
Diss. ETH No. 21293

Enhancing Separation Logic for
Object-Orientation

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
Stephanus Johannes van Staden

Master of Science, International University in Germany

born
February 22nd, 1983

citizen of
South Africa

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Peter O’Hearn, co-examiner
Dr. Matthew Parkinson, co-examiner
Dr. Cristiano Calcagno, co-examiner

2013

Acknowledgements

I would like to thank Bertrand Meyer, my doctoral advisor, for his patience
and support. The stimulating atmosphere at the Chair of Software Engineer-
ing at ETH Zurich made the ideas possible that eventually culminated in this
thesis. Many thanks to the current and former group members who gave me
feedback on draft papers: Jason (Yi) Wei, Sebastian Nanz, Martin Nordio,
Carlo Furia and Scott West. My thanks also goes to Andreas Leitner, Ilinca
Moser, Manuel Oriol, Michela Pedroni, Marco Piccioni, Chris Poskitt, Ben-
jamin Morandi, Christian Estler, Julian Tschannen, Marco Trudel, Mischael
Schill, Nadia Polikarpova and Claudia Günthart. My research was supported
by ETH Research Grant ETH-15 10-1, for which I am very grateful. The
organisation and infrastructure of ETH Zurich made it a real pleasure to do
the work.

I am greatly indebted to Cristiano Calcagno for his advice and help. He
spent many hours reading, correcting, advising and guiding my work, and
just as many in explaining things and making helpful suggestions. Apart from
our research collaboration, I am also thankful for his constant encouragement
and support.

My thanks also goes to Peter O’Hearn and Matthew Parkinson, who
made time in their busy schedules to co-examine this work. Matthew kindly
explained details about jStar to me that I needed for implementing MultiStar.
My internship at Microsoft Research in Cambridge and several discussions
at conferences and workshops helped to shape my work.

Finally, I would like to thank my family and friends for their encourage-
ment and support. Apart from my parents, brothers and sister, my thanks
goes to Wha Suck, Dean, Alexandru, Antoine and Riaan. Last but not least,
a very special thanks goes to Teresa, my wife, the sunshine in my life.

i

ii

Contents

1 Introduction 1
1.1 History and motivation . 1
1.2 Overview of contributions . 5

2 Background material 9
2.1 Language syntax . 9
2.2 Logic syntax and semantics 11
2.3 Specification refinement . 12
2.4 The specification environment 13
2.5 Statement verification . 13
2.6 Method verification . 15
2.7 Class and program verification 16
2.8 Useful lemmas . 17

3 Reasoning about related abstractions 19
3.1 Examples . 23

3.1.1 Intertwining ancestor abstractions 23
3.1.2 Access control and call protocols 28
3.1.3 Diamond inheritance 30

3.2 MultiStar . 35
3.2.1 Front-end . 35
3.2.2 Back-end . 36

3.3 Case study . 38
3.4 Formalisation . 41

3.4.1 Language syntax . 41
3.4.2 Operational semantics 41
3.4.3 Logic syntax and semantics 43
3.4.4 Specification refinement 43
3.4.5 The specification environment 43
3.4.6 Export information verification 43

iii

3.4.7 Axiom verification . 44
3.4.8 Statement verification 44
3.4.9 Method verification . 44
3.4.10 Class and program verification 46

3.5 Conclusions and related work 47

4 Verifying executable contracts 51
4.1 Background . 53

4.1.1 The abstract setting: triples and footprints 54
4.1.2 The concrete setting 54

4.2 Precondition verification . 55
4.3 Postcondition verification . 58
4.4 Class invariant verification . 62
4.5 Model-based specifications . 67
4.6 Relative purity and predicate extraction 71

4.6.1 Relative purity . 71
4.6.2 Predicate extraction 73

4.7 Implementation . 74
4.8 Conclusions and related work 75

5 Correctness by construction 77
5.1 Freefinement . 79

5.1.1 The Inputs . 79
5.1.2 The Extended Language and Formal System 81
5.1.3 System V2 and Refinement 87
5.1.4 The Refinement of Refinement Systems 88
5.1.5 Discussion . 95

5.2 Applications . 99
5.2.1 Lambda Calculus . 99
5.2.2 Hoare Logic . 102
5.2.3 Discussion . 110

5.3 Constructing correct OO programs 111
5.3.1 Language and proof rules 111
5.3.2 Development calculus 114

5.4 Related Work . 118

6 Conclusion 121

A Semantics of the proof system 123

B Antitone Galois connections 127

iv

Abstract

Reasoning about programs can be tricky and error-prone. Formal verification
facilitates the formulation and demonstration of rigorous arguments about
program correctness. To be usable and useful, a program logic, i.e. a proof
system for program verification, should accommodate the principal mecha-
nisms of the programming language and crystallise the informal reasoning of
programmers.

Recently, separation logic emerged as a promising tool for reasoning about
shared mutable state, which pervades mainstream programming languages
such as C, Java and Eiffel. Parkinson and others proposed a proof sys-
tem for Object-Oriented (OO) programs that combines separation logic with
mechanisms to reason about inheritance and dynamic dispatch. This system
can verify a wide range of OO programs and design patterns in a concise
way. The flexibility and simplicity of the system made it an attractive target
for further improvement and broader application.

The contributions of this thesis address the following problems:

1. Specifying, verifying and using relationships between state abstrac-
tions. This is especially important when reasoning about OO programs
that use multiple inheritance.

2. Reasoning about executable contracts. Executable contracts are often
weak and may perform side-effects. Yet they capture useful design
information, are programmer-friendly and assist in debugging.

3. Refinement and correctness by construction. Instead of first writing
the code and then proving it correct, these techniques make it possible
to write a correct program in the first place. The program and its
correctness proof grow and evolve together.

State abstraction mechanisms, such as abstract predicates, are useful for
reasoning about programs with modules that encapsulate state and hide in-
formation. Parkinson adapted abstract predicates to the OO setting, and

v

they play a central role in his proof system. Since OO code frequently relies
on relationships between state abstractions of a class or a class hierarchy, this
thesis enhances Parkinson’s system with mechanisms for specifying, verifying
and exploiting such relationships. The extension also makes it possible to
establish the logical consistency of a class hierarchy without considering im-
plementation details, and it facilitates reasoning about multiple inheritance.

Existing OO code often contains contracts in the form of executable pre-
conditions, postconditions and class invariants. These specifications are typ-
ically weaker than separation logic assertions, but they are more lightweight
and perhaps more likely to be written by programmers. Contracts also record
valuable information about program design and are useful for testing and de-
bugging. This thesis contributes a new technique for using the separation
logic assertions to verify that executable contracts will always hold at runtime
and that they will not perform unwanted side-effects. As a result, verified
contracts need not be monitored at runtime, and they add confidence in the
correctness of the code and the separation logic specification.

Correctness by construction is an important feature of a mature engi-
neering discipline. In the context of software engineering, it is realised by
a calculus for top-down program development that features refinement as a
central technique. A refinement calculus helps to construct correct code from
a given specification in a series of steps. This thesis proposes freefinement
– an algorithm for obtaining a sound refinement calculus from a modular
program logic. The resulting refinement calculus can interoperate closely
with the program logic, and it is even possible to reuse and translate proofs
between them.

Many aspects of the work also apply to other settings. None of the con-
tributions rely on a specific flavour of separation logic. The work on multiple
inheritance subsumes interface inheritance, and the reasoning techniques for
executable contracts generalise to non-OO languages that use explicit mem-
ory management. Finally, freefinement applies to a great variety of formal
systems, including program logics for other languages and type systems.

vi

Zusammenfassung

Beweisführung über Programme kann knifflig und fehleranfällig sein. Formale
Verifikation unterstützt das Formulieren und Beweisen von präzisen Behaup-
tungen über die Korrektheit von Programmen. Um brauchbar und nützlich
zu sein, sollte eine Programmlogik, d.h. ein Beweissystem für Programmveri-
fikation, die Hauptmechanismen der Programmiersprache unterstützen und
die informelle Beweisführung der Programmierer präzisieren.

In letzter Zeit hat sich Separation Logic als nützliches Werkzeug erwiesen,
um Beweise über einen gemeinsam genutzten, veränderlichen Zustandsraum
zu führen, der in populären Programmiersprachen wie z.B. C, Java und Eiffel
allgegenwärtig ist. Parkinson et al. schlugen ein Beweissystem für objektori-
entierte (OO) Programme vor, das Separation Logic mit Mechanismen für die
Beweisführung über Vererbung und dynamischer Bindung kombiniert. Dieses
System kann ein breites Spektrum von OO-Programmen und Entwurfsmus-
tern knapp und präzise verifizieren. Die Flexibilität und Einfachheit des Sys-
tems haben es zu einem attraktiven Zielobjekt für weitere Verbesserungen
und Einsatzmöglichkeiten gemacht.

Die Beiträge dieser Dissertation befassen sich mit den folgenden Proble-
men:

1. Spezifikation, Verifikation und Verwendung von Beziehungen zwischen
Zustandsabstraktionen. Dies ist speziell dann wichtig, wenn Beweise
über OO-Programme geführt werden, die Mehrfachvererbung verwen-
den.

2. Beweisführung über ausführbare Spezifikationen. Ausführbare Spezifi-
kationen sind oft schwach und können mit Nebeneffekten behaftet sein.
Dennoch erfassen sie nützliche Designinformationen, sind programmie-
rerfreundlich und helfen bei der Fehlersuche.

3. Verfeinerung und konstruktionsbedingte Korrektheit. Anstatt zuerst
den Programmtext zu schreiben und dann zu verifizieren, erlauben diese
Techniken es, das Programm von Anfang an korrekt zu schreiben. Das

vii

Programm und der Beweis seiner Korrektheit wachsen und entwickeln
sich gemeinsam.

Mechanismen für die Zustandsabstraktion, wie z.B. abstrakte Prädikate,
sind nützlich für die Beweisführung über Programme mit Modulen, die Zu-
stand und Informationen kapseln. Parkinson adaptierte abstrakte Prädikate
an das OO-Umfeld und sie spielen eine zentrale Rolle in seinem Beweissystem.
Da OO-Programme sich oft auf Beziehungen zwischen Zustandsabstraktionen
einer Klasse oder Klassenhierarchie stützen, erweitert diese Dissertation Par-
kinsons System mit Mechanismen für die Spezifikation, Verifikation und In-
strumentalisierung dieser Beziehungen. Die Erweiterung ermöglicht es auch,
die logischen Konsistenz einer Klassenhierarchie zu begründen ohne Imple-
mentationsdetails zu berücksichtigen, und sie unterstützt die Beweisführung
über Mehrfachvererbung.

Bereits existierende OO-Programme enthalten oft Spezifikationen in der
Form von ausführbaren Vor-, Nachbedingungen und Klasseninvarianten. Die-
se Spezifikationen sind typischerweise schwächer als Zusicherungen in Sepa-
ration Logic, aber sie sind auch schlanker und werden vielleicht eher von Pro-
grammierern geschrieben. Auch enthalten sie wertvolle Informationen über
den Programmaufbau und sind nützlich für Tests und die Fehlerbehebung.
Ein Beitrag dieser Dissertation ist eine neue Technik für die Verwendung von
Zusicherungen in Separation Logic, die sicherstellt, dass ausführbare Spezifi-
kationen zur Laufzeit immer eingehalten werden und keine ungewollten Ne-
beneffekte haben. Dadurch müssen ausführbare Spezifikationen zur Laufzeit
nicht mehr überprüft werden und sie erhöhen das Vertrauen in die Korrekt-
heit des Programms und der Spezifikationen in Separation Logic.

Konstruktionsbedingte Korrektheit (correctness-by-construction) ist eine
wichtige Eigenschaft ausgereifter Ingenieursdisziplinen. Im Kontext von Soft-
ware Engineering wird es durch einen Kalkül für Top-Down-Programment-
wicklung realisiert, der Verfeinerung als zentrale Technik aufweist. Ein Ver-
feinerungskalkül hilft bei der Konstruktion korrekter Programme in einer
Serie von Schritten, ausgehend von einer gegebenen Spezifikation. Diese Dis-
sertation schlägt Freefinement vor – ein Algorithmus um einen korrekten
Verfeinerungskalkül aus einer modularen Programmlogik zu erhalten. Der re-
sultierende Verfeinerungskalkül ist in der Lage, mit der Programmlogik eng
zu interagieren, und es ist sogar möglich, Beweise zwischen diesen beiden
wiederzuverwenden und zu übersetzen.

Viele Aspekte dieser Arbeit sind auch auf andere Umgebungen anwend-
bar, keiner der Beiträge hängt von spezifischen Ausprägungen von Separation
Logic ab. Die Arbeit an Mehrfachvererbungen umfasst auch Schnittstellenver-
erbung, und die Beweisführungstechnik für ausführbare Spezifikationen kann

viii

auf Nicht-OO-Sprachen mit explizitem Speichermanagement verallgemeinert
werden. Überdies betrifft Freefinement eine grosse Vielfalt von formalen Sys-
temen, inklusive Programmlogiken für andere Sprachen und Typsysteme.

ix

x

Chapter 1

Introduction

1.1 History and motivation

Object-oriented (OO) programming languages are widely used in software
engineering. They follow the imperative paradigm, i.e. programs are com-
mands that transform state. Perhaps the most distinguishing feature of OO
languages is that they promote a data-centered approach to programming:
objects encapsulate data and operations associated with that data. Since
humans often think about a system or a problem domain in terms of its con-
stituent objects, the object abstraction is a natural fit for modelling them
and hence reflecting this undertanding in software.

Mainstream OO languages have many features, such as classes, inheri-
tance, dynamic binding, dynamic allocation of objects and sharing of ref-
erences to objects. Although most OO programs use these features, their
effects can be subtle and hard to understand. Especially in more complex
programs where several features interact, it often difficult to see that the
code is correct, i.e. that it will do what it is supposed to do. What is needed
is a formalism that facilitates simple reasoning about the correctness of OO
programs.

A system for verifying the correctness of imperative programs that ma-
nipulate simple variables has long been known: Hoare logic [32]. The basic
judgement of Hoare logic is the triple {P}c{Q}, where P is the precondition,
c the command and Q the postcondition. Informally, it means: if c is exe-
cuted in an initial state satisfying P, and it terminates, then the final state
will satisfy Q. An example of a valid triple is {x = 7}x := x + 1{x = 8}.

Hoare logic is compositional, or modular, which is important for larger
verification efforts. Both programs and specifications should compose nicely.
For example, the rule for reasoning about a sequential composition involves

2 CHAPTER 1. INTRODUCTION

only the specifications of its two operands:

{P}c{Q} {Q}c′{R}
{P}c ; c′{R}

The rule of constancy is a good example of how specifications compose. Pro-
vided c does not modify any of the free variables in R, we have:

{P}c{Q}
{P ∧ R}c{Q ∧ R}

The rule states that a command preserves all properties of variables it did
not modify. Continuing the earlier example, we would be able to conclude
{x = 7 ∧ y = 6}x := x + 1{x = 8 ∧ y = 6}. A simple syntactic check suf-
fices for determining the variables that a command might modify. Everything
else must stay the same.

The situation is rather straightforward for imperative languages that ma-
nipulate simple variables: the state is just a mapping from variable names to
values, and the only way to manipulate a variable is to mention it explicitly
in the program text. OO languages are more complicated. In addition to
simple variables (in the stack), the state also has shared objects (in the heap)
that are accessed indirectly through references. Because of reference aliasing,
there is no simple syntactic check for determining whether an object remains
unmodified by a piece of code. OO programs regularly use many objects and
much sharing, so it is important to reason about them in a convenient way.

It turns out that there are several ways to extend Hoare logic to pro-
grams that manipulate shared mutable state such as objects. One family
of approaches keep the rule of constancy. Doing so requires more compli-
cated techniques to determine 1) the set of objects or parts of objects that
a command may modify, and 2) whether the predicate R describes any of
them. Because 1 is not a simple syntactic check, and 2 tends to dissect R
and not limit the inspection to its free variables, we shall not consider such
approaches in this thesis.

Separation logic [54, 60] is another way of generalising Hoare logic to
programs with shared mutable state. It adapts the rule of constancy by
replacing the ∧ with ∗, a new logical connective called separating conjunction.
A state satisfies the predicate P ∗ Q when 1) its simple variables satisfy the
constraints imposed on them by P and Q, and 2) it is possible to partition
the objects into two disjoint sets of storage locations (i.e. heap locations or
object-field pairs) such that the one set satisfies the constraints of P and the
other those of Q. The reasoning about simple variables is exactly the same
as in Hoare logic. Separation logic recognises that the concept of separation

1.1. HISTORY AND MOTIVATION 3

is important for reasoning about the new kind of storage: mutable locations
that may be aliased by references.

The adapted rule is known as the frame rule:

{P}c{Q}
{P ∗ R}c{Q ∗ R}

It is applicable whenever c does not modify any of the free variables in R.
This simple syntactic check needs no information about the definitions of
predicates that appear in R, which is good for abstraction. The frame rule
says that the separate objects described by R will not be modified. In order
for this to work, it must be impossible for c to change the storage locations
that R describes. The separation logic triple {P}c{Q} therefore has a gener-
alised meaning1: if c is executed in an initial state satisfying P, then it will
not access storage locations except those described in P or allocated by c,
and if it terminates, then the final state will satisfy Q. The frame rule is very
useful for knowing how a command behaves in a larger context, i.e. when
more objects are present. It is heavily used in many proofs of correctness,
and it tends to make them simple and short.

Separation logic simplifies reasoning about shared mutable state, but OO
programs also use other features that are historically difficult to reason about.
Inheritance and the associated dynamic dispatch (or dynamic binding) of
routine calls enable a single piece of code to have an incredible variety of
runtime behaviours. Static reasoning therefore needs to impose some disci-
pline on inheritance and the behaviour of (overridden) routines. Moreover,
the OO paradigm encourages programmers to think about objects as black
boxes with hidden implementation details. Since the purpose of formalism is
to make intuitive arguments rigorous, it is desirable to express and exploit
such abstraction patterns in formal reasoning.

In his PhD thesis [57] and work with others [56, 58], Parkinson proposed
an elegant proof system that addresses these issues. The main ingredients of
the system are as follows (Chapter 2 contains the details):

• It uses separation logic to reason about the fields of objects.

• Abstract predicate families (apfs) provide encapsulated data abstrac-
tions in the logic. An apf is a predicate with a designated ‘target’
argument. Each class C can define the apf predicate for the case when
the target argument has dynamic type C. It is only possible to use this

1That c does not access (i.e. read or modify) these locations is a stronger requirement
than what we actually need here, but it is widely used and useful for reasoning about
concurrency.

4 CHAPTER 1. INTRODUCTION

definition within class C when the dynamic type of the target argument
is C – the predicate must be treated abstractly in all other cases. Apfs
can thus express the idea that objects (or parts of objects or object ag-
gregates) are black boxes for outsiders, and that subclasses may change
the representation. A specification of a routine typically says how the
code transforms one or more of these black boxes into others.

• Each routine has a static and a dynamic specification, each consisting
of a precondition and a postcondition. The static specification states in
detail what the routine body does. It is used to reason about calls that
use static dispatch (e.g. precursor or super calls). The dynamic spec-
ification is typically more abstract – it describes the idea behind the
routine that must be respected in all subclasses. It imposes discipline
on inheritance, and is used to reason about dynamically dispatched
calls.
The organisation of specifications is modular: a routine body is verified
only against the static specification, which must in turn be consistent
with the dynamic specification. Static specifications make it unnec-
essary to re-verify code in subclasses, so each routine body is verified
exactly once.

These ingredients combine to yield a compact system that can reason
about many uses and abuses of inheritance, including behaviour extension,
restriction and modification, and change of representation in subclasses.

Because of all its desirable features, this system is an ideal starting point
for further enhancements. This thesis considers the improvement of the sys-
tem and its broader application in reasoning. It tackles the following prob-
lems:

1. The basic apf mechanism is not always flexible enough. A class might
want to share some properties of its definitions with others. Also,
some properties of definitions, or relationships between them, may be
invariant in a whole class hierarchy, and client code might rely on this.
For example, it could be a design decision that all subclasses must use
the same definition and hence the same implementation of a logical
abstraction. Or it might be intended that an implication between two
different apf predicates will always hold. We need ways to express,
verify and use such information.

2. OO languages like Eiffel use multiple inheritance and deferred (ab-
stract) classes and routines. Reasoning about these constructs requires
extensions to the original system.

1.2. OVERVIEW OF CONTRIBUTIONS 5

3. Much existing OO code has been specified with executable contracts,
such as preconditions, postconditions and class invariants. They cap-
ture expectations and intentions in a programmer-friendly way. There
has been several attempts to use them as a basis for verification, but it
tends to be complicated because they 1) are often too weak, 2) do not
have a separating conjunction, and hence struggle with framing and
aliasing, and 3) often contain side-effects. The separation logic system
ignores these assertions, but it would be better to reason about them
and exploit them in verification.

4. Instead of hacking away at code and verifying its correctness after-
wards, it is often easier to develop code that is correct by construction.
However, the separation logic system is geared for bottom-up verifi-
cation instead of top-down development. It does not directly support
techniques for stepwise transformation such as refinement. A major
goal of this thesis is therefore to support refinement and correctness by
construction in a way that complements the separation logic system.

1.2 Overview of contributions

Chapter 3 addresses the first problem by adding features to Parkinson’s sys-
tem. It shows with examples how a single class may employ multiple apfs
to achieve its purpose, and that these are often related and combined in dis-
ciplined ways. Since the correctness of OO code frequently depends on the
relationships between these abstractions, we need mechanisms to express,
verify and use such information in a rigorous fashion. In particular, the work
introduces two general specification mechanisms: export clauses for relating
abstractions in individual classes, and axiom clauses for relating abstractions
in a class and all its descendants, i.e. for an entire (sub-)hierarchy of classes.
The information expressed in export and axiom clauses is first verified be-
fore it is assumed for the verification of code. Proof rules that avoid logical
inconsistencies formalise the manipulation.

Chapter 3 also extends Parkinson’s system to support multiple inheri-
tance and deferred (abstract) classes and routines. This subsumes reasoning
about interface inheritance, a form of multiple inheritance used in languages
like Java. Multiple inheritance usually intertwines several logical abstrac-
tions from parent classes, and it turns out that export and axiom clauses are
useful for specifying such information. Knowing more about ancestor classes
through specifications means that fewer of their implementation details have
to be considered, and verification is consequently more modular.

6 CHAPTER 1. INTRODUCTION

Chapter 4 attacks the third problem: reasoning about executable con-
tracts and exploiting them in verification. The work shows how separation
logic can be used to verify that executable contracts are satisfied, i.e. that
they will always hold at runtime and not perform undesirable side-effects.
Both the program and its executable assertions are verified with respect
to separation logic specifications. A novel notion called relative purity em-
braces historically problematic side-effects in executable specifications, and
verification boils down to proving connecting implications. Even model-based
specifications, i.e. expressive executable contracts that use mathematical ab-
stractions, can be verified. A failed verification attempt may indicate a dis-
crepancy between the two kinds of specification. For example, the separation
logic precondition of a routine may be too liberal for the particular applica-
tion, and the executable precondition can help to uncover this problem. Or
a failed verification may point to situations in which a runtime violation of
an executable postcondition would occur. In any case, the separation logic
and executable specifications complement each other in verification. Several
examples illustrate the use and utility of the approach.

The above mechanisms are well-suited to automation. We implemented
them in MultiStar, a fully automatic verification tool for verifying Eiffel pro-
grams. MultiStar uses separation logic specifications that are embedded in
the source program. The verification proceeds in two steps. Firstly, the spec-
ifications and code are translated into an intermediate representation that
is simpler to process. Secondly, a reasoning engine based on jStar [23] per-
forms the actual verification. Section 3.2 describes the architecture of Mul-
tiStar and its treatment of export/axiom clauses and multiple inheritance.
Section 4.7 explains how it supports reasoning about executable contracts.
MultiStar successfully verified the examples in Chapters 3 and 4. Moreover,
Section 3.3 describes a case study in which MultiStar was used to verify the
core iterator hierarchy of a popular data structure library. MultiStar is freely
available as part of the EVE (Eiffel Verification Environment) download [28].

Chapter 5 tackles refinement and correctness by construction. The ap-
proach is to obtain a refinement calculus for OO commands, and then to use
it as part of a larger calculus that handles other OO features. This reflects
the fact that developing a routine body involves different reasoning than, say,
adding an attribute to a class or a dynamic specification to a routine.

It is moreover a cost-effective way to structure a solution, because the
refinement calculus comes for free! Section 5.1 describes freefinement, an
algorithm that constructs a sound refinement calculus from a verification
system under certain conditions. In this work, a verification system is any
formal system for establishing whether an inductively defined term, such as a
command, satisfies a specification. Examples of verification systems include

1.2. OVERVIEW OF CONTRIBUTIONS 7

Hoare logics and type systems. Freefinement first extends the term language
to include specification terms, and builds a verification system for the ex-
tended language that is a sound and conservative extension of the original
system. The extended system is then transformed into a sound refinement
calculus. The resulting refinement calculus can interoperate closely with the
verification system – it is even possible to reuse and translate proofs between
them. Freefinement gives a semantics to refinement at an abstract level: it
associates each term of the extended language with a set of terms from the
original language, and refinement simply reduces this set. For illustration
purposes, Section 5.2 applies freefinement to a simple type system for the
lambda calculus and also to a Hoare logic.

It is straightforward to apply freefinement to the part of the separation
logic proof system that reasons about OO commands. The resulting re-
finement calculus is plugged into a larger system that deals with other OO
constructs, and this larger calculus is compatible with (and complements)
the full separation logic system. In particular, all its transformation steps
preserve correctness with respect to the system, and every verifiable OO
program can be constructed from scratch in a stepwise manner.

Many of the results in this thesis are quite general and also apply to
different settings. None of the contributions rely on a particular flavour of
separation logic. The work on executable contracts can be used for non-OO
languages with explicit memory management such as C. Finally, freefinement
can give refinement calculi for a great variety of formal systems, including
modular type systems such as System F.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background material

This chapter describes the OO programming language and its separation
logic proof system that are used throughout the thesis. It summarises the
published work of Parkinson [57] and his joint work with Bierman [58] with
minor changes in the presentation.

2.1 Language syntax

The grammar of our kernel OO language with specifications is shown in
Figure 2.1. It is deliberately minimal to keep the presentation simple, but
it contains the essential language constructs of popular OO languages. The
concrete notation is based on Eiffel [26].

A class is divided into top-level sections. The inherit section lists its
parent class (or ‘ANY’), the define section contains predicate definitions,
and methods and fields are written in the feature section. Empty sections
and ‘inherit ANY’ will simply be omitted in examples.

A sequence of c’s is denoted by c. The letters G and H are used for class
names, m for method names, and f for field names. Variables are denoted by
u, x, y and z. Void corresponds to ‘null’ in other languages. Two reserved
program variables Current and Result denote the current object (‘this’)
and the result of a function call respectively. Current is never Void. The
term feature describes methods and fields, sometimes called the ‘members’ of
a class. Feature overloading, including method overloading, is not allowed.

Separate namespaces exist for class names, p, m and f. We assume the
absence of clashes when names are introduced. This precludes method over-
loading and field shadowing. Later, when we extend the language with mul-
tiple inheritance, it will guarantee that methods or fields with the same name
in parent classes stem from common ancestors.

10 CHAPTER 2. BACKGROUND MATERIAL

L ::= class G inherit H define D feature M F end
D ::= x.pG(t:y) as P Define clause
M ::= introduce m(Args) Rt Sd Ss B Method declaration
| override m(Args) Rt Sd Ss B
| inherit m(Args) Rt Sd Ss

F ::= f: Type Field declaration
Sd ::= dynamic Spec Dynamic specification
Ss ::= static Spec Static specification
Spec ::= {P} {Q} | {P} {Q} also Spec Specification
B ::= do s end Method body
s ::= skip Statement
| x := e Assignment
| s ; s Sequential compostition
| if e then s else s end Conditional
| while e do s end Loop
| x: Type. s Local variable block
| x := new G Object allocation
| x := y.f Field lookup
| x.f := e Field update
| x := y.m(e) | y.m(e) Dynamically dispatched call
| x := y.G::m(e) | y.G::m(e) Direct method call

e ::= x | e + e | e = e | Void | 0 | 1 | 2 . . . Expression
Type ::= INT | BOOL | G

Args ::= x: Type Formal arguments
Rt ::= ε | : Type Return type

Figure 2.1: The kernel language grammar.

2.2. LOGIC SYNTAX AND SEMANTICS 11

A constructor is simply an introduced method m where m is a class name.
Except for the restriction that subclasses cannot inherit or override construc-
tors, no special treatment is needed otherwise. In the examples, we will omit
the target of a method call or field assignment if it is Current.

Methods have both static and dynamic specifications. A specification is
written in pre-post form {P} {Q}, or {P1} {Q1} also {P2} {Q2} to indicate
that both are satisfied (Section 2.3 shows how the also form abbreviates
a single pre-post specification). A method’s dynamic specification must be
satisfied by all subclasses, and is used to verify dynamically-dispatched calls.
A static specification describes properties about the particular method body,
and is used to verify statically-dispatched calls, including Precursor (‘super’
or ‘base’) calls and direct calls x.C::m(e) in C++ style.

To provide subclasses with the opportunity to respecify a method and to
simplify the proof rules that follow later, we require a subclass to inherit or
override explicitly all non-constructor methods present in its parent (in the
examples of later chapters and the MultiStar tool, specification shorthands
are employed to achieve this).

