introducing this type of bias, we also
present results in Table 4 for the case where the weights � and � are chosen
independently for each image, so that the error rate is minimized.

Table 4. Error rate without cross validation.These results correspond to choosing
the best weights � and � according to GT for each image individually. They should be
compared with Table 3.

Model A Model B Model C Model D
Histogram

similarity

Original images 3.2% ±0.3 2.9% ±0.3 8.8% ±1.9 3.2% ±0.3 93.4

Resized to 90% 4.2% ±0.4 4.0% ±0.4 8.1% ±1.7 3.2% ±0.3 84.6

Resized to 80% 5.2% ±0.6 6.2% ±0.6 7.0% ±1.4 3.2% ±0.3 74.2

RGB +3 3.3% ±0.3 4.0% ±0.2 9.3% ±1.8 3.2% ±0.2 84.6

RGB +6 4.3% ±0.4 8.0% ±1.2 9.2% ±1.8 3.3% ±0.2 76.3

Comparing tables 3 and 4, it can be seen that model C has the greatest
improvement in error rate when the choice of weights is done independently for
each image. However, it still remains the worst performing model.

In Fig. 3, we show some cosegmentation results for a pair of images for
different sizes of the second image. The results shown agree with the insights
discussed in Sect. 2.2. When the size of the images differ, both models A and
B incorrectly cut some parts of the object, in order to improve the matching of
the resulting foreground histograms. Model C gives unpredictable results due to
the mentioned bias. Model D copes better with the changes in image size.
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Model A Model B Model C Model D

Fig. 3. Results without cross-validation. Segmentation obtained for each model
when reducing the size of the second image.

4.3 Results for real images

Following a reviewer’s suggestion, we tested the different models on the real
images used in [3]4.

We observed that the histogram quantization used in the rest of the paper
is not appropriate for these images, since there are significant differences in the
foreground color histograms and the overlap of the background color histograms
is large. The overlap for the foreground histograms is 39% which is considerably
lower than the overlap reported in the last column of Table 3. On the other
hand, the overlap of background histograms is 21% compared to 8% for our
dataset of composed images. This affected the results negatively and the error
rates are between 20% and 30% for all image pairs. The use of better histogram
quantization would considerably improve the performance for all methods.

This observation further supports our use of composed images, since the goal
of the paper is to compare the performance of the different methods in a scenario
where external factors with a negative impact could be easily controlled.

Note that, the results reported for the same images in [2, 3] used user inter-
action and the results in [1] used various features to calculate the histograms.

5 Conclusions and future work

Recently, several models for cosegmentation have been proposed some of which
lead to challenging optimization problems. We showed that they are outper-
formed by a natural extension of the Boykov-Jolly model, which has not been
considered in the context of cosegmentation before. The improvement of model
D over models B and especially C is substantial. The gap between models D and
A is less significant, and potentially could be affected by the choice of a dataset.
However, model D has two clear advantages: it has one less parameter, and it
allows the use of an effective and fast EM-style optimization.

To enable a fair comparison of models, we had to improve on optimization
techniques in [1, 2]. We believe the Dual Decomposition method that we used for
models A and B was adequate for our task. Although, we did not get verifiable

4 Images and GT are available from http://www.cs.wisc.edu/˜vsingh/pairimages.tar.gz.
We chose 20 pairs of images from this dataset, excluding the ones which were
created in a similar way to our dataset.
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global minima, the gap between the lower bound and the energy was small
enough, and furthermore, using ground truth to initialize an iterative technique
(TRGC) led to higher energies compared to DD.

In the future, we plan to gather a larger and more challenging dataset of
images for cosegmentation, including the ones used in Sect. 4.3. The focus will
be on the construction of discriminative histograms, that take into account not
only color but also other features like SIFT and Gabor filters as in [8].

Acknowledgements We thank Vikas Singh for answering questions about
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