We assume the formal argument names of methods stay the same in
subclasses. This simplifies the proof rules that follow, which would otherwise
need additional substitutions.

Finally, to improve the readability of examples in later chapters, we fre-
quently write statements in a list and omit the interspersed sequential com-
position operators.

2.2 Logic syntax and semantics

The predicates used in specifications and proofs have the following grammar.

P, Q, S, T, ∆ ::= ∀x·P | P⇒Q | false | e = e′ | x : G | x <: G | x.f ↪→ e | P ∗ Q
| x.p(t:e) Apf predicate
| x.pG(t:e) Apf entry

The predicate x : G means x references an object whose dynamic type is
exactly G, and x <: G means x references an object whose dynamic type is
a subtype of G. In both cases x 6= Void, and x : G ⇒ x <: G holds. Within
a context, if x is declared of type G then x <: G whenever x 6= Void.

Abstract predicate families [56, 58] provide logical abstractions of state for
the OO setting. An abstract predicate family (abbreviated apf) provides an
abstract predicate p for which each class C can define an entry pC . The first
argument of an apf predicate or entry is called the root. The root followed
by a dot is written before the apf predicate or entry name. The whole prefix

12 CHAPTER 2. BACKGROUND MATERIAL

is omitted when the root is Current. An apf predicate’s root can never be
Void. Since the meaning of an apf predicate depends on the dynamic type
of the root object, it can be seen as mirroring dynamic dispatch of object-
orientation in the logic. The other arguments of an apf predicate or entry
are a set (i.e. order-independent collection) of tagged arguments, where tag
names t provide useful hints about the purpose of tagged values. Apfs offer
high levels of abstraction in specifications and proofs: apf predicates and
entries are treated abstractly by the clients of a class.

Other predicates have the usual intuitionistic separation logic semantics.
Informally, the predicate x.f ↪→ e means that the f field of object x has value e
(f ↪→ e abbreviates Current.f ↪→ e), and P ∗ Q means that P and Q hold for
disjoint portions of the heap. Readers are referred to [60, 54, 57] for a formal
treatment of separation logic. Symbols such as ⇔, ¬, true, ∨, ∧ and ∃ are
encoded in the standard way. Every occurrence of in a predicate denotes
a fresh existentially quantified variable, where the quantifier is placed in the
innermost position. FV (P) denotes the free variables of P; every method
precondition P must satisfy Result /∈ FV (P).

In the rest of the formalisation, the symbols P, Q, S and T are used for
assertions and predicates, and ∆ for assumptions.

2.3 Specification refinement

A specification {P1} {Q1} is refined by {P2} {Q2} when any statement s
that satisfies {P1} {Q1} also satisfies {P2} {Q2}. Under the assumptions
∆, the specification {P1} {Q1} is refined by {P2} {Q2} if we can prove
∆ ` {P1} {Q1} =⇒ {P2} {Q2}, i.e. provide a proof tree with leaves ∆ `
{P1} {Q1} and root ∆ ` {P2} {Q2} built with the structural rules of separa-
tion logic (Consequence, Frame, Auxiliary Variable Elimination, Disjunction,
and others). In the context of method specification refinement, ∆ contains
the apf assumptions of the class, and the Consequence and Frame rules are
given by:

∆⇒(P′⇒P) ∆ ` {P} {Q} ∆⇒(Q⇒Q′)
Consequence

∆ ` {P′} {Q′}

∆ ` {P} {Q}
Frame

∆ ` {P ∗ T} {Q ∗ T}

The Frame rule is applicable whenever Result /∈ FV (T), and expresses
that disjoint portions of the heap stay unchanged.

2.4. THE SPECIFICATION ENVIRONMENT 13

Method specifications can be combined with also (Definition 1 in [58]):

{P1} {Q1} also {P2} {Q2}
def
=

{(P1 ∧ x = 1) ∨ (P2 ∧ x 6= 1)} {(Q1 ∧ x = 1) ∨ (Q2 ∧ x 6= 1)}
where x denotes a fresh auxiliary variable. The specifications {P1} {Q1} and
{P2} {Q2} are equivalent w.r.t. ∆ iff both ∆ ` {P1} {Q1} =⇒ {P2} {Q2}
and ∆ ` {P2} {Q2} =⇒ {P1} {Q1}. Two specifications are equivalent iff
they are equivalent w.r.t. all ∆. It can be shown that also is commutative,
associative and idempotent modulo equivalence with identity {false} {true}.
The notation alsoi∈I {Pi} {Qi} denotes the specification {Pe1} {Qe1} also
. . . also {Pem} {Qem}, where e1 . . . em are the elements of the finite index
set I. Furthermore, when I is the empty set:

alsoi∈∅ {Pi} {Qi}
def
= {false} {true}

It always holds that ∆ ` {P} {Q} =⇒ {false} {true}. Other useful lemmas
involving also are given in Section 2.8. Finally, we use the abbreviation

∆ ` {P1} {Q1}
Current : G

=⇒ {P2} {Q2}
def
= ∆ ` {P1} {Q1} =⇒ {P2 ∗Current : G} {Q2}

in the formalisation of the Dynamic dispatch proof obligation for methods in
Section 2.6.

2.4 The specification environment

Most of the proof rules that follow use an environment Γ, which maps method
names to their specifications for all classes in a program:

Γ ::= G.m 7→ (x,{P} {Q}) Method dynamic specification
| G::m 7→ (x,{S} {T}) Method static specification

| Γ

The x in a specification of m denote its formal argument names. Γ is
guaranteed to be a partial function for well-formed programs, and we write
Γ(G.m) = (x,{P} {Q}) for G.m 7→ (x,{P} {Q}) ∈ Γ, and Γ(G::m) = (x,{S} {T})
for G::m 7→ (x,{S} {T}) ∈ Γ.

2.5 Statement verification

The assumptions ∆ used to verify statements contain apf information about
the enclosing class. The rules for most statements are standard:

14 CHAPTER 2. BACKGROUND MATERIAL

∆; Γ `s {P}skip{P}

∆; Γ `s {P[e/x]}x := e{P}

∆; Γ `s {P}s{Q} ∆; Γ `s {Q}s′{R}
∆; Γ `s {P}s ; s′{R}

∆; Γ `s {P ∗ e}s{Q} ∆; Γ `s {P ∗ ¬e}s′{Q}
∆; Γ `s {P}if e then s else s′ end{Q}

∆; Γ `s {P ∗ e}s{P}
∆; Γ `s {P}while e do s end{P ∗ ¬e}

The rule for local variables has the proviso that x /∈ FV (P) ∪ FV (Q):

∆; Γ `s {P}s{Q}
∆; Γ `s {P}x: Type. s{Q}

In the rule for object allocation, allfields(G) denotes the set of field names
listed in G and all its ancestors:

allfields(G) = {f1,f2,. . . ,fn}
∆; Γ `s {true}

x := new G
{x.f1 ↪→ ∗ x.f2 ↪→ ∗ . . . ∗ x.fn ↪→ ∗ x : G}

For field lookup, when x is not free in e and not the same as y, we have:

∆; Γ `s {y.f ↪→e}x := y.f{y.f ↪→ e ∗ x = e}

Field update is simple:

∆; Γ `s {x.f ↪→ }x.f := e{x.f ↪→ e}

Dynamically dispatched calls use the dynamic specs of methods in Γ,
while direct calls use the static ones. Provided x is not y and x is not free in
e, the rules for result-returning calls are:

Γ(G.m) = (u,{P} {Q})
∆; Γ `s {P[y, e/Current, u] ∗ y <: G}

x := y.m(e)
{Q[y, e, x/Current, u,Result]}

2.6. METHOD VERIFICATION 15

Γ(G::m) = (u,{S} {T})
∆; Γ `s {S[y, e/Current, u] ∗ y 6= Void}

x := y.G::m(e)
{T[y, e, x/Current, u,Result]}

The important structural rules for this thesis are Frame, Consequence,
Auxiliary Variable Elimination, and Disjunction. The Frame rule is the key
to local reasoning. Provided s modifies no variable in FV (T):

∆; Γ `s {P}s{Q} Frame
∆; Γ `s {P ∗ T}s{Q ∗ T}

The rule of Consequence allows the use of assumptions ∆:

∆⇒(P′⇒P) ∆; Γ `s {P}s{Q} ∆⇒(Q⇒Q′)
Consequence

∆; Γ `s {P′}s{Q′}

In Auxiliary Variable Elimination, the variable x to be eliminated may not
appear free in s.

∆; Γ `s {P}s{Q} AuxVarElim
∆; Γ `s {∃x.P}s{∃x.Q}

Finally, the Disjunction rule is standard:

∆; Γ `s {P}s{Q} ∆; Γ `s {P′}s{Q′} Disjunction
∆; Γ `s {P ∨ P′}s{Q ∨Q′}

2.6 Method verification

As for statement verification, the assumptions ∆ used to verify method def-
initions contain apf information about the method’s enclosing class.

A newly introduced method’s static and dynamic specifications must be
consistent1, and its body must satisfy the static specification. These two
requirements are captured by the Dynamic dispatch [D.d.] and Body verifi-
cation [B.v.] proof obligations respectively.

1We establish that the dynamic specification follows from the static one when the
dynamic type of Current is G. If the dynamic type of x is G, then the body of m in G
will be executed if x.m is called. The static and dynamic specifications must be consistent
with each other in this case, since the dynamic specification is used for reasoning about
the call statement, whereas the body was verified only w.r.t. the static specification.

16 CHAPTER 2. BACKGROUND MATERIAL

B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {SG} {TG}

Current : G
=⇒ {PG} {QG} [D.d.]

∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m introduce m(Args) Rt Sd Ss B in G parent H

The next rule is used whenever a method body gets redefined. Consis-
tency must be proven between the new dynamic specification and those in
the parent class; this is embodied in the Behavioural subtyping [B.s.] proof
obligation. The other proof obligations are identical to those for method
introduction above.

Γ(H.m) = (x,{PH} {QH})
B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ {PH} {QH} [B.s.]

∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]
∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m override m(Args) Rt Sd Ss B in G parent H

When a method is inherited, its static specification must follow from
the one in the parent class. The Inheritance [Inh.] obligation ensures that
this will be the case. The Behavioural subtyping and Dynamic dispatch
obligations serve the same purposes as before.

Γ(H.m) = (x,{PH} {QH})
Γ(H::m) = (x,{SH} {TH})
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ {PH} {QH} [B.s.]
∆ ` {SH} {TH} =⇒ {SG} {TG} [Inh.]

∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]

∆; Γ `m inherit m(Args) Rt Sd Ss in G parent H

2.7 Class and program verification

A class is verified by verifying all of its methods. Once again, the formula ∆
contains apf information that is specific to the class.

2.8. USEFUL LEMMAS 17

∀Mi ∈ M ·∆; Γ `m Mi in G parent H

∆; Γ `c class G inherit H define D feature M F end

Finally, here is the rule for program verification:

∀i ∈ 1..n· Li = class Gi . . . end
Γ = specs(L1 . . . Ln)
∀i ∈ 1..n· apf (Li); Γ `c Li

true; Γ `s {true}s{true}
`p L1 . . . Ln s

The function apf translates the abstract predicate family definitions of a
class into a formula – its apf assumptions. It is adapted from [58] for tagged
arguments:

apf (class G . . . define D1 D2 . . . Dn feature . . . end)
def
=

apf G(D1) ∧ . . .∧ apf G(Dn)

apf G(x.pG(Y) as P)
def
=

FtoE (p,G,Y) ∧ EtoD(x.pG(Y) as P) ∧ (∀x <: G · TR(p,x,Y))

FtoE (p,G,t:y)
def
=

∀x,y· x : G ⇒ [x.p(t:y) ⇔ x.pG(t:y)]

EtoD(x.pG(t:y) as P)
def
=

∀x,y· x.pG(t:y) ⇔ P

TR(p,x,t:y)
def
=∧

t′:y′ + t′′:y′′ ≡ t:y ∀y′· x.p(t′:y′) ⇔ x.p(t′:y′ + t′′:)

2.8 Useful lemmas

Lemmas 2.1 and 2.2 are frequently used in proofs of Behavioural Subtyping
and Inheritance:

Lemma 2.1. ∆ ` (alsoi∈I {Pi} {Qi}) =⇒ {Pk} {Qk} for all k ∈ I.

Lemma 2.2. If ∆ ` {P} {Q} =⇒ {Si} {Ti} for all i ∈ I, then ∆ ` {P} {Q}
=⇒ (alsoi∈I {Si} {Ti}).

For Body Verification:

Lemma 2.3. If ∆; Γ `s {Si}s{Ti} for all i ∈ I, then under assumptions ∆
and Γ, statement s satisfies (alsoi∈I {Si} {Ti}).

18 CHAPTER 2. BACKGROUND MATERIAL

Chapter 3

Reasoning about related
abstractions

The use of data abstractions is a hallmark of OO programming. A class is
a typical example of such an abstraction. In interface or general multiple
inheritance hierarchies, a class can combine and maintain several abstrac-
tions offered by its parents. Although most examples of this chapter involve
abstractions in connection with inheritance, not all data abstractions are
directly coupled with language constructs. Classes use them for various pur-
poses: to simplify how clients manipulate a class, to separate various concepts
that are combined in a class, or to encourage or enforce particular call proto-
cols. For example, a complex object with a long initialisation phase can use
the abstractions ‘initialising’ and ‘ready’, with methods applicable to an ‘ini-
tialising’ object, others to a ‘ready’ object, and some to both. Or algorithms
can manipulate a mutable data structure under an ‘immutable’ abstraction,
even if there is no interface making this explicit.

Relationships between data abstractions are important when reasoning
about OO code. This chapter explores the problem of relating abstractions
in an information hiding setting, where implementation details of abstrac-
tions are hidden from clients. Suppliers must therefore express and fulfill
relationships between abstractions. If a class offers ‘student’ and ‘person’
abstractions (by using inheritance, or other means), for example, it might al-
low clients to convert a ‘student’ abstraction into a ‘person’ one. Clients can
then manipulate the ‘person’ abstraction by calling e.g. library routines. Af-
ter the manipulation, they might be allowed to convert back and assume that
the number of exams the ‘student’ has taken is still the same. Specification
mechanisms are needed to express and enforce the programmer’s intentions
about such relationships. This is especially important in multiple inheritance

20 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

hierarchies where classes combine multiple abstractions in complicated ways.

Abstract predicate families are a flexible mechanism for data abstraction
in OO specifications. An apf P provides a predicate name for an abstraction;
each class C can define an entry predicate PC . The definition of PC describes
how class C implements the apf P, and is hidden from other classes. For
example, apfs S and P can be used to provide an abstraction of students and
persons in a program respectively. Class STUDENT can define the entries
SSTUDENT and PSTUDENT , while other classes can define their apf entries
differently. The predicate x.S(age:a, exm:e) describes object x under the
‘student’ abstraction: its age is ‘a’ and the number of exams taken is ‘e’. If
the dynamic type of x is STUDENT, then class STUDENT can use the fact
that

x.S(age:a, exm:e) ⇔ x.SSTUDENT (age:a, exm:e)

In other words, the dynamic type of the first argument of an apf predicate
(in this case the dynamic type of x) determines which apf entry applies. Apf
predicates can therefore be seen to mirror dynamic dispatch of OO programs
in the logic. The apf mechanism is modular and exercises information hiding:
only the class defining an apf entry knows the definition and can relate its
entry to the apf predicate.

The relationship described before, namely that a ‘student’ abstraction
can be converted into a ‘person’ one, can be expressed as follows:

x.S(age:a, exm:e) ⇒ x.P(age:a)

Allowing the back conversion without affecting the number of exams requires
a stronger property that uses separation logic’s ∗-connective:

x.S(age:a, exm:e) ⇔ [x.P(age:a) ∗ x.RestStoP(exm:e)] (A)

where RestStoP abstracts the parts of a ‘student’ abstraction that are inde-
pendent from and not included in a ‘person’ one. With this property, a client
can now reason as the following proof outline shows:

{x.S(age:a, exm:e)}
{x.P(age:a) ∗ x.RestStoP(exm:e)}
{x.P(age:a)}

// Manipulation of ‘person’ abstraction by library routines.
{x.P(age:a + 1)}

{x.P(age:a + 1) ∗ x.RestStoP(exm:e)}
{x.S(age:a + 1, exm:e)}

21

The Frame rule of separation logic guarantees that the disjoint x.RestStoP(exm:e)
remains unchanged. In essence, the client uses property (A) in combination
with the Frame rule to infer an S-based specification for the library manipu-
lation. It is not necessary to re-specify or re-verify the library – knowledge of
the relationship saves specification overhead and keeps reasoning modular.

To which objects the property (A) applies is a design choice: a program-
mer might express that selected classes in a heterogeneous hierarchy fulfill the
relationship, or that all classes in a homogeneous hierarchy fulfill it. We intro-
duce two general specification mechanisms for the two cases: export clauses
to express properties that hold for individual classes, and axiom clauses to
describe properties of entire hierarchies. If class STUDENT specifies

export
∀x,a,e· x : STUDENT ⇒ [x.S(age:a, exm:e) ⇔

[x.P(age:a) ∗ x.RestStoP(exm:e)]]
where {}

then a client must know that an object’s dynamic type is exactly STUDENT
before using the information in reasoning. On the other hand, if class STU-
DENT specifies

axiom
S P: ∀a,e· S(age:a, exm:e) ⇔ [P(age:a) ∗ RestStoP(exm:e)]

then clients can use the stronger implication

∀x,a,e· x <: STUDENT ⇒
[x.S(age:a, exm:e) ⇔ [x.P(age:a) ∗ x.RestStoP(exm:e)]]

Knowledge that the object’s dynamic type is a subtype of STUDENT (in-
cluding STUDENT) suffices to use the relationship. This is much more
convenient for clients: a sound OO type system will guarantee that if a vari-
able has static type STUDENT and references an object, then the object’s
dynamic type will always be a subtype of STUDENT.

Axiom clauses offer a general facility to constrain the implementation of
abstractions in subclasses. For example, class STUDENT can express that
the number of exams a ‘student’ has taken is always non-negative, and that
all subclasses should use its implementation of the ‘student’ abstraction:

axiom
exm non neg: ∀a,e· S(age:a, exm:e) ⇒ 0≤ e
S constraint: ∀a,e· S(age:a, exm:e) ⇔ SSTUDENT (age:a, exm:e)

Axiom clause ‘exm non neg’ guarantees clients that 0≤ e whenever they
know x.S(age:a, exm:e) and x <: STUDENT. Subclass representation con-
straints such as the one expressed in the ‘S constraint’ clause are useful for

22 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

ensuring safe interaction between statically and dynamically dispatched calls
on the same object – a pervasive pattern in OO programs (see Section 5.5
of [58]).

The claims made in export and axiom specifications must be checked to
obtain sound reasoning. Whether or not a class fulfills axiom clauses often
depends on properties of particular other classes, such as its parents. For
this reason our proof system has a layered assumption structure: axiom ver-
ification can use export information of all classes in a program, and method
verification can additionally use axiom information. Several examples will
show how export and axiom clauses are verified and applied in verification.

This chapter extends the proof system of Parkinson and Bierman (see
chapter 2) with export/axiom clauses, abstract classes, abstract methods and
shared multiple inheritance1 where fields and methods of common ancestor
classes are not replicated in the descendant [26]. Apart from the use of apfs to
support abstraction and information hiding, Parkinson and Bierman’s system
has the attractive property that it can verify a wide range of inheritance uses
and abuses. Flexible handling of inheritance is vital in a proof system for
multiple inheritance, since classes often interrelate methods and data from
parents in complicated ways: methods can intertwine ancestor abstractions
as the example in Section 3.1.1 shows, or abstractions can share parts in
the case of diamond inheritance. Export and axiom clauses provide flexible
ways to relate abstractions, thereby giving clients an integrated view of how
methods affect abstractions from different inheritance paths. Very few proof
systems exist for multiple inheritance, and no proof system we know of can
facilitate reasoning about multiple related abstractions at the same level of
abstraction as ours.

We implemented our proof system in MultiStar – a fully automatic ver-
ification tool. MultiStar has a two-tier architecture: a GUI front-end that
translates Eiffel code and specifications into a simpler form for verification,
and a language-independent back-end based on jStar [23] for reasoning. The
front-end uses specifications written inside classes. Future front-ends for e.g.
Java and C# can reuse the MultiStar back-end: with its support for interface
inheritance, export/axiom clauses, abstract classes and abstract methods, a
wide range of programs can be verified. As we shall see, export and axiom
clauses can also be useful in single-inheritance situations.

All the examples presented in this chapter have been verified with Multi-
Star. To demonstrate the flexibility of our approach, we also used MultiStar
to verify the iterator hierarchy of the Gobo data structure library [29]. The
complete code and specifications of the examples and Gobo case study are

1Inheritance with virtual base classes in C++ terminology [27].

3.1. EXAMPLES 23

available online [28].

Chapter outline Several examples illustrating the new specification mech-
anisms and proof system follow in Section 3.1. Section 3.2 presents the Mul-
tiStar tool, and Section 3.3 reports on the case study with Gobo iterator
classes. A formal exposition of our proof system appears in Section 3.4.
Section 3.5 mentions related work and concludes. Appendix A contains an
overview of the formal semantics of our proof system and a proof of sound-
ness.

3.1 Examples

A class may inherit from several parent classes. This is indicated by listing
the names of all parents in its inherit section. The new export and axiom
sections respectively contain the export and axiom clauses of a class. As
usual, empty sections will simply be omitted.

We use the method specification shorthands of [58]: if only a static spec-
ification is listed, the dynamic specification is assumed to be exactly the
same, and if only a dynamic specification is listed, then a static specification
is derived by replacing each apf predicate whose first argument is Current
with the entry predicate of the class. In other words, if the shorthand is
used in class C, then p(t:e) is replaced with pC (t:e). Specifications of non-
constructor methods are furthermore propagated down the hierarchy: if a
class does not explicitly list an inherited method, then it is assumed to have
the same static and dynamic specifications as determined for the parent class.
To avoid ambiguity, we require that if the method is available in multiple par-
ents, then they must all have identical specifications for it.

The examples do not discuss details that are uninteresting from the per-
spective of this thesis, such as proofs of correctness of simple ancestor classes.
The paper of Parkinson and Bierman [58] contains several examples that il-
lustrate the basics.

3.1.1 Intertwining ancestor abstractions

Classes CELL and COUNTER are shown in Figure 3.1. CELL models muta-
ble integer-valued cells and uses apf Cell, while COUNTER uses apf Cn. The
apfs provide logical abstractions of mutable cells and counters respectively.
Class CCELL in Figure 3.2, the focus of this example, inherits from CELL
and COUNTER. It intertwines the functionality of its parents by overrid-
ing set value to store the value and increment the count. It uses apf Cc to

24 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

class CELL
define x.CellCELL(val:v) as x.value ↪→ v
feature

introduce CELL(v: INT)
dynamic {value ↪→ } {Cell(val:v)}
do value := v end

introduce value(): INT
dynamic {Cell(val:v)} {Cell(val:v) ∗ Result = v}
do Result := value end

introduce set value(v: INT)
dynamic {Cell(val:)} {Cell(val:v)}
do value := v end

value: INT
end

class COUNTER
define x.CnCOUNTER(cnt:c) as x.count ↪→ c
feature

introduce COUNTER()
dynamic {count ↪→ } {Cn(cnt:0)}
do count := 0 end

introduce count(): INT
dynamic {Cn(cnt:c)} {Cn(cnt:c) ∗ Result = c}
do Result := count end

introduce increment()
dynamic {Cn(cnt:c)} {Cn(cnt:c + 1)}
do tmp: INT. tmp := count; count := tmp + 1 end

count: INT
end

Figure 3.1: The CELL and COUNTER classes.

3.1. EXAMPLES 25

class CCELL inherit CELL COUNTER
define
x.CellCCELL(val:v, cnt:c) as x.CcCCELL(val:v, cnt:c)
x.CnCCELL(cnt:c) as x.CnCOUNTER(cnt:c)
x.CcCCELL(val:v, cnt:c) as x.CellCELL(val:v) ∗ x.CnCOUNTER(cnt:c)
export
∀x· x : CCELL ⇒ [∀c,v· x.Cc(val:v, cnt:c) ⇔ x.Cell(val:v, cnt:c) ⇔
(x.Cn(cnt:c) ∗ Rest(x,v))] where { Rest(x,v) = x.CellCELL(val:v) }

feature
introduce CCELL(v: INT)
dynamic {value ↪→ ∗ count ↪→ } {Cc(val:v, cnt:0)}
do Precursor{CELL}(v); Precursor{COUNTER}() end

inherit value(): INT
dynamic {Cc(val:v, cnt:c)} {Cc(val:v, cnt:c) ∗ Result = v}

also {Cell(val:v, cnt:c)} {Cell(val:v, cnt:c) ∗ Result = v}

override set value(v: INT)
dynamic {Cc(val: , cnt:c)} {Cc(val:v, cnt:c + 1)}

also {Cell(val: , cnt:c)} {Cell(val:v, cnt:c + 1)}
do CCELL::increment(); CELL::set value(v) end

inherit count(): INT
dynamic {Cc(val:v, cnt:c)} {Cc(val:v, cnt:c) ∗ Result = c}

also {Cn(cnt:c)} {Cn(cnt:c) ∗ Result = c}

inherit increment()
dynamic {Cc(val:v, cnt:c)} {Cc(val:v, cnt:c + 1)}

also {Cn(cnt:c)} {Cn(cnt:c + 1)}
end

// In an arbitrary class or library:
use counter(c: COUNTER)

dynamic {c.Cn(cnt:v)} {c.Cn(cnt:v + 10)}

use cell(c: CELL, v: INT)
dynamic {c.Cell(val:)} {c.Cell(val:v)}

Figure 3.2: The CCELL class and two library methods.

26 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

provide an abstraction of such objects in the logic, and ‘grows’ CellCCELL to
accommodate method set value, as we shall see.

The single export clause of CCELL relates the Cc, Cell and Cn abstrac-
tions. Only the predicate in front of where is exported for reasoning. Predi-
cate definitions following where are used only to verify the clause and allow
a class to hide implementation/representation details in its interface without
introducing new predicate families. For example, if we modify the repre-
sentation of class CCELL, then the definition of Rest(x,v) can be changed
without invalidating correctness proofs of client code.

To verify an export clause, we must prove that the exported predicate
follows from the standard apf assumptions of the class and the predicate
definitions after the where keyword. The proof for CCELL’s export clause
is trivial (Section 2.7 describes the standard apf assumptions of a class).
Note that export clauses are not verified for a particular dynamic type, since
the standard apf assumptions of a class do not assume a particular one. It
is therefore sound to use exported information to verify axiom clauses and
methods of other classes, as we will do in later examples. However, nothing
prevents the user from writing exported predicates as implications where the
antecedent is of the form x : Type (see the export clause of CCELL). In this
case information in the consequent can be applied only to objects satisfying
this type constraint.

For the constructor we have to prove that its body satisfies the static
specification (note that a Precursor call is syntactic sugar for a direct call):

{value ↪→ ∗ count ↪→ }
CELL::CELL(v)

{CellCELL(val:v) ∗ count ↪→ }
Precursor{COUNTER}()

{CellCELL(val:v) ∗ CnCOUNTER(cnt:0)}
{CcCCELL(val:v, cnt:0)}
The constructor body simply passes the needed fields to parent constructors
and treats their internal representations abstractly thereafter.2

Method value is respecified in CCELL with Cell and Cc specificiations.
Since it inherits the body from CELL, we must prove that the new static
specification is satisfied assuming the body’s static specification of CELL.
This method proof obligation is called Inheritance in the formalisation. By
applying the Frame rule (with CnCOUNTER(cnt:c)) and then the rule of Con-

2To simplify the formal presentation of proofs and make them more transparent, we
mention fields explicitly in constructor preconditions. MultiStar injects them automati-
cally – see Section 3.2.1 for more discussion.

3.1. EXAMPLES 27

sequence, we can derive each also-ed static specification, which is sufficient
to conclude the proof by Lemma 2.2. Another proof obligation for value is
Behavioural subtyping, where we must show that the dynamic specification
listed in CELL follows from the new one, i.e. that CCELL maintains the
old specification. For the proof, we first ‘choose’ the Cell dynamic spec with
Lemma 2.1, and then remove the cnt tag by applying the Auxiliary Variable
Elimination and Consequence rules. The application of Auxiliary Variable
Elimination quantifies the variable c existentially in the pre- and postcon-
dition, and the application of Consequence uses tag reduction information
which is part of CCELL’s standard apf assumptions.

Behavioural subtyping of set value is similar. For its Body verification
obligation, we must prove that both CellCCELL and CcCCELL static specifica-
tions are satisfied. The proof proceeds as follows:

{CellCCELL(val: , cnt:c)}
CCELL::increment()

{CellCCELL(val: , cnt:c + 1)}
{CellCELL(val:) ∗ CnCOUNTER(cnt:c + 1)}

CELL::set value(v)
{CellCELL(val:v) ∗ CnCOUNTER(cnt:c + 1)}
{CellCCELL(val:v, cnt:c + 1)}
An application of Consequence proves the other also-ed static spec and
Lemma 2.3 completes the proof. As the body operates on state described
by CellCELL and CnCOUNTER, the proof obligations and separation logic’s
faulting semantics demand that we ‘grow’ CellCCELL to include both state
parcels.

Now consider the two library routines at the bottom of Figure 3.2. The
export clause contains the necessary information to prove the two triples:

{true} cc := new CCELL(5); use counter(cc) {cc.Cc(val:5, cnt:10)}
{true} cc := new CCELL(5); use cell(cc,20) {cc.Cc(val:20, cnt:)}
The proof of the second triple reduces and expands tags according to standard
apf rules:

{true}
cc := new CCELL(5)

{cc : CCELL ∗ cc.Cc(val:5, cnt:0)}
{cc : CCELL ∗ cc.Cell(val:5, cnt:0)}
{cc : CCELL ∗ cc.Cell(val:5, cnt:)}
{cc : CCELL ∗ cc.Cell(val:5)}

use cell(cc,20)
{cc : CCELL ∗ cc.Cell(val:20)}

28 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

{cc : CCELL ∗ cc.Cell(val:20, cnt:)}
{cc.Cc(val:20, cnt:)}

Information about cnt is lost in the postcondition, which is unavoidable be-
cause use cell could call set value more than once. In a version of CCELL
where CnCCELL is defined to include the CellCELL state and the equivalence
of Cc, Cn and Cell is exported, information about val will likewise be lost in
the first triple. Also note that dynamic type information is required to use
the exported relationships, since the subclasses of CCELL are not obliged to
implement them.

3.1.2 Access control and call protocols

Our proof system can enforce interesting access control patterns in verified
programs. Consider class CCEL2 in Figure 3.3 which has the same exe-
cutable code as CCELL but different specifications. Its export clause relates
the Cell and Cn abstractions in a one-directional way. The constructor pro-
duces a Cell apf predicate with which methods value, set value and count
can be called. Verified clients cannot call increment with the Cell predicate.
They must use exported information to get a Cn predicate, yet they lack
information to change back after the call: no export or axiom clause is avail-
able to do this, and every method producing a Cell predicate requires one.
The following proof attempt where cc2 : CCEL2 shows the problem:

{cc2.Cell(val:v, cnt:c)}
{cc2.Cn(cnt:c)}

cc2.increment()
{cc2.Cn(cnt:c + 1)}
{???}
{cc2.Cell(val: , cnt:)} // The weakest requirement of set value.

cc2.set value(10)
{cc2.Cell(val: , cnt:)}

While the client has a Cell predicate, the argument tagged by cnt and re-
turned by count reflects precisely how many times the value has been set.
If the client tries to manipulate the count by calling increment, then it can
never regain the needed capability to call value and set value, and must
forever treat the object as a simple counter in the code. The combination
of abstract predicate relationships and method specifications enforces this
protocol in verified code.

3.1. EXAMPLES 29

class CCEL2 inherit CELL COUNTER
define
x.CellCCEL2 (val:v, cnt:c) as x.CellCELL(val:v) ∗ x.CnCOUNTER(cnt:c)
x.CnCCEL2 (cnt:c) as x.CnCOUNTER(cnt:c)
export
∀x· x : CCEL2 ⇒ [∀v,c· x.Cell(val:v, cnt:c) ⇒ x.Cn(cnt:c)] where {}

feature
introduce CCEL2(v: INT)
dynamic {value ↪→ ∗ count ↪→ } {Cell(val:v, cnt:0)}
do Precursor{CELL}(v); Precursor{COUNTER}() end

inherit value(): INT
dynamic {Cell(val:v, cnt:c)} {Cell(val:v, cnt:c) ∗ Result = v}

override set value(v: INT)
dynamic {Cell(val: , cnt:c)} {Cell(val:v, cnt:c + 1)}
do CCEL2::increment(); CELL::set value(v) end

inherit count(): INT
dynamic {Cell(val:v, cnt:c)} {Cell(val:v, cnt:c) ∗ Result = c}

also {Cn(cnt:c)} {Cn(cnt:c) ∗ Result = c}
end

Figure 3.3: The CCEL2 class.

30 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

class PERSON
define x.PPERSON (age:a) as x.age ↪→ a
export ∀x,a· x.PPERSON (age:a) ⇔ x.age ↪→ a where {}
feature

introduce PERSON(a: INT)
dynamic {age ↪→ } {P(age:a)}
do age := a end

introduce age(): INT
dynamic {P(age:a)} {P(age:a) ∗ Result = a}
do Result := age end

introduce set age(a: INT)
dynamic {P(age:)} {P(age:a)}
do age := a end

introduce celebrate birthday()
static {P(age:a)} {P(age:a + 1)}
do tmp: INT. tmp := age(); tmp := tmp+1; set age(tmp) end

age: INT
end

Figure 3.4: The PERSON class.

3.1.3 Diamond inheritance

Verification of multiple inheritance requires proper handling of data from
several parent classes. Diamond inheritance complicates matters because
common ancestor fields are shared. This is unproblematic for our proof sys-
tem, although the abstraction of the shared data is typically lost. Diamond
inheritance can moreover require relationships between several abstractions,
which this example achieves with axiom clauses.

An axiom clause consists of a name and a predicate. The name identifies
the clause and allows subclasses to refine the predicate. We propagate axiom
clauses down the hierarchy to save specification overhead: if a class does not
list an axiom clause with the same name as one in a parent, then it is assumed
to list an identical clause. To avoid ambiguity in the presence of multiple
inheritance, we require that if clauses with the same name are present in
multiple parents, then they must all be identical. An axiom clause copied in

3.1. EXAMPLES 31

class STUDENT inherit PERSON define
x.PSTUDENT (age:a) as x.PPERSON (age:a)
x.SSTUDENT (age:a, exm:e) as x.PSTUDENT (age:a) ∗ x.exams ↪→ e
x.RestStoPSTUDENT (exm:e) as x.exams ↪→ e
export ∀x,a,e· [x.PPERSON (age:a) ∗ x.RestStoPSTUDENT (exm:e)] ⇔

x.SSTUDENT (age:a, exm:e) where {}
axiom S P: ∀a, e· S(age:a, exm:e) ⇔ [P(age:a) ∗ RestStoP(exm:e)]
feature

introduce STUDENT(a: INT, e: INT)
dynamic {age ↪→ ∗ exams ↪→ } {S(age:a, exm:e)}
do Precursor{PERSON}(a); exams := e end

introduce exams(): INT
dynamic {S(age:a, exm:e)} {S(age:a, exm:e) ∗ Result = e}
do Result := exams end

introduce take exam()
dynamic {S(age:a, exm:e)} {S(age:a, exm:e + 1)}
do tmp: INT. tmp := exams; exams := tmp + 1 end

exams: INT
end

Figure 3.5: The STUDENT class.

32 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

class SMUSICIAN inherit STUDENT MUSICIAN
define
x.PSMUSICIAN (age:a) as x.PPERSON (age:a)
x.SSMUSICIAN (age:a, exm:e) as x.SSTUDENT (age:a, exm:e)
x.MSMUSICIAN (age:a, pfm:p) as x.MMUSICIAN (age:a, pfm:p)
x.SMSMUSICIAN (age:a, exm:e, pfm:p) as x.PPERSON (age:a) ∗

x.RestStoPSTUDENT (exm:e) ∗ x.RestMtoPMUSICIAN (pfm:p)
x.RestStoPSMUSICIAN (exm:e) as x.RestStoPSTUDENT (exm:e)
x.RestMtoPSMUSICIAN (pfm:p) as x.RestMtoPMUSICIAN (pfm:p)
x.RestSMtoSSMUSICIAN (pfm:p) as x.RestMtoPMUSICIAN (pfm:p)
x.RestSMtoMSMUSICIAN (exm:e) as x.RestStoPSTUDENT (exm:e)
axiom

SM S: ∀a, e, p· SM(age:a, exm:e, pfm:p) ⇔
[S(age:a, exm:e) ∗ RestSMtoS(pfm:p)]

SM M: ∀a, e, p· SM(age:a, exm:e, pfm:p) ⇔
[M(age:a, pfm:e) ∗ RestSMtoM(exm:e)]

feature
introduce SMUSICIAN(a: INT, e: INT, p: INT)
dynamic {age ↪→ ∗ exams ↪→ ∗ performances ↪→ }

{SM(age:a, exm:e, pfm:p)}
do Precursor{STUDENT}(a,e); Precursor{MUSICIAN}(a,p) end

introduce do exam performance()
static {SM(age:a, exm:e, pfm:p)} {SM(age:a, exm:e + 1, pfm:p + 1)}
do take exam(); perform() end

end

Figure 3.6: The SMUSICIAN class.

3.1. EXAMPLES 33

this way is not refined in the subclass and automatically consistent with its
parent versions. In the general case where a subclass refines an axiom clause,
Parent consistency must be proven as indicated in the later formalisation.

The focus of this example is class SMUSICIAN, shown in Figure 3.6.
It inherits from STUDENT and MUSICIAN, both which inherit from PER-
SON. The STUDENT and PERSON classes are shown in Figures 3.4 and 3.5;
MUSICIAN is similar to STUDENT and not shown. A diamond is formed
with PERSON at the top, and an instance of SMUSICIAN has one ‘age’
field, one set age method, etc. under shared multiple inheritance semantics.
The classes use axiom clauses to specify relationships between abstractions
P, S, M and SM.

Since SMUSICIAN is non-abstract, we must prove that axiom SM S holds
for its direct instances. This proof obligation for axiom clauses is called
Implication in the formalisation that will follow. It holds indeed, since under
the standard apf assumptions of SMUSICIAN, exported information of all
classes, and the assumption Current : SMUSICIAN, we have:

SM(age:a, exm:e, pfm:p)
⇔ // Standard apf assumptions, Current : SMUSICIAN
SMSMUSICIAN (age:a, exm:e, pfm:p)
⇔ // Standard apf assumptions.
PPERSON (age:a) ∗ RestStoPSTUDENT (exm:e) ∗

RestMtoPMUSICIAN (pfm:p)
⇔ // Exported information from STUDENT.
SSTUDENT (age:a, exm:e) ∗ RestMtoPMUSICIAN (pfm:p)
⇔ // Standard apf assumptions.
SSMUSICIAN (age:a, exm:e) ∗ RestSMtoSSMUSICIAN (pfm:p)
⇔ // Standard apf assumptions, Current : SMUSICIAN
S(age:a, exm:e) ∗ RestSMtoS(pfm:p)

The export clause in STUDENT is not closely connected to multiple
inheritance. In fact, any class C inheriting from STUDENT which defines
PC to be PPERSON and SC to be SSTUDENT will need the export clause to prove
Implication of S P, which we omit here for SMUSICIAN. Axiom verification
frequently requires exported information of this kind. What is vital about
the export clause in the shared multiple inheritance setting is that it isolates
the shared ancestor state of SMUSICIAN, namely PPERSON . This allows
SMUSICIAN to relate ancestor abstractions in a fairly abstract way. Only the
constructor’s Body verification proof needs the export clause in PERSON3:

3Unless a class manipulates fields of its ancestors directly, this export clause would not
be needed in languages where constructors of common ancestor classes cannot be called
more than once.

34 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

{age ↪→ ∗ exams ↪→ ∗ performances ↪→ }
Precursor{STUDENT}(a,e)

{SSTUDENT (age:a, exm:e) ∗ performances ↪→ }
{PPERSON (age:a) ∗ RestStoPSTUDENT (exm:e) ∗ performances ↪→ }
{age ↪→ a ∗ RestStoPSTUDENT (exm:e) ∗ performances ↪→ }

Precursor{MUSICIAN}(a,p)
{MMUSICIAN (age:a, pfm:p) ∗ RestStoPSTUDENT (exm:e)}
{PPERSON (age:a) ∗ RestMtoPMUSICIAN (pfm:p) ∗
RestStoPSTUDENT (exm:e)}
{SMSMUSICIAN (age:a, exm:e, pfm:p)}

Note that class SMUSICIAN would not have needed exported information
if it ignored the parent constructors and simply overrode everything. The
same is true for proof systems with less abstraction where method bodies are
reverified in subclasses.

Since Current in SMUSICIAN will always reference an object whose
dynamic type is a subtype of SMUSICIAN, the Body verification proof of
do exam performance can use axiom information to infer SM-specs for take -
exam and perform:

{SM(age:a, exm:e, pfm:p)}
{S(age:a, exm:e) ∗ RestSMtoS(pfm:p)}

take exam()
{S(age:a, exm:e + 1) ∗ RestSMtoS(pfm:p)}
{SM(age:a, exm:e + 1, pfm:p)}
{M(age:a, pfm:p) ∗ RestSMtoM(exm:e + 1)}

perform()
{M(age:a, pfm:p + 1) ∗ RestSMtoM(exm:e + 1)}
{SM(age:a, exm:e + 1, pfm:p + 1)}

The specification overhead incurred by axiom clauses is offset by specification
inference gains: SM, S and M specifications can be inferred for age, set age
and celebrate birthday, while SM specifications can be inferred for exams,
take exam, performances and get performance – a total of 13 specifications
for methods of SMUSICIAN. These inferred specifications are guaranteed to
be implemented by all subclasses, and no dynamic type information is needed
to use them4. Yet the system is still flexible – a subclass can always choose

4The technique used by Chin et al. [14] of inheriting static method specifications
and deriving dynamic specifications from them implements “internal specification in-
ference”, i.e. a class infers and publishes dynamic specifications for its methods which
external clients can use. In contrast to this, the technique of equipping classes with
export/axiom clauses implements “external specification inference”, i.e. clients infer spec-
ifications for methods based on published export/axiom information. A benefit of the

3.2. MULTISTAR 35

to satisfy such constraints vacuously by defining selected apf entries as false.
Class DCell in [58] provides an example of this.

3.2 MultiStar

This section sketches notable aspects of the MultiStar implementation. Mul-
tiStar has a two-tier architecture: a front-end that translates Eiffel pro-
grams and specifications into a simpler form for verification, and a language-
independent back-end based on jStar [23] which implements our proof system.

3.2.1 Front-end

The front-end provides a graphical user interface within the EVE integrated
development environment, and is part of the standard EVE download [28]. It
translates Eiffel code and specifications into the back-end’s input format, and
provides access to verification results. Verification is triggered by picking and
dropping an annotated class on the MultiStar tool. Class annotations consist
of apf entry definitions, export/axiom clauses and method specifications.

To simplify the proofs and formalisation in this chapter, constructor pre-
conditions explicitly mention fields and break information hiding. The front-
end translation of MultiStar injects them automatically. For example, a user
would write the specification of CCELL’s constructor as

dynamic {true} {Cc(val:v, cnt:0)}
instead of

dynamic {value ↪→ ∗ count ↪→ } {Cc(val:v, cnt:0)}
In detail, the front-end facilitates this by:

1. Using jStar’s new statement, whose specification is given by the triple
{true}x := new C{x : C}. This allows us to omit the fields in the dy-
namic precondition5.

2. Adding all fields (including ancestor ones) to the static precondition
when checking Body verification, and consuming all fields of a parent

external approach is that clients can infer valid specifications for library code without
re-verifying it. For example, knowing only the inferred specifications for methods of
class SMUSICIAN is not enough for proving the triple {x.SM(age:a, exm:e,pfm:p)}use -
student(x){x.SM(age:a + 1, exm:e + 4,pfm:p)} without looking at the implementation
of the library routine use student(st: STUDENT) whose dynamic specification is
{st.S(age:a, exm:e)} {st.S(age:a + 1, exm:e + 4)}.

5The dynamic specification of the constructor is used for object initialisation. x :=
new C(e) abbreviates x := new C; x.C(e) if x is not free in e.

36 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

class and its ancestors right before the parent constructor is called.
This is communicated to the back-end by emitting special instructions,
and allows us to omit the fields in the static precondition.

The Dynamic dispatch proof obligation, which checks that the static and
dynamic specifications are consistent with each other, is unaffected because
fields are omitted in both static and dynamic preconditions. In languages
where no fields are shared by ancestors, or constructors of common ancestors
are called only once, the manipulation does not have to add ancestor fields
to the static precondition and consume fields when a parent constructor is
called. This is the approach jStar uses for Java verification. A front-end for
C++ can use a similar technique because every ancestor constructor is called
exactly once when virtual base classes are used [27].

3.2.2 Back-end

The MultiStar back-end extends jStar with support for export and axiom
clauses, abstract classes and multiple inheritance. The latter two demand
generalised proof obligation checking for methods.

Export and axiom clauses

The background theory used by the jStar theorem prover is encoded as a list
of sequent rules. A sequent is of the form P | Q ` R, meaning (P ∗Q)⇒ (P ∗ R).
Each sequent rule has the form

A | B ` C
if
D | E ` F

If the prover is trying to prove a sequent that matches the rule’s conclusion
A | B ` C, it suffices to prove the premise sequent D | E ` F where the ap-
propriate substitutions due to matching have been made. A new proof goal
is thus obtained, and the proof is complete when the goal is of the form
G | H ` . For details the reader is referred to [23].

Exported information is written as sets of implications. Before verifying
an export clause, the background theory is temporarily extended with the
definitions of all predicates in its where part. For each definition of the form
w(x) = P, the following two rules are generated:

| w(x) `
if
| P `

| ` w(x)
if
| ` P

3.2. MULTISTAR 37

After all exported implications in the clause have been checked, the defini-
tions are removed from the background theory. After all export clauses have
been verified, each exported implication P ⇒ (Q1 ∗ . . . ∗Qn) is added to the
background theory as a set of n rules, where rule i ∈ 1..n has the form

| P ` Qi

if
Qi | Q1 ∗ . . . ∗Qi−1 ∗Qi+1 ∗ . . . ∗Qn `
This rule form retains information about Qi in its premise, and removal of Qi

from the goal sequent’s right-hand side brings the proof closer to completion.
The background theory augmented with export information is then used

to verify axiom clauses. The predicates in axiom clauses are written as
implications. After all axiom clauses have been verified, an axiom implication
P ⇒ (Q1 ∗ . . . ∗Qn) written in class C is encoded as n rules, with rule i ∈
1..n of the form

| P ` Qi

if
Qi | Q1 ∗ . . . ∗Qi−1 ∗Qi+1 ∗ . . . ∗Qn ` x <: C

where x is the pattern variable substituted for Current.
The background theory augmented with export and axiom information is

then used for method verification.

Method proof obligations

The back-end accommodates abstract classes and abstract methods in addi-
tion to shared multiple inheritance. An abstract method has no body and
hence no static specification. The back-end takes this into account when ex-
panding specification shorthands. After shorthand expansion, verification of
method m in class C proceeds as follows (the formalisation contains details
about the proof obligations):

• If m has a static specification and C can be instantiated (i.e. is non-
abstract), then check Dynamic dispatch.

• If m has a body in C, then check Body verification.

• Always check Behavioural subtyping. This succeeds trivially if m is
introduced in C: the set of dynamic specifications for m in C’s par-
ents is empty, and therefore all its elements are preserved by the new
specification.

• If m has a static specification but no body in C, then check Inheritance.

38 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

CURSOR

LINEAR_CURSORINDEXED_CURSOR DYNAMIC_CURSOR

BILINEAR_CURSOR

LIST_CURSOR

SET_CURSOR

BILINEAR_SET_CURSOR

Figure 3.7: The core Gobo cursor hierarchy.

The treatment subsumes interface inheritance – interfaces are treated as ab-
stract classes with only abstract methods and no fields.

3.3 Case study

The Gobo data structure library [29] is an open-source Eiffel library covering
data structures and algorithms. It contains classic data structures such as
lists, stacks and sets, and provides several implementations of each structure.
The library is stable and a popular choice among Eiffel developers.

Data structures such as lists and sets can be traversed with iterators. The
iterator (or cursor) hierarchy is characterised by relatively simple algorithms
and extensive use of multiple inheritance, which makes it an ideal candidate
for evaluating the novel aspects of our proof system and its implementation.
The core classes are shown in Figure 3.7: a LINEAR CURSOR can traverse a
data structure forwards, a BILINEAR CURSOR can traverse both forwards
and backwards, an INDEXED CURSOR offers random data structure access
with an integer position or index, and a DYNAMIC CURSOR can modify
the data structure being traversed.

We successfully verified the core cursor hierarchy of Figure 3.7 with Multi-
Star. The overall effort for specification and verification was five person-days.
Most of the time was spent on finding and revising specifications, since we
did not modify the code. Table 3.1 shows the experimental results. The total
time taken by MultiStar is reported, which includes translating Eiffel code,
expanding specification shorthands and checking all proof obligations.

Since iterators rely on properties of the data structures (containers) they
traverse, we annotated the container classes with the required specifica-
tions. Particularly interesting are the axiom clauses that iterators demand.

3.3. CASE STUDY 39

Class LOC1 LOC2 Time(s)
BILINEAR CURSOR 99 124 1.306
BILINEAR SET CURSOR 44 50 0.841
CURSOR 130 158 1.039
DYNAMIC CURSOR 50 66 1.070
INDEXED CURSOR 46 57 0.698
LINEAR CURSOR 98 123 1.327
LIST CURSOR 238 271 1.643
SET CURSOR 38 44 0.738
8 classes 743 893 8.662

Table 3.1: Experimental results of the Gobo iterator case study. LOC1 and
LOC2 denote the lines of code before and after specification respectively.
MultiStar was executed on a 2.53 GHz Intel Core 2 Duo with 4 GB RAM.

Consider for example the simplified extract of DYNAMIC CURSOR in Fig-
ure 3.8. The [G] denotes that DYNAMIC CURSOR has a generic parameter
G. Method swap takes another cursor referencing the same container, and
additionally requires that there are data elements (items) at both cursor po-
sitions (the cursors are not ‘off’). The Body verification proof of swap uses
several properties of containers that can be expressed as axioms, including
the following one:

∀ r1,r2,iter1,iter2,i,c1,c2,c3 ·
[ItemAt(res: r1, ref: iter1, iters: i, content:c1) ∗
ItemAt(res: r2, ref: iter2, iters: i, content:c1) ∗
Replaced(ref: iter1, value:r2, newcontent:c2, oldcontent:c1, iters: i) ∗
Replaced(ref: iter2, value:r1, newcontent:c3, oldcontent:c2, iters: i)]
⇒
Swapped(ref1: iter1, ref2: iter2, iters: i, oldcontent:c1, newcontent:c3)

This invariant property relates the ItemAt, Replaced and Swapped abstrac-
tions. Informally, it states that if a data structure has items r1 and r2 at
iterators iter1 and iter2, and we replace the item at iter1 with r2 and the
item at iter2 with r1, then the resulting data structure has the same con-
tents as the original one except that the items at iter1 and iter2 have been
swapped. The example involves neither multiple inheritance nor splitting of
superclass and subclass state, and illustrates the generality and expressive
power of axiom clauses.

The complete specifications and code of the case study are included in
the download [28].

40 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

abstract class DYNAMIC CURSOR [G] inherit CURSOR [G]
feature

introduce abstract replace(v: G) dynamic
{Cursor(ds:d) ∗ d.DS(content:c1, iters: i) ∗

d.IsOff(res:False, ref:Current, iters: i, content:c1)}
{Cursor(ds:d) ∗ d.DS(content:c2, iters: i) ∗
d.Replaced(ref:Current, value:v, newcontent:c2, oldcontent:c1, iters: i)}

inherit item(): G static
{Cursor(ds:d) ∗ d.DS(content:c, iters: i) ∗

d.IsOff(res:False, ref:Current, iters: i, content:c)}
{Cursor(ds:d) ∗ d.DS(content:c, iters: i) ∗

d.ItemAt(res:Result, ref:Current, iters: i, content:c)}

introduce swap(other: DYNAMIC CURSOR [G]) static
{Cursor(ds:d) ∗ d.DS(content:c1, iters: i) ∗ other.Cursor(ds:d) ∗

d.IsOff(res:False, ref:Current, iters: i, content:c1) ∗
d.IsOff(res:False, ref:other, iters: i, content:c1)}
{Cursor(ds:d) ∗ d.DS(content:c2, iters: i) ∗ other.Cursor(ds:d) ∗
d.Swapped(ref1:Current, ref2:other, iters: i, oldcontent:c1, newcontent:c2)}

do
v: G. w: G.
v := item(); w := other.item();
replace(w); replace(v)

end
end

Figure 3.8: A simplified extract of DYNAMIC CURSOR

3.4. FORMALISATION 41

3.4 Formalisation

This section contains a formal presentation of the programming language and
its proof system. It extends the material of chapter 2 with abstract classes,
multiple inheritance, and export and axiom specifications. To keep things
simple, the presentation concentrates on the new extensions.

3.4.1 Language syntax

The grammar of the extended kernel language appears in Figure 3.9. New
and changed productions are highlighted: abstract classes, multiple parents,
export and axiom clauses, and abstract methods are now supported. The
letter p ranges over apf names, w over auxiliary predicate names, and a over
axiom names.

We assume the absence of clashes when names are introduced. This
guarantees that axioms, methods and fields with the same name in parent
classes stem from common ancestors.

The shared semantics of multiple inheritance is used, which is popular in
Eiffel [26] and known as inheritance with virtual base classes in C++ [27].
Common ancestor fields are shared, and method overriding overrides all an-
cestor versions. To avoid ambiguity, a class can inherit a method only if its
body (if there is one) is the same along all inheritance paths. Direct method
calls can encode language mechanisms which allow a particular ancestor im-
plementation to be chosen, so no generality is lost.

3.4.2 Operational semantics

The shared semantics of multiple inheritance ensures that 1) only dynamic
type information is needed at runtime (in contrast to what ‘select’ clauses of
Eiffel’s replicated inheritance demand), and 2) the usual semantics of casts
can be adopted (in contrast to replicated inheritance in C++, where casting
can change pointer values [27]).

The operational semantics is therefore similar to Parkinson’s semantics
of Java [57]. Configurations contain a stack, a heap and a sequence of state-
ments under execution. The stack maps variables to values which include
object ids. The heap maps object ids to records containing a dynamic type
G and field-value mappings.

42 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

L ::= Ab class G inherit H define D export E axiom A feature M F end
Ab ::= abstract | ε
D ::= x.pG(t:y) as P Define clause

E ::= P where {W} Export clause
W ::= w(x) = P Where clause
A ::= a: P Axiom clause
M ::= introduce m(Args) Rt Sd Ss B Method declaration
| override m(Args) Rt Sd Ss B
| inherit m(Args) Rt Sd Ss
| introduce abstract m(Args) Rt Sd
| inherit abstract m(Args) Rt Sd

F ::= f: Type Field declaration
Sd ::= dynamic Spec Dynamic specification
Ss ::= static Spec Static specification
Spec ::= {P} {Q} | {P} {Q} also Spec Specification
B ::= do s end Method body
s ::= skip Statement
| x := e Assignment
| s ; s Sequential compostition
| if e then s else s end Conditional
| while e do s end Loop
| x: Type. s Local variable block
| x := new G Object allocation
| x := y.f Field lookup
| x.f := e Field update
| x := y.m(e) | y.m(e) Dynamically dispatched call
| x := y.G::m(e) | y.G::m(e) Direct method call

e ::= x | e + e | e = e | Void | 0 | 1 | 2 . . . Expression
Type ::= INT | BOOL | G

Args ::= x: Type Formal arguments
Rt ::= ε | : Type Return type

Figure 3.9: The grammar of the extended kernel language.

3.4. FORMALISATION 43

3.4.3 Logic syntax and semantics

The assertion language is extended with auxiliary predicates. These predi-
cates are defined in the where part of export clauses.

P, Q, S, T, ∆ ::= ∀x·P | P⇒Q | false | e = e′ | x : G | x <: G | x.f ↪→ e | P ∗ Q
| x.p(t:e) Apf predicate
| x.pG(t:e) Apf entry
| w(x) Auxiliary predicate

3.4.4 Specification refinement

The formalisation of specification refinement of Section 2.3 remains valid
here. However, the assumptions ∆ now contain the standard apf assumptions
of a class as well as export and axiom information of all other classes.

3.4.5 The specification environment

The specification environment Γ is extended to map axiom names to their
associated predicates for all classes in a program:

Γ ::= G.a 7→ P Axiom specification
| G.m 7→ (x,{P} {Q}) Method dynamic specification
| G::m 7→ (x,{S} {T}) Method static specification

| Γ

For well-formed programs, Γ is still guaranteed to be a partial function,
and we write Γ(G.a) = P for G.a 7→P ∈ Γ.

3.4.6 Export information verification

A class can make information about itself available to other classes in an
export clause. Export clauses are frequently used to specify relationships
between apfs or their entries, and to expose apf entry definitions. Information
can be hidden in predicates defined after the keyword where: the definitions
are not exported, so other classes must treat these predicates abstractly.

Export information must be verified since other classes use it for reason-
ing. Under the predicate definitions following where, the assumptions about
a class must imply exported information. This is captured by the following
proof rule:

[∆ ∧ (∀x1 ·w1(x1) ⇔ Q1) ∧ . . . ∧ (∀xn ·wn(xn) ⇔Qn)] ⇒ P

∆ `e P where {w1(x1) = Q1; . . . ; wn(xn) = Qn}

44 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

Since the assumptions about a class do not include assumptions about
the exact dynamic type of Current, export information can be used to verify
axioms and methods of other classes in a program.

3.4.7 Axiom verification

Information about a class and all its subclasses can be made available in
an axiom clause. This knowledge can be used later to verify methods. To
simplify the treatment, we require that a class explicitly lists all axiom clauses
applicable to it (in MultiStar and the examples, specification shorthands
achieve this).

In the rule for axiom verification, the assumptions ∆ include information
about class G and export information from all other classes. A subclass must
preserve all axioms of its parents and may refine the predicate associated with
an axiom name (the Parent consistency [P.c.] obligation). A non-abstract
class must also show that the predicate holds for its direct instances (the
Implication [Imp.] obligation).

∀i ∈ I· Γ(Hi.a) = Qi ∧ ∀j ∈ (1..n \ I)· Hj.a /∈ dom(Γ)
(∆ ∧ P)⇒

∧
i∈I Qi [P.c.]

Ab6=ε ∨ (∆ ∧Current : G)⇒P [Imp.]

∆; Γ `a a: P in Ab G parents H1 . . . Hn

3.4.8 Statement verification

The assumptions ∆ used to verify statements contain information about the
enclosing class as well as export and axiom information from all other classes.
The rules remain the same as those in Section 2.5.

3.4.9 Method verification

The rules for method verification of Section 2.6 are extended here to deal with
multiple inheritance and abstract classes and methods. As for statement
verification, the assumptions ∆ used to verify method definitions contain
information about the method’s enclosing class as well as export and axiom
information of all other classes.

A newly introduced method’s static and dynamic specifications must be
consistent if the class is not abstract:

3.4. FORMALISATION 45

B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
Ab6=ε ∨ ∆ ` {SG} {TG}

Current : G
=⇒ {PG} {QG} [D.d.]

∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m introduce m(Args) Rt Sd Ss B in Ab G parents H

An abstract method can be introduced without any proof obligations,
since there is only a dynamic specification and no method body.

∆; Γ `m introduce abstract m(Args) Rt Sd in Ab G parents H

The next rule is used whenever an abstract method is implemented or
a method body is redefined. The H1 . . . Hn are the immediate superclasses
of G.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]

Ab6=ε ∨ ∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]
∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m override m(Args) Rt Sd Ss B in Ab G parents H1 . . . Hn

When a non-abstract method is inherited, its static specification must
follow from those in parents. The Inheritance [Inh.] obligation enforces it.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀k ∈ (1..n \ I)· Hk.m /∈ dom(Γ)
∀j ∈ J· Γ(Hj::m) = (x,{SHj} {THj})
∀l ∈ (1..n \ J)· Hl::m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]
∆ ` (alsoj∈J {SHj} {THj}) =⇒ {SG} {TG} [Inh.]

Ab 6=ε ∨ ∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]

∆; Γ `m inherit m(Args) Rt Sd Ss in Ab G parents H1 . . . Hn

46 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

The next rule applies whenever an abstract method is inherited or a non-
abstract method is inherited and made abstract. Such a method has no static
specification, so only the consistency of its dynamic specification w.r.t. those
in parent classes is required with the Behavioural subtyping proof obligation.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]

∆; Γ `m inherit abstract m(Args) Rt Sd in Ab G parents H1 . . . Hn

Several intuitive relationships hold between the rules. For example, in-
troducing a non-abstract method is the same as overriding the version of
parent classes I = ∅. Likewise, introducing an abstract method is the same
as inheriting it from the parent set I = ∅. Section 3.2.2 gives yet another
perspective the rationale behind the proof obligations of the various rules.

3.4.10 Class and program verification

For class verification, different assumptions are used to verify the various class
sections. The formula ∆APF contains class-specific information and is used
to verify export clauses. The assumptions ∆E contain export information
from all classes, and are used together with ∆APF to verify axioms. The
formula ∆A contains axiom information of all classes, and is used with ∆APF

and ∆E in method definition verification.

∀Ei ∈ E ·∆APF `e Ei

∀Ai ∈ A · (∆APF ∧∆E); Γ `a Ai in Ab G parents H
∀Mi ∈ M · (∆APF ∧∆E ∧∆A); Γ `m Mi in Ab G parents H

∆APF ,∆E,∆A; Γ `c
Ab class G inherit H define D export E axiom A feature M F end

Finally, here is the rule for program verification:

∀i ∈ 1..n· Li = . . . class Gi . . . export Ei axiom Ai feature . . . end
∆E =

∧
i∈1..n

∧
Eik
∈Ei

exportinfo(Eik)

∆A =
∧

i∈1..n
∧

Aik
∈Ai

axiominfo(Gi,Aik)

Γ = specs(L1 . . . Ln)
∀i ∈ 1..n· apf (Li), ∆E,∆A; Γ `c Li

∆E ∧∆A; Γ `s {true}s{true}
`p L1 . . . Ln s

3.5. CONCLUSIONS AND RELATED WORK 47

exportinfo(P where . . .)
def
= P

axiominfo(G, a: P)
def
= ∀x <: G · P[x/Current], where x is fresh.

Predicate definitions following the where keyword are hidden by export-
info, and the definition of axiominfo reflects the fact that subclasses preserve
axioms.

The function apf translates the abstract predicate family definitions of a
class into its standard apf assumptions in the same way as before.

MultiStar and the examples assume that every class implicitly exports
tag reduction information. In other words, for every entry (x.pG(Y) as P) in
the define section of a class G, (∀x <: G · TR(p,x,Y) where {}) is implicitly
exported.

Theorem. The program verification rule is sound. (The proof, sketched
in Appendix A, depends on the layered assumption structure of export and
axiom clauses that avoids circularity in reasoning6.)

3.5 Conclusions and related work

The presented proof system supports two complementary mechanisms that
can express relationships between abstractions in the logic. Such relation-
ships are pervasive in OO programs, and facilitate flexible client reasoning,
access control, specification inference, and constraints on the implementation
of abstractions. Moreover, the system offers a sound way to verify various
forms and uses of shared multiple inheritance. By virtue of extending Parkin-
son and Bierman’s system, the examples in [58] illustrate that it can also deal
with behaviour extension, restriction and modification, as well as represen-
tation replacement in subclasses. It is modular and every method body is
verified only once. MultiStar implements these features in an automatic
tool that, as the Gobo case study shows, holds good promise for verifying
real-world software.

We are not aware of any other proof system or tool that can verify our
examples and case study. Nevertheless, there are many relationships with
other work:

6The layered assumption structure does not rule out axioms that depend on other
axioms. If we want an axiom Q in class C2 that depends on axiom P in class C1, we
can write the axiom (∀x <: C1· P[x/Current]) ⇒ Q in class C2 instead, where x is a
fresh variable. After axiom verification, method and statement verification can use (∀y
<: C2· Q[y/Current]) where y is fresh. The proof system enables the specification and
verification of invariants for aggregate structures involving multiple objects of different
types.

48 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

Class invariants Axiom clauses
Related to object consistency No notion of object consistency

Hold at particular program points Hold everywhere

Expressed i.t.o. fields and pure method calls Expressed as logical predicates

Constrain operations Constrain logical abstractions of data

Verification involves methods Verification cannot involve methods

Table 3.2: The main differences between class invariants and axiom clauses.

Axiom clauses We do not know of any existing specification mechanisms
that are closely related to axiom clauses, in the sense that they describe and
enforce relationships between logical abstractions of data in a similar way for
inheritance hierarchies.

Class invariants form the basis of several OO specification and verification
approaches, including Spec# [3] and JML [40]. Two main flavours of class
invariants exist: private invariants, as exemplified by the object invariants
of Spec#, and public invariants [41], which include JML’s derived invari-
ants and the invariants of Jacobs and Piessens for describing relationships
between inspector methods [33]. Class invariants, like axiom clauses, con-
strain subclasses. However, there are several important differences between
them. Class invariants either define exactly when an object is consistent (pri-
vate invariants), or describe abstract properties of consistent objects (public
invariants). Axiom clauses have no notion of object consistency. Class in-
variants are expected to hold at particular points in a program and may be
broken at others, according to the employed invariant protocol [25]. Axiom
clauses are true invariants in the sense that they hold everywhere. The re-
lationships they describe cannot be violated by assignment statements, and
hence there are no problems with e.g. method callbacks [44, 39]. Class in-
variants are expressed in terms of fields (including model fields) and pure
method calls. Public invariants constrain operations that must establish or
preserve them. Private invariants constrain the pure methods they use and
indirectly also other operations that depend on the private invariant. Axioms
are expressed as logical predicates, and they constrain logical abstractions of
data. The verification of private invariants involves the inspection of method
bodies (for the proof obligations see e.g. [45]), and the verification of public
invariants involves private invariants and the specifications and/or bodies of
pure methods. Axiom clauses are verified prior to methods and do not de-
pend on methods in any way. The main differences between class invariants
and axiom clauses are summarised in Table 3.2.

3.5. CONCLUSIONS AND RELATED WORK 49

Export clauses There is some correspondence between the class axioms
of Kassios [37, 36] and apfs/export clauses. Class axioms can be used to
axiomatise the specification and program attributes of a class. In a class im-
plementation, class axioms typically describe abstract state (represented by
specification attributes) as a function of the concrete implementation state
(represented by program attributes). This corresponds loosely to the way apf
entry definitions relate the concrete state to apf arguments. Furthermore,
class axioms can describe consequences of a specification attribute such as
a class invariant, which typically include framing properties and relation-
ships between other specification attributes. This corresponds somewhat to
export clauses that describe properties of apf arguments or relationships be-
tween them. The framework of class axioms does not include inheritance,
so despite the similar names, it is appropriate to compare them with export
and not axiom clauses. Class axioms can also define method specification-
s/implementations, which apfs and export clauses are incapable of.

In jStar [23], the modifier ‘export’ can be added to an apf entry definition
to expose it to all other classes. Even though our export clauses are more
general and flexible than this mechanism, MultiStar supports it as a useful
shorthand.

The rules for lossless casting by Chin et al. [14] describe relationships
between predicates that provide full and partial views of objects. A view
predicate describes the contents of the fields of an object directly: a full
view of object o provides full knowledge of all o’s fields, while a partial
view with respect to class C describes only values of fields introduced by
C and its ancestors. View predicates and relationships between them are
generated automatically. The relationships do not have to be verified and do
not constrain subclasses.

Krishnaswami et al. use so-called ‘static specifications’ in [38] to specify
relationships between abstract predicates. Although not presented in an OO
context, these relationships must be satisfied by implementations and are
thus related to our export clauses.

The lemma functions of VeriFast [34] record proofs of relationships be-
tween predicates. The relationships are then used in reasoning; the proof of
the Composite pattern in [35] provides a good example. Lemma functions,
like export clauses, do not constrain subclasses.

Multiple inheritance Surprisingly few systems exist for reasoning about
multiple inheritance. The system in [46] also uses separation logic, but with-
out abstraction mechanisms such as apfs. Most of the paper is devoted to
elementary separation logic proof rules that also apply in a single-inheritance

50 CHAPTER 3. REASONING ABOUT RELATED ABSTRACTIONS

context. Diamond inheritance is never treated, and the bodies of inherited
methods are re-verified in subclasses.

The focus of [24] is on behavioural subtyping. It proposes to verify be-
havioural subtyping of methods lazily, i.e. only to the extent demanded by
client code. Supplier code is then continually re-verified as a client’s use of
it grows.

The restricted form of interface inheritance is easily handled by our proof
system: an interface is simply an abstract class with only abstract methods
and no fields. Many verification tools for OO programs, including Spec# [3]
and the JML toolset [9], provide support for specifying and verifying interface
inheritance. Both Spec# and JML use pure expressions of the programming
language for specification, and follow a class invariant-based approach to
verification.

Chapter 4

Verifying executable
contracts

Many conventional OO program specification approaches, including Eiffel [26],
Spec# [3] and JML [40], use Boolean expressions of the programming lan-
guage to specify routine preconditions and postconditions, class invariants,
and other assertions which hold at particular points such as loop invari-
ants. Explaining the operational meaning of such executable assertions to
programmers is easy, as they already know the meaning of programming lan-
guage expressions. Even if such specifications are not formally verified, their
runtime checking and value for testing provide significant benefits. Their
popularity in software development is therefore not surprising.

Verifying that executable specifications will always hold at runtime is
not easy. Expressions used for assertions typically include calls to methods
which depend on the heap and which may also cause side-effects such as heap
mutation. Consider for example a class SLIST which implements a sorted
list of integers. The postcondition of method insert(i) can be specified as
has(i), meaning that the list has or contains an element i. Yet has(i) might
allocate a new iterator, traverse the linked structure, and temporarily affect
bookkeeping of active iterators. Translating expressions such as has(i) into
logical formulae for static verification is hard. Moreover, programming lan-
guage expressions might have preconditions and are generally not guaranteed
to terminate. This further complicates matters for verification.

In contrast to executable specifications, separation logic predicates are
not computations. They specify the effects of computations in terms of pro-
gram states, i.e. the contents of the stack and heap, and not in terms of
outcomes of further computations. Proof systems based on separation logic
(such as the ones we have seen) are promising for OO verification and can

52 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

successfully verify common programming patterns such as the Visitor [23]
and Composite [35]. Unfortunately, the semantics of separation logic is not
yet widely known by OO programmers.

How separation logic specifications can be used to tame executable ones
is the topic of this chapter. The guarantee is simple: if a program satisfies
its separation logic specification and the executable assertions are verified
with the separation logic ones, then all executable assertions are guaran-
teed to hold at runtime. We do not verify the program with respect to its
executable assertions, we verify the program and its executable assertions
with respect to a separation logic specification. For example, if a program
containing class SLIST satisifies its separation logic specification, and the
separation logic postcondition of insert(i) is Q, then we are guaranteed that
the executable postcondition, has(i), will always hold at runtime if we can
prove the connecting implication Q V has(i). A connecting implication con-
nects the world of separation logic predicates with the one of Boolean pro-
gramming language expressions. It is proved in this case by deriving the
Hoare-style triple {Q}v := has(i){Q ∧ v = True}, where v is a fresh variable.
A novel notion called relative purity is embedded in connecting implications
and embraces side-effects in expressions such as has(i). The logical frame-
work depends on the non-faulting semantics of separation logic triples and
its ∗-connective, as we shall see.

We believe that executable and separation logic specifications can be com-
plementary in OO software development. The proposed formal framework
accommodates both ordinary programmers and proof experts. Programmers
can express their intentions in the form of executable assertions and use run-
time checking to identify faults. While software designs are still evolving, it
is probably also easier to change executable assertions than more elaborate
specifications. We envisage that in a second phase, once the software has
stabilised and many faults have been removed, proof experts would annotate
the critical parts with separation logic for verification. At this point the exe-
cutable assertions do not have to be discarded: our framework integrates the
specification approaches and can verify whether the expectations recorded in
executable assertions are fulfilled. Problems in the verification of executable
assertions can indicate discrepancies between the two types of specifications,
e.g. a misunderstanding by the separation logic specifier as to when a routine
may be called. Executable and separation logic specifications can therefore
complement each other even in verification.

This chapter makes several contributions in the area of OO specification
and verification:

1. It describes a simple technique based on connecting implications for

4.1. BACKGROUND 53

verifying executable preconditions and postconditions. It gives exe-
cutable assertions a semantics based on their semantics as expressions.
The formalisation can even be applied to contracts for non-OO non-
garbage collected languages such as C.

2. It presents simple techniques to verify class invariants. If an invariant
is specified with a separation logic predicate, then properties of the
invariant, such as the fact that it holds in all visible states [52], often
follow as a consequence. The framework can help to devise flexible and
sound class invariant protocols.

3. It illustrates the framework’s applicability to model-based specifica-
tions [12], where model classes and model queries are used to strengthen
contracts [63].

4. It shows how the novel notion of relative purity tolerates side-effects in
executable assertions to a high degree.

The techniques are well-suited to separation logic proof tools. We imple-
mented them in the MultiStar tool [65] and verified the examples automati-
cally.

Chapter outline A discussion of background material follows in Section 4.1.
Precondition and postcondition verification are the topics of Sections 4.2
and 4.3 respectively. Section 4.4 contains an exposition on class invariants.
The verification techniques are then applied to model-based specifications in
Section 4.5. Relative purity and predicate extraction are considered in Sec-
tion 4.6. A discussion of the MultiStar implementation follows in Section 4.7.
Finally, Section 4.8 concludes and mentions related work.

4.1 Background

This chapter presents the verification framework in an abstract setting, which
can be instantiated with concrete languages and proof systems. The abstract
setting is not committed to a particular separation logic, proof system or lan-
guage type. It is even applicable to non-OO non-garbage-collected languages
such as C. The presentation uses the OO language and proof system of Chap-
ter 2 to illustrate the abstract ideas with concrete examples.

54 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

4.1.1 The abstract setting: triples and footprints

An abstract triple is of the form {P}s{Q}. The partial correctness mean-
ing of a triple is as follows: statement s does not fault when executed in a
state satisfying P, and if it terminates then the resulting state satisfies Q.
Faulting occurs when s accesses unallocated memory. In OO terms, ‘unal-
located memory’ means heap storage which is not necessarily present in the
initial state1 and not allocated by s before being accessed. O’Hearn [54] uses
the term footprint of s to describe the minimal state from which s can be
executed safely. So s when executed in a state satisfying P will not fault
if P describes at least the footprint of s. The notion of footprint has been
expanded since [59], yet this is of little concern here.

4.1.2 The concrete setting

The OO language and proof system of Chapter 2 are convenient for illustrat-
ing the abstract concepts. To improve readability, we drop empty argument
lists in method declarations and calls, and adhere to the uniform access
principle [26] where queries can be implemented by fields or result-returning
methods. As usual in Hoare-style logics, predicates may use inductive data
types and functions involving them. This chapter employs only sequences of
integers, where α and β are sequence-valued variables. ε denotes the empty
sequence, and [e] denotes the singleton sequence whose only element is e.
The length of α is written |α|, the i’th element of α is αi, and α++ β denotes
the sequence obtained by appending α and β.

The Boolean expressions of the executable contract language can be more
complex than the expressions of the kernel language of Chapter 2. In par-
ticular, feature calls are allowed in contract expressions. To facilitate formal
reasoning about executable assertions, the function LEMv yields a kernel lan-
guage statement which captures the meaning of the contract expression E in
the variable v. Said otherwise, LEMv translates the sugared statement v := E
into an appropriate kernel language statement. Formally, assume that v has
the same static type as E and that t, t1, . . . tn are fresh variables:

LxMv
def
= v := x, if x is a variable or a constant.

Le0.f(e1, . . . , en)Mv
def
= Le0Mt0 ; . . . ; LenMtn ; v := t0.f(t1,. . . ,tn)

Lnot eMv
def
= LeMt; v := not t

Le1op e2Mv
def
= Le1Mt1 ; Le2Mt2 ; v := t1 op t2, if op ∈ {and,+,−,=,>=}.

1Separation logic systems do not rely on well-formedness of the heap.

4.2. PRECONDITION VERIFICATION 55

The translation function fixes the semantics of contract language expres-
sions. For example, if we want the contract language to use short-circuit
evaluation of e1 and e2 instead, then its translation would involve a condi-
tional statement. The definition above is sufficient for our purposes, and we
use it in the examples that follow.

4.2 Precondition verification

Given a separation logic predicate P and an executable assertion B which
should hold at the same program point, the question is whether B somehow
follows from P. To this end we define the connecting implication P V B,
which informally means that P is sufficient to evaluate B to True:

P V B
def
= {P}v := B{P ∧ v = True}, where v is a fresh variable.

The intuition behind the definition is that in every state satisfying P, we
can evaluate B into v without faulting, and if this computation terminates,
then P will hold in the resulting state and v will have value True. The routine
body relies on P, so it must be re-established by the evaluation of B. This
enforces a notion of purity on B, i.e. it prevents B from performing certain
kinds of side-effects while allowing others. Section 4.6.1 contains more about
this.

In the concrete setting of the OO proof system, there is a sufficient con-
dition2 for P V B:

If ∆; Γ `s {P}LBMv{P ∗ v = True}, then P V B under ∆ and Γ.

In intuitionistic separation logic, which is used for garbage-collected OO lan-
guages such as our concrete one, (P ∗ e = e′)⇔ (P ∧ e = e′). The ∆; Γ used
to verify a B appearing in class C is the same ∆; Γ under which statements
and methods of C are verified. In the examples of this chapter we omit ex-
plicit reference to ∆ and Γ, since none of them uses the additional logical
assumptions in ∆, and method specifications in Γ can be read directly from
code listings.

Examples. Consider the method preconditions of class SLIST in Figure 4.1.

1. The executable precondition of the constructor SLIST and features in-
sert, has, count and is empty is True. For any separation logic predicate
P it holds that P V True:

2Whether or not this condition is also necessary depends on the completeness of the
proof system.

56 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

class SLIST
define x.LSLIST (l:α) as . . .
axiom

L sorted: ∀α· L(l:α) ⇒ [∀i,j∈ (1..|α|)· i < j ⇒ αi ≤ αj]
feature

SLIST
dynamic {True} {L(l:ε)}
executable {True} {is empty}

insert(i: INT)
dynamic {L(l:α)} {∃αF, αS· L(l:αF ++ [i] ++αS) ∗ αF ++αS = α}
executable {True} {has(i) and count = old(count) + 1}

remove first
dynamic {L(l: [e] ++α)} {L(l:α)}
executable {not is empty} {count = old(count) − 1}

first: INT
dynamic {L(l: [e] ++α)} {L(l: [e] ++α) ∗ Result = e}
executable {not is empty} {not is empty}

has(i: INT): BOOL
dynamic {L(l:α)} {L(l:α) ∗ Result = (∃j ∈ 1..|α| · αj = i)}
executable {True} {True}

count: INT
dynamic {L(l:α)} {L(l:α) ∗ Result = |α|}
executable {True} {True}

is empty: BOOL
dynamic {L(l:α)} {L(l:α) ∗ Result = (α = ε)}
executable {True} {True}

invariant
count non negative: {L(l:α)} count >= 0
empty definition: {L(l:α)} is empty = (count = 0)

end

Figure 4.1: The interface of a sorted list class.

4.2. PRECONDITION VERIFICATION 57

Assigment axiom
∆; Γ `s {True = True}v := True{v = True}

Consequence
∆; Γ `s {True}v := True{v = True}

Frame rule
∆; Γ `s {True ∗ P}v := True{v = True ∗ P}

Consequence
∆; Γ `s {P}v := True{P ∗ v = True}

The side-condition of the Frame rule is satisfied: modifies(v := True) = {v}
and {v}∩FV(P) = ∅ (remember that v is fresh). The second appli-
cation of Consequence used the commutativity of ∗ and the fact that
P⇒ (P ∗ True) in intuitionistic separation logic.

Instead of such detailed proofs, the rest of the chapter uses proof out-
lines where statements are interspersed between assertions. Explicitly
mentioning the freshness of certain variables is omitted if it is clear
from the context. The above proof looks as follows in outline form:

{P}
v := True

{P ∗ v = True}

2. The preconditions of remove first and first are identical. Here is a proof
of L(l: [e] ++α) V not is empty:

{L(l: [e] ++α)}
t := is empty

{L(l: [e] ++α) ∗ t = ([e] ++α = ε)}
{L(l: [e] ++α) ∗ t = False}

v := not t
{L(l: [e] ++α) ∗ t = False ∗ v = ¬t}
{L(l: [e] ++α) ∗ v = True}

3. The executable precondition does not always follow from the separation
logic one. Suppose that the executable precondition of has is not True
but instead not is empty. A proof attempt of L(l:α)V (not is empty)
proceeds as follows:

{L(l:α)}
t := is empty

{L(l:α) ∗ t = (α = ε)}
v := not t

{L(l:α) ∗ t = (α = ε) ∗ v = ¬t}
{L(l:α) ∗ v = (α 6= ε)}

58 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

Since α 6= ε is not a consequence, the proof cannot conclude with
L(l:α) ∗ v = True. The separation logic specification is too weak to
demonstrate the executable one.3

Such a clash of specifications has several potential causes. The exe-
cutable assertion is maybe overly restrictive, or it captures important
semantic properties of the domain that the separation logic one ignores.
If the issue is not resolved, then there is of course no guarantee that
the executable assertion will hold at runtime. �

The rest of the chapter contains more examples of the form P V B.

4.3 Postcondition verification

Executable postconditions for routines may contain so-called old-expressions.
The old-expression old(E) denotes the value of expression E in the state right
before the routine is executed, i.e. the state which satisfies the precondition.

Given two separation logic predicates P and Q and an executable asser-
tion B which may contain old-expressions, the connecting implication P,Q
V B informally means that any pre-state satisfying P and any post-state
satisfying Q are sufficient to evaluate B to True:

Let old(E1),. . . ,old(En) be the list of old-expressions in B and let v, v1,. . . ,vn

be fresh variables.

P,Q V B
def
= ∃R· {P}(v1 := E1, . . . , vn := En){P ∗ R} and

{Q ∗ R}v := B[v1; . . . ; vn]{Q ∧ v = True}
B[v1;. . . ;vn]

def
= B[v1/old(E1),. . . ,vn/old(En)]

Intuitively, R contains the result of evaluating (v1:=E1,. . . ,vn:=En) in
the pre-state where P holds. Old-expression evaluation must re-establish P
because the routine body relies on it. The existence of old-expression results
depends on runtime checking, so R is not contained in Q and the body is not
allowed to access state described by R. The body is verified only with respect
to P and Q, which guarantees that it will establish Q upon termination and
never touch R. So Q ∗ R holds right after the body’s execution. Evaluating
B[v1;. . . ;vn] in this state should yield True and re-establish Q, since clients

3In fact we have shown that (not is empty) evaluates to False if α = ε, so the only
way it can also evaluate to True is when it loops forever. A verified implementation of
SLIST (and classes transitively used by it) for which (not is empty) terminates when
executed in some initial state satisfying L(l:α) comprises a counterexample for L(l:α) V
(not is empty).

4.3. POSTCONDITION VERIFICATION 59

r
pre: P B

body
post: Q C

PV B
{P}body{Q}
P,QV C

{P}
v := B

{P ∧ v=True}
{P}

(v1:=E1, . . . ,vn:=En)
{P ∗ R}
{P}

body
{Q}

{Q ∗ R}
w := C[v1;. . . ;vn]

{Q ∧ w=True}
{Q}

(a) (b) (c)

Figure 4.2: (a) Routine r and its specification. (b) Resulting proof obliga-
tions. (c) Proof obligations as triples in a proof outline.

depend on the fact that Q holds. Figure 4.2 summarises the proof obligations
of a routine.

The predicate R will almost certainly have v1,. . . ,vn as free variables, but
should not have free variables which are modified by the routine body. This
allows the transfer of R over the routine body with the Frame rule.

An assertion language’s semantics will stipulate how to prove a triple
of the form {P}(v1 := E1, . . . , vn := En){Q}. For example, if old-expressions
are evaluated in an unspecified order, then {P}s{Q} must be proved for every
permutation s of (v1:=E1,. . . ,vn:=En).

In our concrete OO setting, the assertion language specification states
that old-expressions will be evaluated in an arbitrary order. The following
condition is sufficient (but not necessary4) for concluding P,Q V B:

If ∀i ∈ (1..n)· ∆; Γ `s {P}LEiMvi{P ∗ Ri} with Result /∈FV (Ri)
and ∆; Γ `s {Q ∗ R1 ∗ . . . ∗ Rn}v := B[v1; . . . ; vn]{Q ∗ v = True}
then P,Q V B under ∆ and Γ.

Once again, an assertion B appearing in class C is verified with the same
∆; Γ as the statements and methods of C.

4Suppose we take (∃e· o.f ↪→ e ∗ even(e)) for P and o.f++ for both E1 and E2. Since
there exists no Ri such that ∆; Γ `s {P}LEiMvi

{P ∗ Ri} for i∈ 1..2, the rule cannot prove
P,True V odd(old(E1)+old(E2)).

60 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

Relationships between P,Q V B and Q V B exist, which are convenient
in proofs because many executable postconditions contain no old-expressions.

1. If P,Q V B then Q V B whenever B contains no old-expression.

2. If Q V B then P,Q V B for any P.

So P,Q V B iff Q V B whenever B contains no old-expression.

Examples. Consider class SLIST in Figure 4.1.

1. For remove first, it is the case that L(l: [e] ++α),L(l:α) V (count =
old(count)− 1). The executable postcondition contains one old-expression
and E1 = count. Here is the first part of the proof:

{L(l: [e] ++α)}
t1 := count

{L(l: [e] ++α) ∗ t1 = |[e] ++α|}

Notice that FV(t1 = |[e] ++α|) = {t1,e,α}. Using (t1 = |[e] ++α|) for
R1 completes the proof:

{L(l:α) ∗ t1 = |[e] ++α|}
t2 := count

{L(l:α) ∗ t2 = |α| ∗ t1 = |[e] ++α|}
{L(l:α) ∗ t2 = |α| ∗ t1 = |α|+ 1}

t3 := t1 − 1
{L(l:α) ∗ t2 = |α| ∗ t1 = |α|+ 1 ∗ t3 = |α|}
{L(l:α) ∗ t2 = |α| ∗ t3 = |α|}

v := t2 = t3
{L(l:α) ∗ t2 = |α| ∗ t3 = |α| ∗ v = (t2 = t3)}
{L(l:α) ∗ v = True}

2. The executable postcondition of the constructor SLIST contains no
old-expression, so it suffices to prove L(l:ε) V is empty:

{L(l:ε)}
v := is empty

{L(l:ε) ∗ v = (ε = ε)}
{L(l:ε) ∗ v = True}

3. The executable postcondition of first contains no old-expression, so we
only need (L(l: [e] ++α) ∗ Result = e) V not is empty. Example 2 in
the previous section established the inner triple of the proof:

4.3. POSTCONDITION VERIFICATION 61

{L(l: [e] ++α) ∗ Result = e}
{L(l: [e] ++α)}

Lnot is emptyMv
{L(l: [e] ++α) ∗ v = True}

{L(l: [e] ++α) ∗ v = True ∗ Result = e}
{L(l: [e] ++α) ∗ Result = e ∗ v = True}

The Frame rule is key to the proof.

4. Consider the postcondition of insert. It contains one old-expression,
namely old(count):

{L(l:α)}
t1 := count

{L(l:α) ∗ t1 = |α|}

The second part of the proof consists of small pieces which are put
together.

{L(l:αF ++ [i] ++αS)}
t2 := has(i)

{L(l:αF ++ [i] ++αS) ∗ t2 = (∃j ∈ 1..|αF ++ [i] ++αS|·(αF ++ [i] ++αS)j =
i)}
{L(l:αF ++ [i] ++αS) ∗ t2 = True}

Applying Frame and Consequence to this triple yields Piece 1:

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t1 = |α|}
t2 := has(i)

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t1 = |α| ∗ t2 = True}

Next, we prove

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t1 = |α|}
t3 := count

{L(l:αF ++ [i] ++αS) ∗ t3 = |αF ++ [i] ++αS| ∗ αF ++αS = α ∗ t1 = |α|}
{L(l:αF ++ [i] ++αS) ∗ t3 = |α|+ 1 ∗ αF ++αS = α ∗ t1 = |α|}

t4 := t1 + 1
{L(l:αF ++ [i] ++αS) ∗ t3 = |α|+1 ∗ αF ++αS = α ∗ t1 = |α| ∗ t4 = t1 + 1}
{L(l:αF ++ [i] ++αS) ∗ t3 = |α|+ 1 ∗ αF ++αS = α ∗ t4 = |α|+ 1}

t5 := t3 = t4
{L(l:αF ++ [i] ++αS) ∗ t3 = |α|+1 ∗ αF ++αS = α ∗ t4 = |α|+1 ∗ t5 = (t3=t4)}
{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t5 = True}

Applying Frame establishes Piece 2:

62 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t1 = |α| ∗ t2 = True}
t3 := count
t4 := t1 + 1
t5 := t3 = t4

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t5 = True ∗ t2 = True}

Here is Piece 3:

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t5 = True ∗ t2 = True}
v := t2 and t5

{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ t5 = True ∗ t2 = True ∗ v = (t2 and t5)}
{L(l:αF ++ [i] ++αS) ∗ αF ++αS = α ∗ v = True}

The proof is completed by putting the three pieces together, eliminating
αF and αS with the Auxiliary variable elimination rule, and applying
Consequence to move (t1 = |α|) and (v = True) out from under the
quantifiers to the top level in the precondition and postcondition re-
spectively. �

4.4 Class invariant verification

Consider an executable assertion B which should hold at program point pp.
If the separation logic predicate P holds at pp and P V B, then B is verified
for pp. This technique can be used to verify executable assert statements
and loop invariants, for example.

Class invariants5 (henceforth simply called invariants) are verified in a
similar way. Since an invariant protocol [64] always specifies the points in a
program where an invariant, say B, should hold, B is verified if it is verified
for all such points.

Another technique is to annotate an invariant B with a separation logic
predicate P which characterises the states in which the invariant should hold.
If P V B, then B is verified. This offers a flexible scheme if annotations are
given on the level of individual invariant clauses.

Examples. Consider the following invariant clauses, reproduced from the bot-
tom of class SLIST in Figure 4.1:6

5Also called object invariants.
6These are public invariants, as opposed to private representation invariants (which is

how the term ‘invariant’ is used in the Spec# literature, e.g. [45]). Private invariants can
be verified in a similar way.

4.4. CLASS INVARIANT VERIFICATION 63

invariant
count non negative: {L(l:α)} count >= 0
empty definition: {L(l:α)} is empty = (count = 0)

1. For the clause named count non negative, L(l:α)V (count>= 0) holds:

{L(l:α)}
t := count

{L(l:α) ∗ t = |α|}
v := t >= 0

{L(l:α) ∗ t = |α| ∗ v = (t ≥ 0)}
{L(l:α) ∗ v = True}

2. The invariant clause empty definition is verified similarly:

{L(l:α)}
t1 := is empty

{L(l:α) ∗ t1 = (α = ε)}
t2 := count

{L(l:α) ∗ t2 = |α| ∗ t1 = (α = ε)}
t3 := t2 = 0

{L(l:α) ∗ t2 = |α| ∗ t1 = (α = ε) ∗ t3 = (t2 = 0)}
{L(l:α) ∗ t1 = (α = ε) ∗ t3 = (|α| = 0)}

v := t1 = t3
{L(l:α) ∗ t1 = (α = ε) ∗ t3 = (|α| = 0) ∗ v = (t1 = t3)}
{L(l:α) ∗ v = ((α = ε) = (|α| = 0))}
{L(l:α) ∗ v = True}

�

The fact that the structural rules of separation logic are sound provides
a simple way to show that a verified invariant clause holds at a particular
program point. The following rules can also be used when verifying other
executable assertions:7 8

7Similar rules can be given for P,Q V B.
8These rules are independent of the structure of B. Rules also exist which do depend

on its structure. For example, if P1 V B1 and P2 V B2, then (P1 ∗ P2) V (B1 par and
B2). This rule allows concurrency in executable assertions.

64 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

P V B
Frame′

(P ∗ Q) V B

P ⇔ Q P V B
Conseq′

Q V B

P V B
AuxVarElim′

(∃x·P) V B

P V B Q V B
Disj′

(P ∨ Q) V B

and others.

The Frame′ rule does not need any side-condition, since the translation
of B will modify only fresh variables, i.e. variables not free in Q. Note the
way Conseq′ is written: if P V B and Q ⇒ P, then Q V B does not neces-
sarily hold (example 3 in Section 4.6.1 provides a counterexample). In the
AuxVarElim′ rule, the variable x may not be free in B.

Example. If a program containing class SLIST from Figure 4.1 is verified,
then it follows as a consequence of the separation logic specification that both
invariant clauses hold in the visible states [52] of SLIST. In other words, both
clauses are established by the constructor and hold on entry and exit of all
other public features. Since each clause B is verified, we know L(l:α) V B.
In the following proofs the ‘V B’ part is omitted.

1. Upon exit from SLIST :

L(l:α)
Frame′

L(l:α) ∗ α = ε
Conseq′

L(l:ε) ∗ α = ε
AuxVarElim′

∃α· L(l:ε) ∗ α = ε
Conseq′

L(l:ε) ∗ True
Conseq′

L(l:ε)

2. Upon entry to remove first :

4.4. CLASS INVARIANT VERIFICATION 65

L(l:α)
Frame′

L(l:α) ∗ α = β
Conseq′

L(l:β) ∗ α = β
AuxVarElim′

∃α· L(l:β) ∗ α = β
Conseq′

L(l:β)
Frame′

L(l:β) ∗ β = [e] ++α
Conseq′

L(l: [e] ++α) ∗ β = [e] ++α
AuxVarElim′

∃β· L(l: [e] ++α) ∗ β = [e] ++α
Conseq′

L(l: [e] ++α)

3. For the exit of insert, we start with L(l: β) which was derived in the
previous proof.

L(l:β)
Frame′

L(l:β) ∗ β = (αF ++ [i] ++αS) ∗ αF ++αS = α
AuxVarElim′

∃β· L(l:β) ∗ β = (αF ++ [i] ++αS) ∗ αF ++αS = α
Conseq′

L(l:αF ++ [i] ++αS) ∗ αF ++αS = α
AuxVarElim′

∃αS· L(l:αF ++ [i] ++αS) ∗ αF ++αS = α
AuxVarElim′

∃αF, αS· L(l:αF ++ [i] ++αS) ∗ αF ++αS = α

�

In effect we create fine-grained invariant protocols by annotating invari-
ant clauses: the predicate abstractly specifies the program points where they
should hold, and invariants can be verified, i.e. guaranteed, to hold there.
One can refine this idea to create more sophisticated invariant protocols.

Examples.

1. Here is an invariant protocol for single-inheritance programs where sub-
classes can refine individual invariant clauses. Γ maps a class name
and invariant clause name to the invariant specification predicate and
Boolean expression. Two rules distinguish the case where class C in-
troduces an invariant clause named inv from the case where C inherits
and refines inv from its parent C′:

∀i ∈ (1..n)· (P ∗ Current : C) V Bi

Γ `i introduce inv: {P} 〈B1〉 and . . . and 〈Bn〉 in C

66 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

C′ ≺1 C
Γ(C.inv) = {P} B
B = 〈B1〉 and . . . and 〈Bn〉
P ⇔ (P′ ∗ R)
∀i ∈ (1..n)· (P′ ∗ Current : C′) V Bi

∀j ∈ (1..m)· (P′ ∗ Current : C′) V B′j

Γ `i inherit inv: {P′} B and 〈B′1〉 and . . . and 〈B′m〉 in C′

The above invariant protocol guarantees that whenever ‘inv: {P} B’
appears in class C, then ∀x <: C· P[x/Current] V B[x/Current]
where x is fresh. Enclosing an expression in angle-brackets provides it
with a side-effect scope. The next example explains why it works.

2. The previous invariant protocol is an instance of a more general scheme.
Here, invariant clauses are equipped with both a dynamic and a static
specification predicate. When a class C introduces an invariant clause:

introduce inv: {P} {S} 〈B1〉 and . . . and 〈Bn〉

then it is considered a shorthand for introducing the methods C inv i,
where i ∈ 1..n:

introduce C inv i: BOOL
dynamic {P} {P ∗ Result = True}
static {S} {S ∗ Result = True}
do LBiMResult end

When the direct subclass C′ refines the invariant clause by listing:

inherit inv: {P′} {S′} B and 〈B′1〉 and . . . and 〈B′m〉

where B = 〈B1〉 and . . . and 〈Bn〉, then it is considered a shorthand
for overriding all the methods C inv i, where i ∈ 1..n:

override C inv i: BOOL
dynamic {P′} {P′ ∗ Result = True}
static {S′} {S′ ∗ Result = True}
do LBiMResult end

and introducing the methods C′ inv j, where j ∈ 1..m:

introduce C′ inv j: BOOL
dynamic {P′} {P′ ∗ Result = True}
static {S′} {S′ ∗ Result = True}
do LB′jMResult end

4.5. MODEL-BASED SPECIFICATIONS 67

Looking at the method verification rules of 2.6, we see that class C
must satisfy:

∆ ` {S} {S ∗Result = True} Current : C
=⇒ {P} {P ∗Result = True}

∀i ∈ (1..n)· S V Bi

and class C′ must satisfy:

∆ ` {P′} {P′ ∗Result = True} =⇒ {P} {P ∗Result = True}
∆ ` {S′} {S′ ∗Result = True} Current : C′

=⇒ {P′} {P′ ∗Result = True}
∀i ∈ (1..n)· S′ V Bi

∀j ∈ (1..m)· S′ V B′j

By taking S = P ∗Current : C, and S′ = P′ ∗Current : C′, it is sim-
ple to prove that the two rules of the previous example are theorems.
It is also easy to verify the protocol’s guarantee.

3. Instead of overriding all the methods C inv i in class C′, as in the
previous example, a protocol might choose to inherit them:

inherit C inv i: BOOL
dynamic {P′} {P′ ∗ Result = True}
static {S′} {S′ ∗ Result = True}

Doing so changes the proof obligations of class C′ – instead of:

∀i ∈ (1..n)· S′ V Bi

we must establish that:

∆ ` {S} {S ∗Result = True} =⇒ {S′} {S′ ∗Result = True} �

4.5 Model-based specifications

Since executable specifications are frequently not very expressive, model
classes and model-based contracts are sometimes used to strengthen them [12,
63].

Example. Consider the interface of model class SEQUENCE in Figure 4.3.
It provides an abstraction of immutable sequences for specification purposes.
Class SLIST can be specified in terms of SEQUENCE, as the interface extract
in Figure 4.4 shows. Note that SLIST now has a model query, namely model,
which returns the immutable sequence abstraction of an SLIST instance at
the point when it is called. A comparison of remove first ’s specification in
Figures 4.1 and 4.4 shows that the model-based specification involves the

68 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

class SEQUENCE
define x.SEQSEQUENCE (s:α) as . . .

feature
SEQUENCE
dynamic {True} {SEQ(s:ε)}

cons(i: INT): SEQUENCE
dynamic {SEQ(s:α)} {SEQ(s:α) ∗ Result.SEQ(s: [i] ++α)}

head: INT
dynamic {SEQ(s: [e] ++α)} {SEQ(s: [e] ++α) ∗ Result = e}

tail: SEQUENCE
dynamic {SEQ(s: [e] ++α)} {SEQ(s: [e] ++α) ∗ Result.SEQ(s:α)}

is nil: BOOL
dynamic {SEQ(s:α)} {SEQ(s:α) ∗ Result = (α = ε)}

eq(o: SEQUENCE): BOOL
dynamic {SEQ(s:α) ∗ o.SEQ(s:β)}

{SEQ(s:α) ∗ o.SEQ(s:β) ∗ Result = (α = β)}
end

Figure 4.3: The interface of model class SEQUENCE.

4.5. MODEL-BASED SPECIFICATIONS 69

class SLIST
. . .

feature
. . .
model: SEQUENCE
dynamic {L(l:α)} {L(l:α) ∗ Result.SEQ(s:α)}
executable {True} {True}

remove first
dynamic {L(l: [e] ++α)} {L(l:α)}
executable {not model.is nil} {model.eq(old(model).tail)}
. . .

invariant
. . .

empty inv: {L(l:α)} is empty = model.is nil
end

Figure 4.4: An extract from class SLIST which uses model-based contracts.

element values stored in an SLIST instance and not just their number. �

The following three problems are typically not easy to solve with conven-
tional techniques [39, 19]:

1. Devising semantics for model classes and proving their implementations
correct.

2. Giving a semantics to model queries, such as model in Figure 4.4, and
proving their implementations correct.

3. Verifying model-based specifications, such as the model-based contract
of remove first and the model-based invariant clause empty inv in Fig-
ure 4.4.

The first two problems can be solved with separation logic. Figures 4.3
and 4.4 show separation logic specifications for a model class and model
query. A conventional separation logic proof system, such as the one of
Chapter 2, can be used to verify their implementations. The third problem
can then be addressed with the framework of this chapter.

70 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

Examples. Consider the model-based specifications of class SLIST in Fig-
ure 4.4. Suppose that omitted features have the same separation logic spec-
ifications as in Figure 4.1.

1. For the invariant clause empty inv :

{L(l:α)}
t1 := is empty

{L(l:α) ∗ t1 = (α = ε)}
t2 := model

{L(l:α) ∗ t2.SEQ(s:α) ∗ t1 = (α = ε)}
t3 := t2.is nil

{L(l:α) ∗ t2.SEQ(s:α) ∗ t3 = (α = ε) ∗ t1 = (α = ε)}
{L(l:α) ∗ t3 = (α = ε) ∗ t1 = (α = ε)}

v := t1 = t3
{L(l:α) ∗ t3 = (α = ε) ∗ t1 = (α = ε) ∗ v = (t1 = t3)}
{L(l:α) ∗ v = True}

2. We next verify the postcondition of remove first which contains one
old-expression:

{L(l: [e] ++α)}
v1 := model

{L(l: [e] ++α) ∗ v1.SEQ(s: [e] ++α)}

The proof is completed by using v1.SEQ(s: [e] ++α) for R1:

{L(l:α) ∗ v1.SEQ(s: [e] ++α)}
t1 := model

{L(l:α) ∗ t1.SEQ(s:α) ∗ v1.SEQ(s: [e] ++α)}
t2 := v1.tail

{L(l:α) ∗ t1.SEQ(s:α) ∗ v1.SEQ(s: [e] ++α) ∗ t2.SEQ(s:α)}
{L(l:α) ∗ t1.SEQ(s:α) ∗ t2.SEQ(s:α)}

v := t1.eq(t2)
{L(l:α) ∗ t1.SEQ(s:α) ∗ t2.SEQ(s:α) ∗ v = (α = α)}
{L(l:α) ∗ v = True}

�

4.6. RELATIVE PURITY AND PREDICATE EXTRACTION 71

4.6 Relative purity and predicate extraction

4.6.1 Relative purity

Side-effects in executable specifications conventionally complicate verifica-
tion, since the logical predicates extracted from them cannot be imperative.
Most techniques therefore impose some form of purity, i.e. side-effect free-
ness, on specification expressions. Purity comes in many flavours, such as
strong purity, weak purity and observational purity [18, 53].

The verification techniques of this chapter tolerate side-effects in exe-
cutable specifications to a high degree. In fact, they use a new notion of
purity, namely relative purity. An executable assertion is pure or impure
with respect to a given separation logic specification:

B is pure relative to P
def
= {P}v := B{P}, where v is a fresh variable.

This means informally that B can be evaluated in a state satisfying P, and
that the evaluation will preserve P. Similarly, for an executable assertion B
containing the list of old-expressions old(E1),. . . ,old(En):

B is pure relative to P,Q
def
= ∃R· {P}(v1 := E1, . . . , vn := En){P ∗ R} and

{Q ∗ R}v := B[v1; . . . ; vn]{Q}

where v, v1,. . . ,vn are fresh variables and B[v1;. . . ;vn] is defined as before.
The following lemmas follow from the definitions by the rule of Conse-

quence:

If P V B, then B is pure relative to P.

If P,Q V B, then B is pure relative to P,Q.

Examples. Consider the specification of class SLIST in Figure 4.1.

1. Suppose we replace the executable postcondition of insert with a hy-
pothetical assertion B for which LBMv is given by:

t := remove first
insert(t)
v := has(i)

B is pure relative to the separation logic postcondition of insert because
one can prove9 (∃αF, αS· L(l:αF ++ [i] ++αS) ∗ αF ++αS = α) V B.

9The proof uses the axiom information expressed in L sorted. The rule of Disjunction
can combine subproofs arising from a case split on αF = ε.

72 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

2. Suppose B is a hypothetical assertion for which LBMv is:

insert(4)
v := not is empty

B is not pure relative to L(l:α). We cannot complete the following
proof attempt, since the needed implication does not necessarily hold:

{L(l:α)}
insert(4)

{∃αF, αS· L(l:αF ++ [4] ++αS) ∗ αF ++αS = α}
v := not is empty

{∃αF, αS· L(l:αF ++ [4] ++αS) ∗ αF ++αS = α}
// An implication is needed to establish:
{L(l:α)}

A counterexample showing that B is not pure relative to P in the con-
text of class C comprises:

(a) a verified implementation of C and all classes transitively used by
it;

(b) an execution trace where B is evaluatated in an initial state satis-
fying P that either faults or terminates in a state not satisfying P.

3. We use B from the previous example and show (∃α· L(l:α)) V B:

{∃α· L(l:α)}
insert(4)

{∃α, αF, αS· L(l:αF ++ [4] ++αS) ∗ αF ++αS = α}
v := not is empty

{∃α, αF, αS· L(l:αF ++ [4] ++αS) ∗ v = True ∗ αF ++αS = α}
{∃α· L(l:α) ∗ v = True}

So B is pure with respect to ∃α· L(l:α).

Since L(l:α) ⇒ (∃α· L(l:α)), this example and the previous one show
that if P ⇒ Q and Q V B, then P V B does not hold in general.

4. Let B be any executable assertion without old-expressions. B is always
pure relative to False. If B never faults, then it is also pure relative to
True. �

Any notion of purity which classifies side-effects as intrinsically harmful
or not will rule out executable assertions that programmers might want to
write. Relative purity judges whether a side-effect is harmful or not only with

4.6. RELATIVE PURITY AND PREDICATE EXTRACTION 73

respect to the properties one cares about. For example, the side-effects in B
of examples 2 and 3 are harmless with respect to ∃α· L(l:α), but harmful with
respect to L(l:α). This is so because the side-effect of inserting 4 in a sorted
list will maintain a list structure (what the first purity specification states),
but not a list structure with the same elements (what the second specification
demands). The concept of relativity pervades verification already, since code
is only correct or incorrect relative to a specification. We adopt it also for
purity.

Relative purity guarantees soundness of reasoning and does not impose
unnecessary constraints on executable assertions. An executable assertion is
free to perform any side-effect as long as nothing happened from the perspec-
tive of the separation logic specification. Runtime assertion checking does
nothing relative to the specification of a verified program. An executable
assertion can even print ‘Hello World!’ if the specification permits it. Purity
is in the eye of the asserter.

4.6.2 Predicate extraction

Programmers are conventionally encouraged to specify sets of states with
computations. Hoare-style verification cannot do much with computations
– it needs predicates. So conventional verification approaches, including the
Spec# system [3] and JML toolset [9], have to extract predicates from com-
putations. This can be achieved in various ways: as long as there is an
agreed-upon mapping from computations to predicates, the computations
can be seen as syntactic sugar for predicates.

When given an executable assertion B without old-expressions10, one pos-
sibility is to extract a predicate P which follows from B. This is described by
the connecting implication BV P, which informally means that B evaluating
to True is sufficient to conclude P. Here is a formal definition:

B V P
def
= ∀Q· if Q V B then Q⇒P.

If B V P, then P V B does not necessarily hold. However, the best
predicate that can be extracted in this way, i.e. the strongest P such that B
V P, is precisely the weakest P such that P V B. So if we define

Best(B)
def
=
∨
{P | PV B}

then the following lemmas hold:

10The treatment can be generalised to executable assertions with old-expressions.

74 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

1. Best(B) V B and B V Best(B), i.e. Best(B) WV B
2. B V P iff Best(B) ⇒ P
3. If P V B then P ⇒ Best(B)

Since Best(B) WV B, the predicate Best(B) can be seen as the exact log-
ical counterpart of B.

Examples. Let us ignore inheritance and suppose an implementation of class
SLIST in Figure 4.1 maintains its stored elements in a list of linked nodes.

1. If is empty is implemented as a field in class SLIST, then
Best(is empty) = (is empty ↪→True).

2. If is empty tests whether a field named ‘head’, which points to the first
node, is Void, then Best(not is empty) = (∃x· head ↪→ x ∗ x 6= Void).

3. If has is implemented by a simple linear traversal of the nodes, then
the predicate Best(has(i)) denotes that i is encountered inside a node
before the next node pointer becomes Void. Note that Best(has(i))
is too weak to rule out a cyclic or frying-pan [8] list. Such a list does
not even have to contain i in order to satisfy Best(has(i)), because the
definition does not demand the termination of has(i). �

As these examples show, the logical counterparts of executable assertions
are often very weak. Predicate extraction techniques will have to map com-
putations into stronger predicates in order to verify method bodies. Such
predicates are similar in flavour to the ones used in this chapter, and do not
follow from the executable ones. Section 4.8 discusses this in more depth.

Our approach uses predicates rather than computations to characterise
states. It views the separation logic specification as the primary one for
verification. There is no extraction of predicates, and verification treats
executable assertions as computations which should evaluate to True. We do
not verify the program using its executable assertions, we verify the program
and its executable assertions.

4.7 Implementation

We extended MultiStar to provide fully automatic verification of executable
Eiffel assertions with respect to separation logic specifications. The imple-
mentation leverages mechanisms which are present in MultiStar and most
separation logic proof tools: symbolic execution, implication checking and

4.8. CONCLUSIONS AND RELATED WORK 75

frame inference. Symbolic execution and implication checking are the basic
ingredients for proving connecting implications. For example, when proving
P V B, MultiStar executes v := B in the symbolic state P to obtain a sym-
bolic state P′. It then checks whether P′ ⇒ (P ∗ v = True). For executable
postconditions, the results of old-expressions are inferred automatically with
frame inference and not specified manually. Suppose MultiStar must prove
the connecting implication P,QV C, where C contains a single old-expression
old(E). Executing v1 := E in the symbolic state P yields a resulting symbolic
state P′. Frame inference next determines the symbolic result R of E in P′ `
P ∗ R. Then w := C[v1] is executed in the symbolic state Q ∗ R and yields a
symbolic state Q′. Finally, MultiStar checks whether Q′ ⇒ (Q ∗ w = True).

MultiStar can easily handle the examples presented in this chapter, which
are also available in the EVE download [28].

4.8 Conclusions and related work

The presented framework offers a sound and simple way to verify various ex-
ecutable specifications with separation logic. The notion of relative purity is
central to the framework and embraces side-effects in executable assertions,
thereby allowing programmers more freedom of expression compared to con-
ventional verification approaches. The framework is well-suited to separation
logic proof tools and is implemented in MultiStar.

Regarding related work, separation logic [54, 60] offers local reasoning for
heap-manipulating programs and is central to the framework. Its adaptation
to object-orientation [57, 56, 58, 65] is especially relevant for the presentation.

Executable specifications are embodied in programming languages such as
Eiffel [26] and Spec# [3]. Dedicated specification languages such as JML [40]
also use them. JML includes model classes and allows model-based con-
tracts [12]. Another library with model classes is MML [63]. Executable
assertions offer several benefits in software development, including runtime
checking [26, 13] and automated testing [47, 15].

The problem of obtaining the strongest P such that B V P amounts to
finding the weakest footprint of B preserved by B which ensures B evaluates
to True. This problem appears to be similar in flavour but more general than
abduction [10, 30].

Conventional approaches to verification, including the Spec# system [3]
and JML toolset [9], extract predicates from assertions in a different way [45,
18]:

1. They do not use footprints. Well-formedness of the heap is exploited
and any chain of references can be followed. Since a method can po-

76 CHAPTER 4. VERIFYING EXECUTABLE CONTRACTS

tentially modify any reachable object, the absence of footprints makes
reasoning more global. Specifications must describe which objects are
modified, because there might be external references to reachable ob-
jects. The aliasing problem arises because objects maintaining such
references, or aliases, can depend on properties of the aliased objects.
Approaches to the problem typically restrict or prevent aliases and/or
operations on references. They include confinement, sharing and ac-
cess control, ownership, immutability, uniqueness, information flow and
escape analyses [16].

2. They impose purity constraints on the methods used in assertion ex-
pressions. Several notions of purity exist which prevent methods from
changing the state [18, 53]. A strongly pure method has no side-effect
at all. A weakly pure method does not change existing objects, but
might allocate and modify new ones. An observationally pure method
may modify existing objects, provided that the change is sufficiently
encapsulated such that no other class can observe a change. Proving
method purity becomes harder as the notion becomes more permissive.
Weak purity can be proved with a combination of pointer and escape
analysis [62], while a method’s observational purity can be shown by
proving that it simulates a weakly pure one from the perspective of
other classes [53].

3. They encode pure methods and their contracts in first-order logic as
uninterpreted functions and axioms respectively [18, 45, 17]. Check-
ing well-formedness of pure method specifications is vital in this step,
because inconsistent axiomatisations can result from unsatisfiable spec-
ifications or recursive specifications which are ill-founded [61]. A pure
method call in an assertion is encoded as an application of the corre-
sponding uninterpreted function. A loop, written in the stylised form
of quantification over a finite domain (as in JML and Spec#), is di-
rectly encoded as a quantified formula. The reader is referred to [45]
for assertion encoding details. Model class and model-based contract
encoding is discussed in [19].

Chapter 5

Correctness by construction

The previous two chapters proposed extensions to the separation logic proof
system: features for reasoning about related abstractions, multiple inheri-
tance and executable contracts. Instead of adding new features, this chapter
investigates correctness by construction – an alternative way to develop ver-
ified programs. Dijkstra, who advocated this approach, described it well in
his Turing Award lecture [22]:

The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness. But
one should not first make the program and then prove its correct-
ness, because then the requirement of providing the proof would
only increase the poor programmer’s burden. On the contrary:
the programmer should let correctness proof and program grow
hand in hand.

Stepwise refinement [50, 2, 31] is an important technique in correctness
by construction. (It is often all that is needed, but developing correct OO
code will require more machinery.) The bulk of this chapter is consequently
devoted to freefinement – a new algorithm that constructs a sound refinement
calculus from a verification system under certain conditions.

In fact many theories in computer science are presented, or approximated,
by compositional verification systems. A verification system in this chapter
is any formal system for establishing whether an inductively defined term,
typically a program, satisfies a specification. For example, Hoare logics and
type systems can be viewed as verification systems. In the case of Hoare
logics, the system proves that a statement satisfies certain specifications given
as preconditions and postconditions. In the case of type systems, the system
proves that a term has a certain type in a type context.

78 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Refinement systems play a similar role to verification systems, the main
difference being that they relate terms to other terms, instead of terms and
specifications. Another difference is that they typically include so-called spec-
ification terms. Intuitively, a term refines another if it is ‘better’, i.e. if it sat-
isfies more specifications. Refinement calculi are formal systems for establish-
ing refinements. For example, the calculus of Morgan [50] derives refinements
between statements based on total correctness specifications. Starting from
an appropriate specification statement, one can derive a correct algorithm for
computing the factorial of a number by applying Morgan’s refinement rules.

The work on freefinement started from the observation that a Hoare logic
and a refinement calculus for a command language do not have to be indepen-
dent entities: once the Hoare logic is extended with specification statements,
the two systems can be accommodated in a single theory. Moreover, there is
a strong relation between the two systems. This chapter explains that this
relation is not a coincidence: it is possible to analyse the structure of the
inference rules defining a verification system, and automatically generate a
related refinement calculus. Freefinement is an algorithm that implements
this transformation. Surprisingly, freefinement is not limited to Hoare logics,
but can be applied to any verification system whose inference rules satisfy
certain conditions. Several refinement rules proposed in the literature in
different contexts arise in this way.

The freefinement algorithm works as follows. Given a term language
and an accompanying verification system V1 that satisfies certain conditions,
freefinement extends the term language with specification terms and builds
a verification system V2 for extended terms. The conditions on V1 ensure
that it is possible to extend the terms without breaking the inference rules;
V2 is consequently a sound and conservative extension of V1. Moreover, free-
finement proposes a sound refinement system R that is in harmony with V2.
Harmony means that the two formal systems can interoperate smoothly. It
entails, for example, that a term satisfies a specification according to V2 if
and only if it is possible to refine the specification into the term with R.
In fact, proof translation between V2 and R becomes possible because har-
mony is demonstrated constructively. Freefinement internally constructs the
refinement calculus by ‘linearising’ V2 in a series of steps. The conditions on
V1 ensure that successful linearisation is possible. According to the presen-
tation below, at most six steps are needed for this ‘refinement of refinement
systems’. The situation is summarised as follows:

5.1. FREEFINEMENT 79

Sound & Conservative Extension{

Harmony
{
V2

- R1
- · · · - R6

6

V1

Freefinement requires no human intervention. The conditions it imposes
are fulfilled by many program logics and type systems: examples include
Hoare logic, separation logic, the simply-typed lambda calculus and System
F. Freefinement defines the semantics of refinement at an abstract level: it
associates each term of the extended language with a set of terms from the
original language, and refinement simply reduces this set.

With freefinement, tools that are based on verification systems can readily
include refinement as a complementary or alternative development style. In
cases where the verification system is part of a larger system for establishing
program correctness, it may well be possible to use refinement in a more
elaborate calculus for constructing correct programs. The second part of
this chapter shows how to use the output of freefinement in a calculus for
developing correct OO code. This calculus is based on the separation logic
proof system of Chapter 2, and maintains close relationships with it.

Chapter outline Section 5.1 describes the freefinement algorithm, which
is applied in Section 5.2 to a simple type system for the lambda calculus
and also to Hoare logic. Section 5.3 shows how the output of freefinement
can be used in a calculus for constructing correct OO programs. Section 5.4
concludes with related work.

5.1 Freefinement

5.1.1 The Inputs

Freefinement requires four things as input:

1. A set of constructors K. The constructors give rise to a term language
T, where an arbitrary term t of T is defined by the grammar:

t ::= C(t1, . . . , tn)

where C ∈ K.

2. A set of specifications S.

80 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

3. A binary relation |=V1 Sat between terms and specifications. Intu-
itively, |=V1t Sat S denotes that term t ∈ T satisfies specification S ∈ S.

4. A formal system V1(K,S, |=V1 Sat), which consists of a set of infer-
ence rules for proving sentences of the form t Sat S. Each rule of V1

must have the form A1 or B1:

t1 Sat S1 . . . tn Sat SnA1
C(t1, . . . , tn) Sat S

provided Pred(C, S1, . . . , Sn, S).

t Sat S1 . . . t Sat SmB1 t Sat S
provided Pred(S1, . . . , Sm, S).

The t’s, S’s and C in the rule forms indicate where the rules of V1 must
use metavariables. Thus a rule of form A1 has only the freedom to
choose a concrete n and a definition for its proviso predicate Pred; the
proviso predicate implements the side condition of the rule based on
the arguments C, S1, . . . , Sn and S. A rule of form B1 is also a pair: a
concrete m and a definition of a predicate with arguments S1, . . . , Sm
and S. Freefinement requires that the rules must be sound with respect
to the following semantics:

Definition 5.1 (Semantics of the Inference Rules). .

5.1.1. For rules of the form A1:
Pred(C, S1, . . . , Sn, S) ⇒ [∀t1, . . . , tn ∈ T · |=V1t1 Sat S1 ∧
. . .∧ |=V1tn Sat Sn ⇒ |=V1C(t1, . . . , tn) Sat S]

5.1.2. For rules of the form B1:
Pred(S1, . . . , Sm, S) ⇒
[∀t ∈ T · |=V1t Sat S1 ∧ . . .∧ |=V1t Sat Sm ⇒ |=V1t Sat S]

The rule forms stipulate that the rules of V1 must be highly composi-
tional – a requirement that freefinement will exploit. For example, rules
cannot inspect or constrain the t’s that appear in premises. This will allow
freefinement to reuse the rules after specification terms are added to the term
language.

Consider the following three rules over K = {0, succ, pred} and S = {N},
where n is a metavariable:

n : N
1

succ(n) : N
succ(n) : N

2
pred(succ(n)) : N

n : N
3

pred(n) : N
provided positive(n).

5.1. FREEFINEMENT 81

Rule 1 can be written in form A1 with n = 1 by defining the proviso Pred(C,
S1, S) as C = succ ∧ S1 = S = N. Rule 2 is unacceptable, because its
premise inspects the term and requires it to match succ(n). Rule 3 is also
unacceptable, because it constrains the term in its proviso.

It will become clear later that the ‘structural’ rules of Hoare logic, such
as the rule of consequence, are examples of rules of form B1. Other rules of
Hoare logic, such as the assignment axiom and rule for sequential composi-
tion, have the form A1.

Let `V1t Sat S denote that t Sat S is derivable with V1. The soundness of
the rules with respect to the semantics of Definition 5.1 implies the soundness
of V1:

Theorem 5.1 (Soundness of V1). `V1t Sat S ⇒ |=V1t Sat S

Proof. By induction on the derivation of t Sat S:

• A rule of the form A1 was last applied. Assume Pred(C, S1, . . . , Sn, S)
and the induction hypothesis |=V1t1 Sat S1 ∧ . . .∧ |=V1tn Sat Sn. Then
|=V1C(t1, . . . , tn) Sat S by Definition 5.1.1.

• A rule of the form B1 was last applied. Assume Pred(S1, . . . , Sm, S)
and also the induction hypothesis |=V1t Sat S1 ∧ . . .∧ |=V1t Sat Sm.
From Definition 5.1.2 follows |=V1t Sat S.

Freefinement does not assume the completeness of V1, i.e. it never assumes
|=V1t Sat S ⇒ `V1t Sat S.

5.1.2 The Extended Language and Formal System

This section extends the language T with specification terms that are useful
for refinement. It gives a semantics to the resulting language U, and extends
V1 in a sound and conservative way to prove sentences of the form u Sat S
where u ∈ U.

The Extended Language U

Suppose K and S are disjoint (if they are not, then they can always be
decorated to become disjoint) and do not contain a symbol

⊔
. The extended

set of constructors

K′ = K ∪ S ∪ {
⊔

with arity n | n ∈ N}

gives rise to an extended language U, which can also be written as:

82 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

u ::= C(u1, . . . , un) | S |
⊔

(u1, . . . , un)

A term of the form S is called a spec term, and a term of the form
⊔

(u1,
. . . , un) is called the join of u1, . . . , un. Intuitively, S is a generic term that
satisfies S, and

⊔
(u1, . . . , un) is a generic term that satisfies any S that any

of the u1, . . . , un satisfy. Although the details will become clear later, the
reasons for adding these terms are simple: the refinement system should be
able to refine spec terms into other terms for top-down development, and join
terms will be important for simplifying rules of the form B1 where m > 1.
If there are no rules of the form B1 where m > 1, then join terms and their
consequent treatment can be omitted.

A couple of constructs are used for giving a semantics to U. Let X denote
a subset of T, and let Y denote a subset of S. Specs(X) is the set of all
specifications that all the terms in X satisfy, and Terms(Y) is the set of
terms of T that satisfy all the specifications in Y:

Definition 5.2 (Specs and Terms). .

• Specs(X)
def
= {S | ∀t ∈ X· |=V1t Sat S}

• Terms(Y)
def
= {t | ∀S ∈ Y· |=V1t Sat S}

An antitone Galois connection1 exists between Specs and Terms:

Lemma 5.2. X ⊆ Terms(Y) ⇔ Y ⊆ Specs(X)

Proof. X ⊆ Terms(Y)
⇔ {definition of Terms and ⊆}

∀t ∈ X · ∀S ∈ Y · |=V1t Sat S
⇔ {predicate calculus}

∀S ∈ Y · ∀t ∈ X · |=V1t Sat S
⇔ {definition of Specs and ⊆}

Y ⊆ Specs(X)

Antitone Galois connections have several well-known properties. For in-
stance, (Terms ◦ Specs) and (Specs ◦Terms) are extensive, increasing and
idempotent and therefore closure operators. Freefinement relies on the fol-
lowing properties (their proofs appear in Appendix B):

Corollary 5.3. .

5.3.1. X ⊆ Terms(Specs(X))

1Also known as an order-reversing or contravariant Galois connection.

5.1. FREEFINEMENT 83

5.3.2. Terms(Specs(Terms(Y))) = Terms(Y)

5.3.3. Specs(X) ⊆ Specs(X′) ⇔ Terms(Specs(X)) ⊇ Terms(Specs(X′))

5.3.4. Terms(Y ∪ Y′) = Terms(Y) ∩ Terms(Y′)

The following auxiliary definition provides a shorthand for the set of all
terms of the form C(t1, . . . , tn) where t1 ∈ X1, . . . , tn ∈ Xn:

C(X1, . . . , Xn)
def
= {C(t1, . . . , tn) |

∧
i∈1..n ti ∈ Xi}

For example, it yields a singleton set for nullary constructors:

{C() |
∧
i∈1..0 ti ∈ Xi} = {C() | True} = {C()}

The semantics of U is given by the function [[]] of type U → P(T), i.e.
every term in U denotes a set of terms from T:

Definition 5.3 (Semantics of U). .

[[C(u1, . . . ,un)]]
def
= Terms(Specs(C([[u1]], . . . , [[un]])))

[[S]]
def
= Terms({S})

[[
⊔

(u1, . . . , un)]]
def
=

⋂
i∈1..n [[ui]]

If the relation |=V1 Sat is well-behaved in a sense that will be made
precise later, then [[u]] has a simple intuitive explanation: it denotes the set
of all primitive terms, i.e. terms from T, that refine u. For a term C(u1,
. . . ,un), first consider C([[u1]], . . . , [[un]]) – the set of terms of the form C(t1,
. . . ,tn) where t1 ∈ [[u1]] (i.e. t1 refines u1) and . . . and tn ∈ [[un]]. All the
specifications that all these terms implement are then collected, and any
primitive term that satisfies all such specifications refines C(u1, . . . ,un). The
primitive terms that refine S are exactly those that satisfy S. Finally,

⊔
(u1,

. . . , un) is refined by any primitive term that refines all u1, . . . , un.
For all u, the set [[u]] is a fixpoint of Terms ◦ Specs and hence a closed

element:

Lemma 5.4. Terms(Specs([[u]])) = [[u]]

Proof. By induction on the structure of u:

• If u has the form C(u1, . . . ,un) or S, then [[u]] = Terms(Y) for some Y
and the result follows by Corollary 5.3.2.

84 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

• If u has the form
⊔

(u1, . . . , un), assume [[ui]] = Terms(Specs([[ui]]))
for all i ∈ 1..n. So [[

⊔
(u1, . . . , un)]] =

⋂
i∈1..n Terms(Specs([[ui]])) =

Terms(
⋃
i∈1..n Specs([[ui]])) by Corollary 5.3.4, and Corollary 5.3.2 con-

cludes the proof.

The rest of the chapter introduces further properties of the semantics as
needed.

Extending V1: Preliminaries

The next section will extend V1 to obtain a formal system V2 for proving
sentences of the form u Sat S. The aim is to construct a sound and conser-
vative extension of V1. Informally, a sound extension of V1 must have equal
or more power:

Definition 5.4 (Sound Extension). V2(K′,S′, |=V2 Sat) is a sound exten-
sion of V1(K,S, |=V1 Sat) if and only if

1. V2 uses richer terms and specifications:
K ⊆ K′ and S ⊆ S′

2. V2 can prove everything that V1 can prove:
∀t ∈ T, S ∈ S · `V1t Sat S ⇒ `V2t Sat S

3. V2 uses a richer semantics:
∀t ∈ T, S ∈ S · |=V2t Sat S ⇒ |=V1t Sat S

4. V2 is sound:
∀u ∈ U, S′ ∈ S′ · `V2u Sat S′ ⇒ |=V2u Sat S′

As a consequence, ∀t ∈ T, S ∈ S · `V2t Sat S ⇒ |=V1t Sat S, which
intuitively means that V2 restricted to K and S is sound with respect to the
semantics of V1.

In a sound and conservative extension, the converse of requirement 2 also
holds:

Definition 5.5 (Sound and Conservative Extension). A formal system
V2(K′,S′, |=V2 Sat) is a sound and conservative extension of
V1(K,S, |=V1 Sat) if and only if

1. V2 is a sound extension of V1.

2. V1 and V2 restricted to K and S have equal derivability:
∀t ∈ T, S ∈ S · `V1t Sat S ⇔ `V2t Sat S

5.1. FREEFINEMENT 85

Although a sound and conservative extension cannot prove more sentences
of the form t Sat S, it is still useful for extending the term language and
installing a richer semantics. It can also extend the specifications, but the
V2 of the next section will simply use S.

The Extended Formal System V2

The construction of V2 starts with the empty set of rules and proceeds in
two steps:

1. For each rule of V1, replace t’s by u’s and add the resulting rule. This
change of metavariables yields the rule forms A2 and B2 in V2:

u1 Sat S1 . . . un Sat SnA2
C(u1, . . . , un) Sat S

provided Pred(C, S1, . . . , Sn, S).

u Sat S1 . . . u Sat SmB2 u Sat S
provided Pred(S1, . . . , Sm, S).

2. Add the following rules for spec terms and joins:

Spec
S Sat S

u Sat S
Join ⊔

(. . . , u, . . .) Sat S

By induction on the derivation, V1 and V2 are equivalent with respect to
derivability on T, i.e. `V1t Sat S ⇔ `V2t Sat S. So for V2 to be a sound and
conservative extension of V1, it will suffice to equip V2 with a richer semantics
and to prove it sound.

The Sat relation between U and S is defined as follows:

Definition 5.6 (Extended Satisfaction). .

|=V2u Sat S
def
= ∀t ∈ [[u]] · |=V1t Sat S

Furthermore, the U-semantics of t contains t as an element:

Lemma 5.5 (Term Embedding). ∀t ∈ T · t ∈ [[t]]

Proof. By induction on the structure of t. Suppose t = C(t1, . . . , tn) and
assume t1 ∈ [[t1]], . . . , tn ∈ [[tn]]. So t ∈ C([[t1]], . . . , [[tn]]), which is a subset
of Terms(Specs(C([[t1]], . . . , [[tn]]))) by Corollary 5.3.1.

86 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Therefore |=V2t Sat S⇒ |=V1t Sat S holds, and the soundness proof of V2

establishes that V2 is a sound and conservative extension of V1:

Theorem 5.6 (Soundness of V2). `V2u Sat S ⇒ |=V2u Sat S

Proof. By induction on the structure of the derivation:

• For each rule of the form A2, assume Pred(C, S1, . . . , Sn, S) and assume

∀t1 ∈ [[u1]] · |=V1t1 Sat S1
...

∀tn ∈ [[un]] · |=V1tn Sat Sn

So ∀t1 ∈ [[u1]], . . . , tn ∈ [[un]] · |=V1C(t1, . . . , tn) Sat S because the
corresponding rule of the form A1 in V1 is sound with respect to
Definition 5.1.1. So S ∈ Specs(C([[u1]], . . . , [[un]])) and hence ∀t ∈
Terms(Specs(C([[u1]], . . . , [[un]]))) · |=V1t Sat S.

• For each rule of the form B2, assume Pred(S1, . . . , Sm, S) and assume
∀t ∈ [[u]] · |=V1t Sat S1 ∧ . . . ∧ |=V1t Sat Sm.

Now ∀t ∈ [[u]] · |=V1t Sat S because the corresponding rule of the form
B1 in V1 is sound with respect to Definition 5.1.2.

• Spec: ∀t ∈ Terms({S}) · |=V1t Sat S by definition.

• Join: Assume ∀t ∈ [[u]] · |=V1t Sat S. If t ∈ [[
⊔

(. . . , u, . . .)]] then t ∈
[[u]] and hence |=V1t Sat S.

Extended satisfaction has an alternative characterisation that freefine-
ment will also use:

Lemma 5.7. |=V2u Sat S ⇔ S ∈ Specs([[u]])

Proof. |=V2u Sat S
⇔ {definition}

∀t ∈ [[u]] · |=V1t Sat S
⇔ {definition of Specs}

S ∈ Specs([[u]])

5.1. FREEFINEMENT 87

5.1.3 System V2 and Refinement

The next section will construct several refinement systems, or calculi, that
are based on V2. These refinement systems are formal systems for proving
sentences of the form u v u′. The definition of the refinement relation makes
the semantics of refinement precise:

Definition 5.7 (Refinement). |=u v u′
def
= [[u]] ⊇ [[u′]]

This definition leads to simple proofs, and is equivalent to several other
formulations. The following theorem states one such alternative, and its
proof mentions others:

Lemma 5.8 (Equivalent Characterisation of Refinement). .
|=u v u′ ⇔ ∀S · |=V2u Sat S ⇒ |=V2u

′ Sat S

Proof. [[u]] ⊇ [[u′]]
⇔ {Lemma 5.4}

Terms(Specs([[u]])) ⊇ Terms(Specs([[u′]]))
⇔ {Corollary 5.3.3}

Specs([[u]]) ⊆ Specs([[u′]])
⇔ {definition of ⊆}

∀S · S ∈ Specs([[u]]) ⇒ S ∈ Specs([[u′]])
⇔ {Lemma 5.7}

∀S · |=V2u Sat S ⇒ |=V2u
′ Sat S

If |=V1 Sat is well-behaved, then there is also another explanation for
defining |=u v u′ as [[u]] ⊇ [[u′]]: u′ refines u iff every primitive term that
refines u′ also refines u. Put differently, u′ refines u iff u′ constrains the
set of eventual primitive terms that refinement can produce to the same or
higher degree compared to u. So u can be seen as a placeholder for any of the
primitive terms in [[u]], and the role of refinement is to reduce the uncertainty.

Many examples of refinements will follow later, so here is a small one: a
join term implements the least upper bound (join) of its immediate subterms
with respect to v, hence the name. In particular:

1. ∀i ∈ 1..n · |=ui v
⊔

(u1, . . . , un)

2. If (∀i ∈ 1..n · |=ui v u), then |=
⊔

(u1, . . . , un) v u.

The notation u ≡ u′ is a shorthand for [[u]] = [[u′]], which is equivalent to
|=u v u′ ∧ |=u′ v u.

A refinement system R will be sound if and only if `Ru v u′ implies |=u v
u′. In the next section, freefinement will construct several sound refinement
systems where each system R is related to V2 by the properties Harmony 1
and 2 below.

88 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Harmony 1. If `V2u Sat S and `Ru v u′, then `V2u
′ Sat S.

Intuitively, Harmony 1 says that V2 contains sufficient machinery to prove
the same properties about u′ that it could prove about u. In other words, R
is not too powerful for V2.

Harmony 2. If `V2u Sat S, then `RS v u.

Intuitively, Harmony 2 means that the refinement system R contains suf-
ficient machinery to refine a specification into any term that satisfies it ac-
cording to V2. In other words, V2 is embedded in R and hence R is not too
weak.

Harmony 1 is stronger than the converse of Harmony 2:

Theorem 5.9. If V2 and a refinement system R are related by Harmony 1,
then `RS v u ⇒ `V2u Sat S.

Proof. Assume `RS v u. Since `V2S Sat S by Spec, it follows from Har-
mony 1 that `V2u Sat S.

A refinement system R is called harmonic iff it satisfies Harmony 1 and 2.
Harmonic refinement systems interoperate nicely with V2. In fact, the proofs
of Harmony 1 and 2 in the next section are constructive in the sense that
they enable proof translation. Given a V2-proof of u Sat S and an R-proof of
u v u′, they describe a V2-proof of u′ Sat S. Based on a V2-proof of u Sat S,
they show how to build an R-proof for S v u. Since Harmony 1 is established
constructively, given an R-proof of S v u, the proof of Theorem 5.9 shows
how to build a V2-proof for u Sat S.

The final refinement system that freefinement produces will also have a
specific desired form. This form guarantees that refinement proofs are ‘linear’
developments where terms can be refined in-place. Formally, a refinement
system has the desired form if the rules with premises describe either the
transitivity or the monotonicity of refinement. All the other rules must be
axioms, i.e. without any premise.

5.1.4 The Refinement of Refinement Systems

V2 can be linearised in a series of steps to obtain a sound and harmonic refine-
ment system of the desired form. At most six steps are necessary according
to this presentation – the exact number depends on V1. The steps make it
easy to prove and maintain soundness and harmony, which would otherwise
be more complex to establish for the final refinement calculus.

5.1. FREEFINEMENT 89

Many of the steps take a previously constructed refinement system and
add or remove rules to obtain a new system. If a sound and harmonic refine-
ment system is extended with a rule that is sound and respects Harmony 1,
then the resulting system will be sound and harmonic. There is no need to
prove Harmony 2 again, because the new refinement system can still derive
all sentences that the old one could derive. If a rule is removed from a sound
and harmonic refinement system, then the resulting system remains sound
and will also be harmonic if it satisfies Harmony 2. A simple way of showing
that Harmony 2 still holds is to show that any application of the old rule can
be achieved by a combination of rules that remain in the system.

Getting Started: R1

The first refinement system R1 is obtained from V2 by a simple syntactic
transformation: each sentence u Sat S becomes S v u. R1 has rules of the
form A3 and B3, a Spec rule and also a Join rule if join terms were needed:

S1 v u1 . . . Sn v unA3
S v C(u1, . . . , un)

provided Pred(C, S1, . . . , Sn, S).

S1 v u . . . Sm v u
B3 S v u
provided Pred(S1, . . . , Sm, S).

Spec
S v S

S v u
Join

S v
⊔

(. . . , u, . . .)

V2 and R1 are isomorphic: a proof of u Sat S in V2 corresponds to a proof
of S v u in R1 and vice versa, so `V2u Sat S ⇔ `R1S v u. The soundness
proof of R1 relies on the following equivalence:

Lemma 5.10. |=V2u Sat S ⇔ |=S v u

Proof. |=V2u Sat S
⇔ {Lemma 5.7}

{S} ⊆ Specs([[u]])
⇔ {Lemma 5.2}

[[u]] ⊆ Terms({S})

Theorem 5.11 (Soundness of R1). `R1u v u′ ⇒ |=u v u′

90 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Proof. If `R1u v u′, then u has the form S and `V2u
′ Sat S. The soundness

of V2 implies |=V2u
′ Sat S, and Lemma 5.10 in turn implies |=S v u′.

Theorem 5.12. R1 is harmonic.

Proof. Harmony 2 holds by construction. For Harmony 1, assume `R1u v
u′. Then u has the form S′′ and `V2u

′ Sat S′′ by construction. That `V2u Sat
S′ (i.e. `V2S

′′ Sat S′) implies `V2u
′ Sat S′ for all S′ follows by induction on

the derivation of S′′ Sat S′:

• Spec: S′ and S′′ are the same. Since `V2u
′ Sat S′′, it holds that `V2u

′

Sat S′.

• For each rule of the form B2: S and S′ are the same. Assume Pred(S1,
. . . , Sm, S), `V2u Sat S1, . . . , `V2u Sat Sm, and by the induction hypoth-
esis also `V2u

′ Sat S1, . . . , `V2u
′ Sat Sm. So the rule being considered

is applicable and `V2u
′ Sat S. Hence `V2u

′ Sat S′.

Note: if V2 has only rules of the form A2 where n = 0 and/or rules of the
form B2 where m = 0, then R1 is a refinement system of the desired form
and freefinement stops.

Adding Transitivity: R2

The refinement system R2 extends R1 with the rule Trans which states that
refinement is transitive:

u1 v u2 u2 v u3
Trans u1 v u3

Trans is sound because ⊇ is transitive, and it maintains Harmony 1
since implication is transitive. So R2 is sound and harmonic.

Simplification: R3

The presence of Spec and Trans in R2 allows the simplification of rules of
the form B3 with m = 1:

S1 v u
B3 S v u
provided Pred(S1, S).

For an arbitrary rule of this form, consider the derivation

5.1. FREEFINEMENT 91

Spec
S1 v S1B3 S v S1

provided Pred(S1, S).

By virtue of having been derived, the new rule

B3 S v S1

provided Pred(S1, S).

is sound and maintains Harmony 1, and can therefore be added to R2 to
obtain a sound and harmonic refinement system. In fact, it can replace the
old version without breaking Harmony 2, since removing the old version will
not decrease the derivable set of sentences: every application of the old B3

can be changed into:

B3 S v S1 S1 v u
Trans

S v u

since Pred(S1, S) is guaranteed.
The refinement system R3 is the same as R2, except that the rules of the

form B3 with m = 1 are replaced by their simplified versions. R3 is sound
and harmonic.

Note: if V2 has only rules of the form A2 where n = 0 and rules of the
form B2 where m ≤ 1, then R3 is a refinement system of the desired form
and freefinement stops.

Adding Monotonicity: R4

All the constructors of U are monotone with respect to v, i.e. the following
rules are sound:

ui v u′i
C-i

C(u1, . . . , ui, . . . , un) v C(u1, . . . , u′i, . . . , un)

ui v u′i
Join-i ⊔

(u1, . . . , ui, . . . , un) v
⊔

(u1, . . . , u′i, . . . , un)

Moreover, these rules maintain harmony:

Lemma 5.13. C-i maintains Harmony 1.

Proof. Assume ∀S′ · `V2ui Sat S′ ⇒ `V2u
′
i Sat S′. That ∀S · `V2C(u1, . . . ,

ui, . . . , un) Sat S ⇒ `V2C(u1, . . . , u′i, . . . , un) Sat S follows by induction
on the derivation of C(u1, . . . , ui, . . . , un) Sat S:

92 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

• A2: Suppose `V2uj Sat Sj for j ∈ 1..n, and also suppose Pred(C, S1,
. . . , Sn, S) holds. Since `V2u

′
i Sat Si, the same rule A2 can be applied

to derive C(u1, . . . , u′i, . . . , un) Sat S.

• B2: Suppose `V2C(u1, . . . , ui, . . . , un) Sat Sj for j ∈ 1..m, and sup-
pose Pred(S1, . . . , Sm, S). The induction hypothesis is the assumption
`V2C(u1, . . . , u′i, . . . , un) Sat Sj for j ∈ 1..m. Since Pred(S1, . . . , Sm,
S), the same rule B2 is applicable and hence `V2C(u1, . . . , u′i, . . . , un)
Sat S.

Lemma 5.14. Join-i maintains Harmony 1.

Proof. Assume ∀S′ · `V2ui Sat S′ ⇒ `V2u
′
i Sat S′. That ∀S · `V2

⊔
(u1, . . . ,

ui, . . . , un) Sat S ⇒ `V2

⊔
(u1, . . . , u′i, . . . , un) Sat S follows by induction

on the derivation of
⊔

(u1, . . . , ui, . . . , un) Sat S:

• Join: Suppose uj Sat S was the premise for some j ∈ 1..n. If j 6= i,
then apply Join to the premise uj Sat S to derive the required

⊔
(u1,

. . . , u′i, . . . , un) Sat S. If j = i, then by assumption `V2u
′
i Sat S holds,

and the result follows by Join.

• B2: Suppose `V2

⊔
(u1, . . . , ui, . . . , un) Sat Sj for j ∈ 1..m, and sup-

pose Pred(S1, . . . , Sm, S). The induction hypothesis is the assumption
`V2

⊔
(u1, . . . , u′i, . . . , un) Sat Sj for j ∈ 1..m. Since Pred(S1, . . . , Sm,

S), the same rule B2 is applicable and hence `V2

⊔
(u1, . . . , u′i, . . . , un)

Sat S.

Let the notation v[u] denote a term in U whose parse tree is factored into
two parts: a core tree v with a ‘hole’ where the sub-tree for u fits. The rule
Mono packages C-i and Join-i in a single convenient form:

u v u′
Mono

v[u] v v[u′]

Informally, the rule Mono allows in-place refinement: if u0 can be factored
as v[u], and u′ refines u, then v[u′] refines u0.

Mono is sound and maintains harmony because C-i and Join-i are sound
and maintain harmony. The refinement system R4 extends R3 with Mono.
It is sound and harmonic.

5.1. FREEFINEMENT 93

Simplification: R5

The rule Mono makes it possible to simplify:

• The Join rule:

S v u
Join

S v
⊔

(. . . , u, . . .)

• Rules of the form A3 with n ≥ 1:

S1 v u1 . . . Sn v unA3
S v C(u1, . . . , un)

provided Pred(C, S1, . . . , Sn, S).

Consider the derivation:

Spec
S v S

Join
S v

⊔
(. . . , S, . . .)

By virtue of having been derived, the simplified rule

Join
S v

⊔
(. . . , S, . . .)

is sound and respects Harmony 1. It can replace the old version of Join
without decreasing derivability, because any application of the old version
can be achieved by:

Join
S v

⊔
(. . . , S, . . .)

S v u
Mono ⊔

(. . . , S, . . .) v
⊔

(. . . , u, . . .)
Trans

S v
⊔

(. . . , u, . . .)

Likewise, for each rule of the form A3, the derived rule

A3
S v C(S1, . . . , Sn)

provided Pred(C, S1, . . . , Sn, S).

is sound and respects harmony. It makes the old version redundant, since
any application of the old rule can be replaced by:

A3
S v C(S1, . . . , Sn)

E1

. . .

En

94 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

where Ei is given by:

S v C(u1, . . . , ui−1, Si, . . . , Sn) Pi
Trans

S v C(u1, . . . , ui, Si+1, . . . , Sn)

and Pi is the proof tree:

Si v ui
Mono

C(u1, . . . , ui−1, Si, . . . , Sn) v C(u1, . . . , ui, Si+1, . . . , Sn)

Apart from these simplifications, the refinement system R5 is the same as
R4. It is sound and harmonic.

Note: if V2 does not include rules of the form B2 where m > 1, then R5

has the desired form and freefinement stops.

Wrapping Up: R6

It remains to simplify rules of the form B3 with m > 1:

S1 v u . . . Sm v u
B3 S v u
provided Pred(S1, . . . , Sm, S).

If Pred(S1, . . . , Sm, S), then R5 can derive:

Join
S1 v

⊔
(S1, . . . , Sm) · · · Join

Sm v
⊔

(S1, . . . , Sm)
B3

S v
⊔

(S1, . . . , Sm)

The derived rule

B3
S v

⊔
(S1, . . . , Sm)

provided Pred(S1, . . . , Sm, S).

is therefore sound and respects Harmony 1. Together with the rule:

Unjoin ⊔
(u, . . . , u) v u

which is trivially sound and respects Harmony 1, it can replace the old B3

because any application of the old rule can be rewritten as:

5.1. FREEFINEMENT 95

B3
S v

⊔
(S1, . . . , Sm)

F1

. . .

Fm G
Trans

S v u

where G is Unjoin, Fi is given by:

S v
⊔

(
i−1︷ ︸︸ ︷

u, . . . , u, Si, . . . , Sm) Qi
Trans

S v
⊔

(u, . . . , u, Si+1, . . . , Sm)

and Qi is the proof tree:

Si v u
Mono ⊔

(u, . . . , u, Si, . . . , Sm) v
⊔

(u, . . . , u︸ ︷︷ ︸
i

, Si+1, . . . , Sm)

R6 is the same as R5, except that it includes Unjoin and replaces rules
of the form B3 where m > 1 with their simplified versions. R6 is sound,
harmonic and of the desired form.

5.1.5 Discussion

R6 can be made more powerful in several ways. For example, the following
generalisation of Join is sound and preserves Harmony 1:

Join′
u v

⊔
(. . . , u, . . .)

The same holds for the reflexivity of refinement, which generalises Spec, and
other rules such as Unnest:

Unnest ⊔
(u1, . . . , un) v

⊔
(u1, . . . , ui−1, u′1, . . . , u′m, ui+1, . . . , un)

provided 1 ≤ i ≤ n and ui =
⊔

(u′1, . . . , u′m).

In specific applications of freefinement, it might also be useful to add
derived rules to R6. Examples of this will follow later.

Freefinement assumes as little as possible about |=V1 Sat and is conse-
quently very generic. As one might expect, additional assumptions can help
to construct more powerful refinement systems. For example, suppose ‘plus’
is a constructor that is commutative in the sense that

96 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

∀t1, t2 ∈ T, S ∈ S · |=V1plus(t1, t2) Sat S ⇔ |=V1plus(t2, t1) Sat S

Then Specs(plus([[u1]], [[u2]])) = Specs(plus([[u2]], [[u1]])) because

S ∈ Specs(plus([[u1]], [[u2]]))
⇔ ∀t1 ∈ [[u1]], t2 ∈ [[u2]] · |=V1plus(t1, t2) Sat S
⇔ ∀t1 ∈ [[u1]], t2 ∈ [[u2]] · |=V1plus(t2, t1) Sat S
⇔ S ∈ Specs(plus([[u2]], [[u1]]))

So [[plus(u1, u2)]] = [[plus(u2, u1)]] and therefore the refinement rule plus(u1,
u2) ≡ plus(u2, u1) is sound. Depending on the rules of V1, it might also
preserve harmony.

As mentioned before, the semantic function [[]] and the refinement order
v have nice interpretations when |=V1 Sat is well-behaved. Here is the
definition:

Definition 5.8 (Well-behavedness). |=V1 Sat is well-behaved iff
∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · |=V1C(t1, . . . , tn) Sat S ⇒
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))) · |=V1t Sat S

There is also an alternative characterisation of well-behavedness:

Lemma 5.15. |=V1 Sat is well-behaved iff
∀C∈ K, t1, . . . , tn ∈ T · Terms(Specs({C(t1, . . . , tn)})) =
Terms(Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))))

Proof. ti ∈ Terms(Specs({ti})) for i ∈ 1..n by Corollary 5.3.1, so
{C(t1, . . . , tn)} ⊆ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))). Hence
by Corollary B.1.3 in Appendix B, Specs({C(t1, . . . , tn)}) ⊇
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))).

Therefore:
|=V1 Sat is well-behaved
⇔

∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · |=V1C(t1, . . . , tn) Sat S ⇒
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))) · |=V1t Sat S
⇔

∀C∈ K, t1, . . . , tn ∈ T, S ∈ S · S ∈ Specs({C(t1, . . . , tn)}) ⇒
S ∈ Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))
⇔

∀C∈ K, t1, . . . , tn ∈ T · Specs({C(t1, . . . , tn)}) ⊆
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))
⇔ {by the reasoning above}

∀C∈ K, t1, . . . , tn ∈ T · Specs({C(t1, . . . , tn)}) =
Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn}))))

The result then follows by Corollary 5.3.3.

5.1. FREEFINEMENT 97

Freefinement does not require well-behavedness of |=V1 Sat , but the
next theorem shows that the intuitions behind the definitions are simple
when |=V1 Sat is well-behaved. For example, Theorem 5.16.3 says that [[u]]
is the set of all primitive terms that refine u.

Theorem 5.16. If |=V1 Sat is well-behaved, then

5.16.1. ∀t ∈ T · [[t]] = Terms(Specs({t}))

5.16.2. ∀t ∈ T, S ∈ S · |=V1t Sat S ⇔ |=V2t Sat S

5.16.3. ∀t ∈ T, u ∈ U · t ∈ [[u]] ⇔ |=u v t

Proof. .

5.16.1. By induction on the structure of t. Suppose t = C(t1, . . . , tn)
and assume [[ti]] = Terms(Specs({ti})) for i ∈ 1..n. Then:
[[t]] = Terms(Specs(C([[t1]], . . . , [[tn]])))

= {induction hypothesis}
Terms(Specs(C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))))

= {Lemma 5.15}
Terms(Specs({C(t1, . . . , tn)})) = Terms(Specs({t})).

5.16.2. |=V1t Sat S
⇔ {definition of Specs}

S ∈ Specs({t})
⇔ {Corollary B.1.7 in Appendix B}

S ∈ Specs(Terms(Specs({t})))
⇔ {Theorem 5.16.1}

S ∈ Specs([[t]])
⇔ {Lemma 5.7}

|=V2t Sat S

5.16.3. The ⇐ proof is trivial since t ∈ [[t]]. For ⇒, assume {t} ⊆
[[u]]. Then Terms(Specs({t})) ⊆ Terms(Specs([[u]])) by Corol-
lary B.1.5 in Appendix B, and [[t]] ⊆ [[u]] by Theorem 5.16.1 and
Lemma 5.4.

Whether |=V1 Sat is well-behaved depends partly on the expressivity of
specifications. For example, suppose

K = {x := e | e is an arithmetic expression} ∪ { # }

98 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

i.e. there is a nullary constructor x := e for all arithmetic expressions e, and
a binary constructor for sequential composition. Suppose S = {Even x}, and
|=V1t Sat Even x holds iff, if t is executed in any state where x is even, then
x is even in every resulting state. So |=V1x := x + 1 # x := x + 1 Sat Even x,
but it is not the case that |=V1x := x + 1 Sat Even x. In fact, x := x + 1 does
not satisfy any specification. This implies that Terms(Specs({x := x + 1}))
= T, so x := 1 # x := 1 ∈ Terms(Specs({x := x + 1})) # Terms(Specs({x :=
x + 1})). But |=V1x := 1 # x := 1 Sat Even x does not hold, hence |=V1 Sat

is not well-behaved.
Even though |=V1 Sat is not well-behaved, it is still possible to have

inference rules that are amenable to freefinement, for example:

1
x := e Sat Even x

provided e ∈ {. . . , -2, 0, 2, . . . }.
t Sat Even x t′ Sat Even x

2
t # t′ Sat Even x

If S is instead a set of specifications of the form [P,Q], where P is a
precondition and Q a postcondition, and

|=V1t # t′ Sat [P,Q] ⇔ ∃R· |=V1t Sat [P,R] ∧ |=V1t
′ Sat [R,Q]

then it is easy to show that this |=V1 Sat is well-behaved.
The completeness of V1 is a sufficient condition for the well-behavedness

of |=V1 Sat :

Theorem 5.17. If V1 is complete, then |=V1 Sat is well-behaved.

Proof. If V1 is complete, then |=V1C(t1, . . . , tn) Sat S ⇔ `V1C(t1, . . . ,
tn) Sat S. The well-behavedness of |=V1 Sat follows by induction on the
derivation of C(t1, . . . , tn) Sat S:

• For each rule of the form A1, assume Pred(C, S1, . . . , Sn, S) and Si ∈
Specs({ti}) for all i ∈ 1..n. So ∀t′i ∈ Terms(Specs({ti}))· |=V1t

′
i Sat Si

for all i ∈ 1..n. The rule is sound with respect to Definition 5.1.1, hence
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1t Sat S.

• For each rule of the form B1, assume Pred(S1, . . . , Sm, S) and ∀t
∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1t Sat Si for all
i ∈ 1..m. The rule is sound w.r.t. Definition 5.1.2, so
∀t ∈ C(Terms(Specs({t1})), . . . , Terms(Specs({tn})))·|=V1t Sat S.

There are several ways to establish harmony between V2 and the refine-
ment calculi. If a refinement calculus R includes the rule Trans and enjoys
the derivability property `V2u Sat S ⇔ `RS v u, then it is trivially har-
monic. Including Trans in R1 and maintaining the derivability property

5.2. APPLICATIONS 99

at each step also yields a nice presentation: it requires more work to show
that R1 is harmonic, but the treatment of R4 becomes simpler. This sim-
plification also applies to the existing presentation: R3 includes Trans; it
is harmonic and satisfies the derivability property by Theorem 5.9. Adding
C-i and Join-i does not break the derivability property, and hence preserves
harmony.

5.2 Applications

5.2.1 Lambda Calculus

The top left corner of Figure 5.1 contains a type system λ1 for the lambda
calculus. By considering pairs of the form (typing context, type) as specifi-
cations, it is possible to apply freefinement and obtain a refinement calculus
for (extended) lambda terms in the spirit of Denney [20]. The inputs to
freefinement are as follows:

1. K = Var ∪ {λx. | x ∈ Var} ∪ { }
Note that K defines the language T of lambda terms:

e ::= x | λx. e | e e′

Here and in the following, x ranges over the set of variables Var, and e
ranges over T.

2. S = {[Γ; τ] | Γ ∈ Context ∧ τ ∈ Type}, where Context is the set
of typing contexts and Type is the set of types that contains the type
constructor → . The intended representation of a typing context Γ is
a list of variable names paired with types. Variables may appear more
than once in Γ, and variable lookup uses the rightmost occurrence. In
the following, σ and τ range over Type, and Γ ranges over Context.

3. |=V1 Sat is defined by:

• |=V1x Sat [Γ; τ] ⇔ x : τ ∈ Γ

• |=V1λx. e Sat [Γ; τ] ⇔ ∃σ, τ ′ · τ = σ → τ ′ ∧ |=V1e Sat [Γ, x : σ; τ ′]

• |=V1e e′ Sat [Γ; τ] ⇔ ∃σ · |=V1e Sat [Γ;σ → τ] ∧ |=V1e
′ Sat [Γ;σ]

4. V1, shown in the top right corner of Figure 5.1, is obtained from λ1 by
replacing Γ ` e : τ with e Sat [Γ; τ]. The rules Var, Abs and App are
all of the form A1 with n = 0, 1 and 2 respectively. For example, in
the case of Abs, Pred(C, S1, S) is defined as
∃x, Γ, σ, τ · C = λx. ∧ S1 = [Γ, x : σ; τ] ∧ S = [Γ;σ → τ].

100 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

λ1 V1

x : τ ∈ Γ
Var

Γ ` x : τ

Γ, x : σ ` e : τ
Abs

Γ ` λx. e : σ → τ

Γ ` e : σ → τ
Γ ` e′ : σ

App
Γ ` e e′ : τ

Var
x Sat [Γ; τ]

provided x : τ ∈ Γ.

e Sat [Γ, x : σ; τ]
Abs

λx. e Sat [Γ;σ → τ]

e Sat [Γ;σ → τ]
e′ Sat [Γ;σ]

App
e e′ Sat [Γ; τ]

λ2 R5

x : τ ∈ Γ
Var

Γ ` x : τ

Γ, x : σ ` f : τ
Abs

Γ ` λx. f : σ → τ

Γ ` f : σ → τ
Γ ` f ′ : σ

App
Γ ` f f ′ : τ

Spec
Γ ` [Γ;σ] : σ

Var
[Γ; τ] v x

provided x : τ ∈ Γ.

Abs
[Γ;σ → τ] v λx. [Γ, x : σ; τ]

App
[Γ; τ] v [Γ;σ → τ] [Γ;σ]

Spec
[Γ;σ] v [Γ;σ]

f1 v f2 f2 v f3
Trans

f1 v f3

f v f ′
Mono

g[f] v g[f ′]

Figure 5.1: Freefinement and a typed lambda calculus.

5.2. APPLICATIONS 101

Since V1 does not contain rules of the form B1 where m > 1, freefinement
does not add join terms to the lambda calculus. The system λ2 in Figure 5.1
is V2 where f Sat [Γ; τ] is written instead as Γ ` f : τ . The system R5, shown
in the bottom right of Figure 5.1, is the final harmonic refinement calculus
that freefinement produces.

Here is an example top-down typing derivation with R5:

[Γ; (σ → τ)→ (σ → τ)]
v “Abs”
λx. [Γ, x : σ → τ ;σ → τ]

v “Mono with Abs”
λx. λy. [Γ, x : σ → τ, y : σ; τ]

v “Mono with App”
λx. λy. ([Γ, x : σ → τ, y : σ;σ → τ] [Γ, x : σ → τ, y : σ;σ])

v “Twice Mono with Var”
λx. λy. (x y)

Since R5 is harmonic and V2 is a sound and conservative extension of V1, it
holds that `λ1Γ ` λx. λy. (x y) : (σ → τ)→ (σ → τ).

One might wish to extend R5 using knowledge particular to lambda cal-
culus typing. It is simple to show that V1 is complete, so

`λ1Γ ` e : τ ⇔ `V1e Sat [Γ; τ] ⇔ |=V1e Sat [Γ; τ]

Furthermore, by Theorems 5.17 and 5.16.2,

|=V1e Sat [Γ; τ] ⇔ |=V2e Sat [Γ; τ]

and because V2 is a sound and conservative extension of V1,

`V1e Sat [Γ; τ] ⇔ `V2e Sat [Γ; τ]

Consider the property of preservation:

Definition 5.9. A relation ⊆ T× T satisfies preservation
def
=

∀Γ, τ , e, e′ · if `λ1Γ ` e : τ and e e′, then `λ1Γ ` e′ : τ .

Theorem 5.18. If satisfies preservation, then:

5.18.1. If e e′, then |=e v e′.

5.18.2. If `V2e Sat [Γ; τ] and e e′, then `V2e
′ Sat [Γ; τ].

Proof. The proof of 5.18.2 is trivial. For 5.18.1:

102 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

∀Γ, τ , e, e′ · `λ1Γ ` e : τ ∧ e e′ ⇒ `λ1Γ ` e′ : τ
⇔ {predicate logic}

∀e, e′ · e e′ ⇒ (∀Γ, τ · `λ1Γ ` e : τ ⇒ `λ1Γ ` e′ : τ)
⇔ {equivalent terms}

∀e, e′ · e e′ ⇒ (∀S ∈ S · |=V2e Sat S ⇒ |=V2e
′ Sat S)

⇔ {Lemma 5.8}
∀e, e′ · e e′ ⇒ |=e v e′

So any relation that satisfies preservation contains only sound refinements
that satisfy Harmony 1, and can augment R5 to yield a sound and harmonic
refinement system. Examples of relations that satisfy preservation include:

• The α-conversion relation.

• The β-reduction relation.

• The η-contraction relation. So λx. (e x) v e, provided x does not ap-
pear free in e.

• The relation ≤ on closed terms, where e ≤ e′ exactly when e has fewer
types than e′.

Here is a small example that uses the η-contraction extension:

λx. λy. λz. ((x y) z)
v {Mono with η-contraction}

λx. λy. (x y)
v {Mono with η-contraction}

λx. x

5.2.2 Hoare Logic

Figure 5.2 contains system H, a Hoare logic for simple imperative programs.
P is a precondition, Q a postcondition, and c a command in the Hoare triple
{P}c{Q}, and |=H{P}c{Q} is the usual partial correctness interpretation of
{P}c{Q}. By interpreting a specification as a pre-post pair, the rules of H do
not fit the rule forms A1 and B1, since the proviso of AuxVarElim inspects
the command c to determine the variables that it writes and reads. However,
if specifications also keep track of written and read variables, then it becomes
possible to apply freefinement to obtain a refinement calculus in the spirit of
Morgan [50]. Here are the inputs:

1. There are constructors for assignments, sequential composition, condi-
tionals and loops:

5.2. APPLICATIONS 103

H

{P}c{Q}
AuxVarElim {∃v · P}c{∃v ·Q}
provided v /∈ writes(c) ∪ reads(c).

{P′}c{Q′}
Consequence {P}c{Q}
provided P ⇒ P′ and Q′ ⇒ Q.

{P}c{Q}
Constancy {P ∧ R}c{Q ∧ R}
provided FV (R) ∩ writes(c) = ∅.

{P}c{Q} {P′}c{Q′}
Disj {P ∨ P′}c{Q ∨Q′}

VarAssign {P[e/x]}x := e{P}

{P}c{Q} {Q}c′{R}
SeqComp {P}c # c′{R}

{P ∧ b}c{Q} {P ∧ ¬b}c′{Q}
Cond {P}if b then c else c′{Q}

{I ∧ b}c{I}
Loop {I}while b do c{I ∧ ¬b}

Figure 5.2: Freefinement and Hoare logic: the system H.

104 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

V1

c Sat x; y :{P,Q}
AuxVarElim

c Sat x; y :{∃v · P,∃v ·Q}
provided v /∈ x ∪ y.

c Sat x′; y′ :{P′,Q′}
Consequence

c Sat x; y :{P,Q}
provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

c Sat x; y :{P,Q}
Constancy

c Sat x; y :{P ∧ R,Q ∧ R}
provided FV (R) ∩ x = ∅.

c Sat x; y :{P,Q} c Sat x; y :{P′,Q′}
Disj

c Sat x; y :{P ∨ P′,Q ∨Q′}

VarAssign
x := e Sat x; FV (e) :{P[e/x],P}

c Sat x; y :{P,Q} c′ Sat x′; y′ :{Q,R}
SeqComp

c # c′ Sat x ∪ x′; x ∪ x′ :{P,R}

c Sat x; y :{P ∧ b,Q} c′ Sat x′; y′ :{P ∧ ¬b,Q}
Cond

if b then c else c′ Sat x ∪ x′; y ∪ y′ ∪ FV (b) :{P,Q}

c Sat x; y :{I ∧ b, I}
Loop

while b do c Sat x; y ∪ FV (b) :{I, I ∧ ¬b}

Figure 5.3: Freefinement and Hoare logic: the system V1.

5.2. APPLICATIONS 105

V2

s Sat x; y :{P,Q}
AuxVarElim

s Sat x; y :{∃v · P, ∃v ·Q}
provided v /∈ x ∪ y.

s Sat x′; y′ :{P′,Q′}
Consequence

s Sat x; y :{P,Q}
provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

s Sat x; y :{P,Q}
Constancy

s Sat x; y :{P ∧ R,Q ∧ R}
provided FV (R) ∩ x = ∅.

s Sat x; y :{P,Q} s Sat x; y :{P′,Q′}
Disj

s Sat x; y :{P ∨ P′,Q ∨Q′}

VarAssign
x := e Sat x; FV (e) :{P[e/x],P}

s Sat x; y :{P,Q} s′ Sat x′; y′ :{Q,R}
SeqComp

s # s′ Sat x ∪ x′; x ∪ x′ :{P,R}

s Sat x; y :{P ∧ b,Q} s′ Sat x′; y′ :{P ∧ ¬b,Q}
Cond

if b then s else s′ Sat x ∪ x′; y ∪ y′ ∪ FV (b) :{P,Q}

s Sat x; y :{I ∧ b, I}
Loop

while b do s Sat x; y ∪ FV (b) :{I, I ∧ ¬b}

Spec
x; y :{P,Q} Sat x; y :{P,Q}

s Sat x; y :{P,Q}
Join ⊔

(. . . , s, . . .) Sat x; y :{P,Q}

Figure 5.4: Freefinement and Hoare logic: the system V2.

106 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

R6

AuxVarElim
x; y :{∃v · P,∃v ·Q} v x; y :{P,Q}

provided v /∈ x ∪ y.

Consequence
x; y :{P,Q} v x′; y′ :{P′,Q′}

provided x ⊇ x′ and y ⊇ y′ and P ⇒ P′ and Q′ ⇒ Q.

Constancy
x; y :{P ∧ R,Q ∧ R} v x; y :{P,Q}

provided FV (R) ∩ x = ∅.

Disj
x; y :{P ∨ P′,Q ∨Q′} v

⊔
(x; y :{P,Q}, x; y :{P′,Q′})

VarAssign
x; FV (e) :{P[e/x],P} v x := e

SeqComp
x ∪ x′; x ∪ x′ :{P,R} v x; y :{P,Q} # x′; y′ :{Q,R}

Cond
x ∪ x′; y ∪ y′ ∪ FV (b) :{P,Q}
v if b then x; y :{P ∧ b,Q} else x′; y′ :{P ∧ ¬b,Q}

Loop
x; y ∪ FV (b) :{I, I ∧ ¬b} v while b do x; y :{I ∧ b, I}

Spec
x; y :{P,Q} v x; y :{P,Q}

Join
x; y :{P,Q} v

⊔
(. . . , x; y :{P,Q}, . . .)

s1 v s2 s2 v s3
Trans s1 v s3

s v s′
Mono

t[s] v t[s′]

Unjoin ⊔
(s, . . . , s) v s

Figure 5.5: Freefinement and Hoare logic: the system R6.

5.2. APPLICATIONS 107

K = {x := e | x ∈ Var ∧ e ∈ IntExp}
∪ { # }
∪ {if b then else | b ∈ BoolExp}
∪ {while b do | b ∈ BoolExp}

2. A specification consists of two sets of variables and two assertions,
written in a notation resembling Morgan’s specification statement [49]:

S =
{

x; y :{P,Q} | x, y ∈ P(Var) ∧ P, Q ∈ Assertion
}

3. In the specification x; y :{P,Q}, the x and y are upper bounds on the
sets of variables written and read by the command respectively, the P
is a precondition and the Q a postcondition:

|=V1c Sat x; y :{P,Q} def
= writes(c)⊆ x ∧ reads(c)⊆ y ∧ |=H{P}c{Q}

4. V1, shown in Figure 5.3, has the following relationship with H:

`V1c Sat x; y :{P,Q} ⇔ writes(c)⊆ x ∧ reads(c)⊆ y ∧ `H{P}c{Q}
Note that:

• The non-structural rules of H have counterparts in V1 that embody
the definitions of writes and reads . For example, the conclusion
of Cond reflects that
writes(if b then c else c′)

def
= writes(c) ∪ writes(c′) and

reads(if b then c else c′)
def
= reads(c) ∪ reads(c′) ∪ FV (b).

• The structural rules of H that inspect c for its write and/or read
sets have counterparts in V1 that consult the specification instead.
See for example the proviso of AuxVarElim.

• Consequence in V1 allows the enlargement of write and read
sets. This loosening of the bounds is useful in refinement develop-
ments, because then the resulting code is not forced to write and
read all the variables that were originally available for writing and
reading.

The V1-counterparts of the structural rules of H are all of the form B1.
For example, m = 1 in the case of Constancy, and m = 2 for Disj.
The other rules are of the form A1. For example, n = 2 in the case of
Cond, and n = 1 for Loop.

The systems V2 and R6 that freefinement produces appear in Figures 5.4
and 5.5. R6 yields several derived rules that may be useful in practical re-
finement developments. For example, the rule:

108 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

DerivedVarAssign
x; y :{P,Q} v z := e

provided z ∈ x and FV (e) ⊆ y and P⇒ Q[e/z].

can replace VarAssign, and is similar to the assignment law of Morgan
(Law 1.3 on p. 8 of [50]). Likewise, the derived rule:

FollowingVarAssign
x; y :{P,Q} v x; y :{P,Q[e/z]} # z := e

provided z ∈ x and FV (e) ⊆ y.

is similar to the following assignment law of Morgan (Law 3.5 on p. 32
of [50]).

Here is an example showing that R6 can derive a correct factorial algo-
rithm starting with its specification:

y,z; x,y,z :{true, y = x!}
v “SeqComp”

y,z; ∅ :{true, y = 1 ∧ z = 0} # y,z; x,y,z :{y = 1 ∧ z = 0, y = x!}

The first spec statement is refined as follows:

y,z; ∅ :{true, y = 1 ∧ z = 0}
v “SeqComp”

y; ∅ :{true, y = 1} # z; ∅ :{y = 1, y = 1 ∧ z = 0}
v “Twice Mono with Consequence”

y; ∅ :{1 = 1, y = 1} # z; ∅ :{y = 1 ∧ 0 = 0, y = 1 ∧ z = 0}
v “Twice Mono with VarAssign”

y := 1 # z := 0

And for the second spec statement:

y,z; x,y,z :{y = 1 ∧ z = 0, y = x!}
v “Consequence”

y,z; x,y,z :{y = z!, y = z! ∧ ¬z 6=x}
v “Loop”

while z 6=x do y,z; y,z :{y = z! ∧ z 6=x, y = z!}
v “Mono with SeqComp”

while z 6=x do z; z :{y = z! ∧ z6=x, y·z = z!} # y; y,z :{y·z = z!, y = z!}
v “Mono with VarAssign”

while z 6=x do z; z :{y = z! ∧ z6=x, y·z = z!} # y := y·z
v “Mono with Consequence”

while z 6=x do z; z :{y·(z+1) = (z+1)!, y·z = z!} # y := y·z

5.2. APPLICATIONS 109

v “Mono with VarAssign”
while z 6=x do z := z+1 # y := y·z

Since `R6y,z; x,y,z :{true, y = x!} v y := 1 # z := 0 # while z 6=x do z := z+1 # y
:= y·z, it is the case that `V1y := 1 # z := 0 # while z 6=x do z := z+1 # y :=
y·z Sat y,z; x,y,z :{true, y = x!} and hence also
`H{true}y := 1 # z := 0 # while z 6=x do z := z+1 # y := y·z{y = x!}.

Here is another example of using R6; it involves join statements. The
statement

⊔
(x; y : {P1,Q1}, x; y : {P2,Q2}) is the join of the specification

statements x; y : {P1,Q1} and x; y : {P2,Q2}. Expressing it as a spec state-
ment is simple because⊔

(x; y :{P1,Q1}, x; y :{P2,Q2}) ≡ x; y :{P1, Q1} also {P2, Q2}

where the definition of {P1, Q1} also {P2, Q2}, taken from [58], is: {(P1 ∧
z=1) ∨ (P2 ∧ z 6=1), (Q1 ∧ z=1) ∨ (Q2 ∧ z 6=1)} where z is fresh. R6 can
derive both directions of refinement. Firstly:⊔

(x; y :{P1,Q1}, x; y :{P2,Q2})
v “Twice Mono with Consequence”⊔

(x; y :{∃z· (P1∧z=1 ∨ P2∧z 6=1) ∧ z=1,∃z· (Q1∧z=1 ∨ Q2∧z 6=1) ∧ z=1},
x; y :{∃z· (P1∧z=1 ∨ P2∧z 6=1) ∧ z6=1,∃z· (Q1∧z=1 ∨ Q2∧z 6=1) ∧ z 6=1})

v “Twice Mono with AuxVarElim”⊔
(x; y :{(P1∧z=1 ∨ P2∧z6=1) ∧ z=1, (Q1∧z=1 ∨ Q2∧z6=1) ∧ z=1},
x; y :{(P1∧z=1 ∨ P2∧z6=1) ∧ z 6=1, (Q1∧z=1 ∨ Q2∧z6=1) ∧ z6=1})

v “Twice Mono with Constancy”⊔
(x; y :{P1∧z=1 ∨ P2∧z 6=1,Q1∧z=1 ∨ Q2∧z 6=1},
x; y :{P1∧z=1 ∨ P2∧z 6=1,Q1∧z=1 ∨ Q2∧z 6=1})

v “Unjoin”
x; y :{P1, Q1} also {P2, Q2}

Secondly:

x; y :{(P1 ∧ z=1) ∨ (P2 ∧ z 6=1), (Q1 ∧ z=1) ∨ (Q2 ∧ z6=1)}
v “Disj”⊔

(x; y :{P1 ∧ z=1,Q1 ∧ z=1}, x; y :{P2 ∧ z 6=1,Q2 ∧ z6=1})
v “Twice Mono with Constancy”⊔

(x; y :{P1,Q1}, x; y :{P2,Q2})

Leino and Manohar [43] mention several uses of the join of spec-like state-
ments.

110 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

5.2.3 Discussion

The type system λ1 considered above is very simple. Freefinement also applies
to System F and other more sophisticated type systems.

Although λ1 had only rules of the form A1, typing rules of the form B1

are quite common – examples include rules for subtyping and intersection
types:

Γ ` e : τ
Sub

Γ ` e : τ ′

provided τ <: τ ′.

Γ ` e : τ Γ ` e : τ ′
Inter

Γ ` e : τ∧τ ′

There is no golden recipe for adapting proof systems to make them
amenable to freefinement. However, enriching specifications and/or terms
might help. The Hoare logic example used enriched specifications to keep
track of write and read sets. Consider again the two problematic rules from
before:

succ(n) : N
2

pred(succ(n)) : N

n : N
3

pred(n) : N
provided positive(n).

Rule 2 can be accommodated by choosing S = {‘z’,‘s’,‘p’} × {N}. Intuitively,
the specification (‘s’,N) tracks the fact that the outermost constructor is
‘succ’. The rule then becomes:

n : (‘s’,N)
2

pred(n) : (‘p’,N)

Rule 3 can be accommodated by choosing S = N × {N}. Then the sentence
n : (i,N) tracks the fact that term n denotes the natural number i. The
adapted rule is of the form A1 with n = 1:

n : (i,N)
3

pred(n) : (i− 1,N)

provided i > 0.

In some cases it might be useful to enrich the term language. For example,
consider the rule of concurrent separation logic [7] that removes auxiliary
commands (ghost assignments):

Γ ` {P}c{Q}
Auxiliary

Γ ` {P}c\a{Q}
provided a ∈ aux (c) and a ∩ (FV (P) ∪ FV (Q)) = ∅.

This rule is not of the form A1 or B1, because it contains a meta-operation
in the conclusion. However, if the meta-operation is turned into an explicit
constructor (and specifications track auxiliaries), then the rule is of the form
B1 with m = 1 and freefinement can handle it.

5.3. CONSTRUCTING CORRECT OO PROGRAMS 111

5.3 Constructing correct OO programs

This section outlines a technique that provides correctness by construction
for OO programs. It applies freefinement to the statement verification part
of the separation logic proof system in Chapter 2, and combines the result
with rules that deal with non-statement constructs.

The judgements for statement verification in Section 2.5 have the form
∆; Γ `s {P}s{Q}. No rule modifies ∆ and Γ, so they are constant parameters
of statement verification. Spec statements can consequently exclude ∆ and
Γ and retain the form x; y : {P,Q} of the previous section. Freefinement
also adds join statements to the language, and proceeds as in the Hoare
logic example. The resulting refinement judgements have the form ∆; Γ ` s
v s′. For example, the refinement counterpart of the Frame rule resembles
Constancy from before:

FV (R) ∩ x = ∅
∆; Γ ` x; y :{P ∗ R,Q ∗ R} v x; y :{P,Q}

The ability to refine statements is useful in the context of OO program-
ming, but correctness by construction also needs to accommodate other lan-
guage constructs and concepts such as data refinement [49]. To this end, the
rest of the section presents a suitably extended language and a development
calculus.

5.3.1 Language and proof rules

Figure 5.6 shows the grammar of a slightly modified language. The high-
lighted productions generate non-executable code, which facilitate the grad-
ual development of methods and statements. The only other difference with
the language of Chapter 2 is that method declarations of the form ‘Sig Sd Ss
do s end’ do not explicitly indicate whether they introduce or override the
method. However, the earlier convention that all non-constructor methods
must be listed in all subclasses makes it simple to distinguish these cases.

The proof rules of Chapter 2 are sufficient to verify code that does not use
the highlighted productions. Verifying programs that are partially developed
needs additional rules for the new constructs. Familiar rules apply to spec
and join statements:

∆; Γ `s {P}x; y :{P,Q}{Q}

∆; Γ `s {P}s{Q}
∆; Γ `s {P}

⊔
(. . . , s, . . .){Q}

112 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

L ::= class G Inh Def Feat end
Inh ::= inherit H

Def ::= define D

Feat ::= feature M F
D ::= x.pG(t:y) as P Define clause
M ::= Sig Method declaration
| Sig Sd
| Sig Sd Ss
| Sig Sd Ss do s end
| inherit Sig Sd Ss

F ::= f: Type Field declaration
Sig ::= m(Args) Rt
Sd ::= dynamic Spec Dynamic specification
Ss ::= static Spec Static specification
Spec ::= {P} {Q} | {P} {Q} also Spec Specification
s ::= x; y :{P,Q} Spec statement
|
⊔

(s1, . . . , sn) Join statement
| skip
| x := e Assignment
| s ; s Sequential compostition
| if e then s else s end Conditional
| while e do s end Loop
| x: Type. s Local variable block
| x := new G Object allocation
| x := y.f Field lookup
| x.f := e Field update
| x := y.m(e) | y.m(e) Dynamically dispatched call
| x := y.G::m(e) | y.G::m(e) Direct method call

e ::= x | e + e | e = e | Void | 0 | 1 | 2 | . . . Expression
Type ::= INT | BOOL | G

Args ::= x: Type Formal arguments
Rt ::= ε | : Type Return type

Figure 5.6: The extended grammar.

5.3. CONSTRUCTING CORRECT OO PROGRAMS 113

A method signature is always verified:

∆; Γ `m Sig in G parent H

In order to reduce duplication and improve readability, the presentation
will frequently use holes or placeholders in the premises of rules. These holes
can then be filled in different ways to obtain different rules. For example,
the rule for verifying a method signature with a dynamic specification has a
hole, [HoleB.s], that captures the Behavioral subtyping proof obligation:

[HoleB.s.]

∆; Γ `m Sig Sd in G parent H

[HoleB.s.] can be filled in two ways:

H.m /∈ dom(Γ)

Sd = dynamic SpecG
Γ(H.m) = (u,SpecH)
∆ ` SpecG =⇒ SpecH

The rule for signatures with dynamic and static specifications also uses
[HoleB.s.], and adds a proof obligation for Dynamic dispatch:

[HoleB.s.]
[HoleD.d.]

∆; Γ `m Sig Sd Ss in G parent H

[HoleD.d.] is a placeholder for:

Ss = static SpecS
Sd = dynamic SpecD
∆ ` SpecS

Current : G
=⇒ SpecD

The following definition is convenient for referring to a collection of well-
formed and verified classes:

` L
def
= ∀L∈ L· apf (L);specs(L) `c L

114 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

5.3.2 Development calculus

The calculus for developing correct OO programs uses judgements of the
form L L′. The symbol can be read as ‘evolves to’ or ‘becomes’. To be
useful, the calculus must satisfy two properties:

• Soundness: If ` L and L L′, then ` L′.

• Completeness: If ` L then ε ∗ L.

The soundness property guarantees that the rules will maintain correct-
ness and not introduce errors. The completeness property ensures that any
correct program can be developed from scratch with the calculus. In practical
terms, this means that the calculus supports the top-down development of
every correct program. However, several rules will break with the top-down
style and enable more flexible evolution. The rest of this section summarises
the calculus.

Adding a class

Any new class needs a fresh name. A new class that does not inherit from
any user-defined class inherits no method signatures:

G /∈ class-names(L) ∪ {ANY}
L L + class G define feature end

Otherwise, it inherits from its parent the signatures of all methods that are
not constructors:

G /∈ class-names(L) ∪ {ANY}
L = L1 + class H Inh Def feature M F end
Sig = non-constructor-signatures(M)

L L + class G inherit H define feature Sig end

Adding an apf entry

Apf entries support data refinement: they describe how a class represents
the abstract concepts/structures expressed by apf predicates. Provided that
the definition is well-formed, the rule for adding an apf entry is simple:

L = L1 + class G Inh define D Feat end
pG /∈ defined-apf-entries(D)
D′ = D + x.pG(t:y) as P

L L1 + class G Inh define D′ Feat end

5.3. CONSTRUCTING CORRECT OO PROGRAMS 115

Adding a field

A new field must have a fresh name and a legal type:

L = L1 + class G Inh Def feature M F end
classes = ancestors(G,L) + G + descendants(G,L)
f /∈ field-names(classes,L)
Type ∈ legal-types(L)
F′ = F + f: Type

L L1 + class G Inh Def feature M F′ end

Adding a constructor signature

A constructor signature has the same name as its enclosing class and no
return type.

L = L1 + class G Inh Def feature M F end
Sig = G(Args)
valid-signature(Sig,G,L)
M′ = M + Sig

L L1 + class G Inh Def feature M′ F end

The predicate valid-signature(Sig,G,L) holds iff

1. ∀G ∈ G· name(Sig) /∈ signature-names(G,L)

2. If Sig has a return type, then it must be in legal-types(L)

3. The argument names in Sig are all distinct

4. The argument types of Sig are all in legal-types(L)

Adding an ordinary method signature

A new ordinary method signature gets added to a class and all its descen-
dants, which can later decide to inherit or override the eventual implemen-
tation.

L = L1 + L2

class-names(L2) = G + descendants(G,L)
name(Sig) /∈ CLASS-NAMESPACE
valid-signature(Sig,class-names(L2),L)
L2 = +i∈1..n class Hi Inhi Def i feature Mi Fi end

L′2 = +i∈1..n class Hi Inhi Def i feature Mi + Sig Fi end

L L1 + L′2

116 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Method manipulation

All remaining rules manipulate methods, and are based on the following rule:

L = L1 + L
L = class G inherit H Def feature M F end
Γ = specs(L)
∆ = apf (L)
M = M1 + M
[Holea]
M′ = M1 + M′

L L1 + class G inherit H Def feature M′ F end

Adding a dynamic specification

The rule for adding a dynamic specification to a method signature fills
[Holea] as follows:

M = m(Args) Rt
[HoleB.s.]
M′ = m(Args) Rt Sd

Adding a static specification

Static specifications are also related to data refinement, since they can state
how an operation on abstract structures/concepts, as mentioned in the dy-
namic specification, is realised in more concrete terms. The rule for adding
a static specification fills [Holea] with:

M = Sig Sd
[HoleD.d.]
M′ = Sig Sd Ss

Adding a method body

The calculus supports the refinement of method bodies, so the initial body
can well be a single spec statement, as this filling for [Holea] shows:

M = Sig Sd Ss
Sig = m(Args) Rt
Ss = static {S} {T}
[Holeb]
y = x + names(Args)
M′ = Sig Sd Ss do x; y :{S,T} end

5.3. CONSTRUCTING CORRECT OO PROGRAMS 117

The purpose of [Holeb] is to constrain x, the variable(s) that may be modi-
fied, appropriately. It has two fillings:

Rt = ε
x = ε

Rt 6= ε
x = Result

Removing a method body

This gives the opportunity to implement the body in a different way, or to
inherit a parent version. The filling for [Holea] is simple:

M = Sig Sd Ss do s end
M′ = Sig Sd Ss

This is an example of a rule that relaxes the top-down style of development.

Inheriting a method body

Inheriting a method body imposes the Inheritance proof obligation, as the
filling for [Holea] shows:

M = Sig Sd Ss
Sig = m(Args) Rt
Ss = static SpecG
Γ(H::m) = (u,SpecH)
∆ ` SpecH =⇒ SpecG
M′ = inherit Sig Sd Ss

Uninheriting a method body

The next filling for [Holea] can be used to override a method’s implementa-
tion instead of inheriting it:

M = inherit Sig Sd Ss
M′ = Sig Sd Ss

Statement refinement

This is where the result of freefinement is incorporated in the development
calculus. It fills [Holea] with:

M = Sig Sd Ss do s end
∆; Γ ` s v s′

M′ = Sig Sd Ss do s′ end

118 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

5.4 Related Work

In his work on refinement for the lambda calculus, Denney [20] treats types
as rudimentary specifications and introduces a specification construct ?τ for
each type τ . Conceptually, ?τ corresponds to [Γ; τ] where the context Γ is
left implicit. For example, consider the term λx : σ. ?τ in the context Γ. The
?τ inside the term corresponds to [Γ, x : σ; τ]. Denney also considers richer
specifications for lambda terms in his PhD thesis [21]. This results in a more
powerful refinement calculus in which specification constructs can contain
logical assumptions.

The specification statement x : [P,Q] of Morgan [49] is analogous to
x; Var : {P,Q}, since there is no restriction on the variables that the state-
ment may read. However, his specification statement is a total correctness
specification, and the accompanying refinement calculus [50] establishes total
correctness. Similar refinement calculi for total correctness were proposed by
Back [1, 2], Morris [51] and Hehner [31]. The books [50, 2, 31] contain many
examples of how correct programs can be constructed from specifications via
refinement.

Leino and Manohar [43] consider the join of Morgan’s specification state-
ments x : [P1,Q1] and x : [P2,Q2], and mention several of its uses. Free-
finement adds explicit constructors for joins, and relies on the ability to join
arbitrary terms from U in order to establish harmony.

Several systems in the literature provide refinement and correctness by
construction for OO programs [4, 48, 6, 5, 55]. The calculus in Section 5.3 is
rather minimal and not as elaborate as some published ones. Nevertheless,
several characteristics set it apart from existing proposals:

1. It is faithful to the OO paradigm and popular OO languages. It ac-
commodates references, shared mutable state, inheritance and dynamic
dispatch.

2. It uses state-of-the-art mechanisms that facilitate modular and flexible
reasoning, such as separation logic and abstract predicate families.

3. It is not postulated in isolation. The calculus has a clear relationship
with an accepted system for verifying OO programs in a bottom-up
way.

There is a relationship between observational equivalence of terms and
the function Specs, because |=V1 Sat gives rise to a notion of observability
from the specification point of view. In particular, two terms t and t′ are
observationally equivalent in this sense iff t ∼ t′, where

5.4. RELATED WORK 119

t ∼ t′
def
= Specs({t}) = Specs({t′})

It is trivial to check that ∼ is an equivalence relation. If |=V1 Sat is well-
behaved, then t ∼ t′ ⇔ [[t]] = [[t′]] (i.e. t ∼ t′ ⇔ t ≡ t′) by Corollary B.1.9
in Appendix B and Theorem 5.16.1.

120 CHAPTER 5. CORRECTNESS BY CONSTRUCTION

Chapter 6

Conclusion

The state of the art in reasoning about software has seen several recent
advances. In particular, proof systems that are based on separation logic
emerged to provide intuitive, flexible and modular reasoning for OO pro-
grams. Their success is due to the synergy of the following insights:

• Separation is a natural way to think about shared mutable data. It
leads to intuitive and simple correctness proofs for code that manipu-
lates references.

• Abstract predicate families befit reasoning about object-orientation.
They are logical abstractions that encapsulate state and hide repre-
sentation details. Subclasses can change the representation and still
satisfy the inherited specifications of routines.

• Giving two specifications to each routine resolves the tension between
saying in detail what the particular body achieves, and saying what the
general idea of the routine is that all subclasses must respect. Using
separation logic and apfs in these specifications yields elegant proofs
for OO programs.

The existing work forms a solid foundation for further investigation and
research, which can of course proceed in many directions. This thesis tackled
the following shortcomings in previous work:

• The basic apf mechanism can be too restrictive. Code sometimes de-
pends on how a particular class implements and/or relates these ab-
stractions, or properties that a whole class hierarchy will fulfill. This
is especially important in the presence of multiple inheritance, where a
class can relate and combine several concepts in various ways.

122 CHAPTER 6. CONCLUSION

• Separation logic verification excluded the executable contracts that are
present in existing OO code. These contracts may be weak and/or per-
form side-effects. They nevertheless capture useful design information
which can be exploited in reasoning.

• It is sometimes easier to write code that is correct in the first place in-
stead of hacking away and trying to verify code afterwards. Supporting
this requires calculi for correctness by construction and refinement.

All the proposed solutions fit in nicely with the existing work of Parkinson
and others [57, 58]. In particular:

• Export and axiom clauses can specify properties of and relationships
between apfs that hold for particular classes and whole class hierarchies.
The information is first verified and then made available as ordinary
assumptions to reason about the code. Together with other generalisa-
tions, export and axiom clauses allow flexible reasoning about multiple
inheritance.

• Separation logic can be used to verify that executable contracts will
always hold at runtime. Central to such reasoning is the new concept
of relative purity, which embraces side-effects in executable contracts.

• Freefinement can automatically provide a refinement calculus that in-
teroperates smoothly with the rules for statement verification. This
refinement calculus fits into a larger calculus for correctness by con-
struction, which complements the separation logic system for bottom-
up verification.

The contributions of this thesis thus advance the state of the art in the
verification of existing OO programs, and in the development of new pro-
grams that are correct by design. The ultimate hope is that, in the long
term, such techniques will encourage and enable engineers to produce soft-
ware that is more reliable.

Appendix A

Semantics of the proof
system

This appendix outlines the semantics and soundness proof of the verification
system of chapter 3. Since our system is a conservative extension of Parkinson
and Bierman’s system, the presentation closely follows the one in [58]. The
most interesting difference is the treatment of export and axiom information
in the soundness proof of the program verification rule (Theorem A.4 below).

The semantics of the logical formula is defined in terms of a state σ,
an interpretation of predicate symbols I, and an interpretation of logical
variables L. The interpretation I maps predicate names to their definitions,
whereas a definition maps a list of arguments to a set of states:

I : Preds → (Vals∗ → P(Σ))
L : Vars → Vals

Predicates are defined in the standard way:

σ, I, L |= pred(X) ⇔ σ ∈ (I(pred)(L(X)))

Definition A.1. I |= ∆ iff σ, I, L |= ∆ for all σ and L.

Under mild syntactic restrictions on predicate definitions, obeyed in this
thesis and detailed in [57], one can show that every set of disjoint predicate
definitions is satisfiable:

Lemma A.1. For any set of definitions W1, . . . Wm, D1, . . . Dn where Wi has
form wi(xi) = Qi and Dj is listed in class Gj, there exists an interpretation I
such that I |= [

∧
i∈1..m ∀xi· wi(xi) ⇔ Qi] ∧ [

∧
j∈1..n apf Gj

(Dj)] provided that
no two distinct definitions in the set define the same predicate.

124 APPENDIX A. SEMANTICS OF THE PROOF SYSTEM

The semantics of our proof system’s judgements is defined next. We do
not define the semantics of `e and `a explicitly, since we work with their
premises (valid logical formulae whose existence is guaranteed) instead. For
triples, the usual partial-correctness semantics for separation logic is used: if
the precondition holds in the start state, then 1) the statement will not fault
(access unallocated memory, for example), and 2) if the statement terminates,
then the postcondition holds in the resulting state.

Definition A.2. I |=n {P}s{Q} iff whenever σ, I, L |= P then ∀m ≤ n·

1. σ,s −→m fault does not hold, and

2. if σ,s −→m σ′,skip then σ′, I, L |= Q

The index n deals with mutual recursion in method definitions. I |=n Γ
means that all methods in Γ meet their specifications when executed for up
to n steps.

Definition A.3 (Method verification semantics). If m in G is non-abstract,
let s denote its body.
I, Γ |=0 G.m 7→ (x,{P} {Q}) always holds.
I, Γ |=n+1 G.m 7→ (x,{P} {Q}) iff

I |=n Γ ⇒ I |=n+1 {P ∗Current : G}s{Q}
if G is non-abstract and true otherwise.

I, Γ |=0 G::m 7→ (x,{S} {T}) always holds.
I, Γ |=n+1 G::m 7→ (x,{S} {T}) iff I |=n Γ ⇒ I |=n+1 {S}s{T}

I |=n Γ iff ∀methodspec ∈ Γ· I, Γ |=n methodspec

We next define the semantics of the statement judgement.

Definition A.4. ∆; Γ |= {P}s{Q} iff for all I and n, if I |= ∆ and I |=n Γ,
then I |=n+1 {P}s{Q}

In other words, for all interpretations which satisfy the assumptions ∆,
if all methods in Γ meet their specifications for up to n steps, then s meets
its specification for up to n + 1 steps.

The judgements are sound with respect to their semantics.

Lemma A.2.

1. If ∆; Γ `m . . . m . . . , then ∀I· if I |= ∆ then for all n and every spec
of m we have I, Γ |=n spec

2. If ∆; Γ `s {P}s{Q} then ∆; Γ |= {P}s{Q}

125

Whenever a judgement is derivable under weak assumptions, it can also
be derived under stronger ones.

Lemma A.3.

1. If ∆; Γ `m . . . m . . . and ∆′ ⇒ ∆, then ∆′; Γ `m . . . m . . .

2. If ∆; Γ `s {P}s{Q} and ∆′ ⇒ ∆, then ∆′; Γ `s {P}s{Q}

3. If ∆APF ,∆E,∆A; Γ `c L and ∆′ ⇒ ∆APF ,
then ∆′,∆E,∆A; Γ `c L

Finally, here is the soundness statement and detailed proof sketch of the
program verification rule.

Theorem A.4. If a program and its main body s can be proved with the
program verification rule, then ∀I,n· I |=n {true}s{true}.
Proof.

1. The goal. We have to prove ∀I,n· I |=n {true}s{true}, which abbre-
viates ∀I,n· whenever σ, I, L |= true, then ∀m ≤ n· 1) σ,s −→m fault
does not hold, and 2) if σ,s −→m σ′,skip then σ′, I, L |= true. This
can be simplified to ∀n· σ,s −→n fault does not hold.

2. Strengthened assumptions. Let ∆T
def
=
∧

i∈1..t apf (Li), where L1 . . . Lt

are all classes in the program. By Lemma A.3, we can strengthen
the assumptions under which all classes and the main body have been
verified. For every class Li, we have ∆T , ∆E, ∆A; Γ `c Li, and ∆T ∧
∆E ∧∆A; Γ `s {true}s{true} also holds for the main body s.

3. The interpretation I ′. Since ∆T ∧ ∆E ∧ ∆A; Γ `s {true}s{true},
Lemma A.2 guarantees ∆T ∧ ∆E ∧ ∆A; Γ |= {true}s{true}. This
abbreviates ∀I,n· if I |= ∆T ∧ ∆E ∧ ∆A and I |=n Γ, then I |=n+1

{true}s{true}, which can be simplified to ∀I,n· if I |= ∆T ∧∆E ∧∆A

and I |=n Γ, then ∀m ≤ n + 1· σ,s −→m fault does not hold. Now if we
can find an I ′ such that I ′ |= ∆T ∧∆E ∧∆A and ∀n· I ′ |=n Γ, then we
can instantiate I to I ′ in the formula and simplify to obtain ∀n· σ,s
−→n fault does not hold. Therefore I ′ serves as a witness that s will
never fault, which is exactly our goal.

Let I ′ be the interpretation whose existence is guaranteed by Lemma A.1
for all the where and define clauses in the program. Clearly I ′ |= ∆T .
We next prove I ′ |= ∆E and then I ′ |= ∆A.

126 APPENDIX A. SEMANTICS OF THE PROOF SYSTEM

4. Satisfiability of ∆E. Consider an arbitrary export clause E = P where
{w1(x1) = Q1; . . . ; wn(xn) = Qn} in class L. Since apf (L) `e E, we
know [apf (L) ∧ (

∧
i∈1..n ∀xi ·wi(xi) ⇔ Qi)] ⇒ P. The interpretation I ′

satisfies the antecedent, so we also have I ′ |= P. Therefore I ′ |= ∆E,
and I ′ |= ∆T ∧∆E.

5. Satisfiability of ∆A. We prove this by induction. If class G has children

H1 . . . Hk, let level(G)
def
= 1 + max(0, level(H1), . . . , level(Hk)). Fur-

thermore, P(n)
def
= ∀ G in the program such that level(G) ≤ n and for

all axiom clauses a: P in the listing of G, (∆T ∧∆E) ⇒ axiominfo(G,
a: P).

• Base case. Consider an arbitrary class G with level(G) ≤ 1 and
an axiom clause a: P appearing in it. G has no subclasses, and

(a) If G is abstract, there are no objects with dynamic type G or
a subtype thereof, thus axiominfo(G, a: P) holds vacuously
and ∆T ∧∆E implies it.

(b) If G is non-abstract, then the only objects whose dynamic
type is a subtype of G are direct instances of G. Since (∆T ∧
∆E ∧ Current : G) ⇒ P by the Implication premise, we
therefore also know (∆T ∧∆E) ⇒ axiominfo(G, a: P).

Thus P(1) holds.

• Step case. Suppose P(n) holds. Now consider a class G at level
n+1 with axiom clause a: P. Every child H of G must list a,
say a: Q. By the induction hypothesis we know (∆T ∧ ∆E) ⇒
axiominfo(H, a: Q), and by the Parent Consistency premise of
a: Q we know (∆T ∧ ∆E ∧ Q) ⇒ P. Therefore (∆T ∧ ∆E) ⇒
axiominfo(H, a: P). We have (∆T ∧ ∆E) ⇒ axiominfo(G, a: P)
if G is abstract, and the same holds if G is non-abstract since the
Implication premise of a: P guarantees (∆T ∧∆E ∧Current : G)
⇒ P. Thus P(n+1) holds.

So I ′ |= ∆T ∧∆E ∧∆A.

6. Wrapping up. We still have to prove ∀n· I ′ |=n Γ. Let m be an arbitrary
method in the program. Since ∆T ∧∆E ∧∆A; Γ `m m, by Lemma A.2
we know for all n and every spec of m that I ′, Γ |=n spec. Thus
∀n · ∀methodspec ∈ Γ· I ′, Γ |=n methodspec, in other words ∀n· I ′ |=n

Γ. �

Appendix B

Antitone Galois connections

Lemma 5.2 established that an antitone Galois connection exists between the
functions Specs and Terms:

X ⊆ Terms(Y) ⇔ Y ⊆ Specs(X) (∗)

Theorems derived from this equivalence come in pairs because of the sym-
metry between Specs and Terms. Here are a few well-known ones together
with their proofs:

Corollary B.1. .

B.1.1. X ⊆ Terms(Specs(X))

B.1.2. Y ⊆ Specs(Terms(Y))

B.1.3. X ⊆ X′ ⇒ Specs(X) ⊇ Specs(X′)

B.1.4. Y ⊆ Y′ ⇒ Terms(Y) ⊇ Terms(Y′)

B.1.5. X ⊆ X′ ⇒ Terms(Specs(X)) ⊆ Terms(Specs(X′))

B.1.6. Y ⊆ Y′ ⇒ Specs(Terms(Y)) ⊆ Specs(Terms(Y′))

B.1.7. Specs(Terms(Specs(X))) = Specs(X)

B.1.8. Terms(Specs(Terms(Y))) = Terms(Y)

B.1.9. Specs(X) ⊆ Specs(X′) ⇔ Terms(Specs(X)) ⊇ Terms(Specs(X′))

B.1.10. Terms(Y) ⊆ Terms(Y′)⇔ Specs(Terms(Y)) ⊇ Specs(Terms(Y′))

128 APPENDIX B. ANTITONE GALOIS CONNECTIONS

B.1.11. Specs(X ∪ X′) = Specs(X) ∩ Specs(X′)

B.1.12. Terms(Y ∪ Y′) = Terms(Y) ∩ Terms(Y′)

Proof. .

B.1.1. In (∗), instantiate Y with Specs(X).

B.1.3. X ⊆ “Assumption” X′ ⊆ “B.1.1” Terms(Specs(X′)). In (∗), in-
stantiate Y with Specs(X′).

B.1.5. If X ⊆ X′, then Specs(X) ⊇ Specs(X′) holds by B.1.3. The result
follows from B.1.4.

B.1.7. From B.1.1 and B.1.3 follows Specs(X)⊇ Specs(Terms(Specs(X))).
Instantiating Y with Specs(X) in B.1.2 yields
Specs(X) ⊆ Specs(Terms(Specs(X))).

B.1.9. ⇒ holds by B.1.4. From Terms(Specs(X)) ⊇ Terms(Specs(X′))
and B.1.3, Specs(Terms(Specs(X))) ⊆ Specs(Terms(Specs(X′))).
Specs(X) ⊆ Specs(X′) by B.1.7.

B.1.11. Proof by indirect equality. For arbitrary Y:

Y ⊆ Specs(X ∪ X′)
⇔ {By (∗)}

X ∪ X′ ⊆ Terms(Y)
⇔ {Set theory}

X ⊆ Terms(Y) ∧ X′ ⊆ Terms(Y)
⇔ {By (∗)}

Y ⊆ Specs(X) ∧ Y ⊆ Specs(X′)
⇔ {Set theory}

Y ⊆ Specs(X) ∩ Specs(X′)

Bibliography

[1] Ralph-Johan Back. Correctness preserving program refinements: Proof
theory and applications. Mathematical Centre Tracts, 131, 1980.

[2] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998. Graduate Texts in Com-
puter Science.

[3] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In CASSIS ’05, volume 3362 of
LNCS, pages 49–69. Springer, 2005.

[4] Paul L. Bergstein. Object-preserving class transformations. In Con-
ference proceedings on Object-oriented programming systems, languages,
and applications, OOPSLA ’91, pages 299–313, New York, NY, USA,
1991. ACM.

[5] Paulo Borba, Augusto Sampaio, Ana Cavalcanti, and Márcio Cornélio.
Algebraic reasoning for object-oriented programming. Science of Com-
puter Programming, 52(1-3):53–100, 2004.

[6] Paulo Borba, Augusto Sampaio, and Márcio Cornélio. A refinement alge-
bra for object-oriented programming. In Luca Cardelli, editor, ECOOP
’03: Object-Oriented Programming, volume 2743 of Lecture Notes in
Computer Science, pages 457–482. Springer Berlin Heidelberg, 2003.

[7] Stephen Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375:227–270, April 2007.

[8] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic
proofs of program termination in separation logic. In POPL ’08: Pro-
ceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 101–112, New York, NY,
USA, 2008. ACM.

130 BIBLIOGRAPHY

[9] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212–232, 2005.

[10] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. Compositional shape analysis by means of bi-abduction. In POPL
’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 289–300, New York,
NY, USA, 2009. ACM.

[11] Luca Cardelli. A semantics of multiple inheritance. Inf. Comput., 76(2-
3):138–164, 1988.

[12] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: cleanly supporting abstraction in design by contract:
Research articles. Softw. Pract. Exper., 35(6):583–599, 2005.

[13] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for
the Java modeling language (JML). In Proceedings of the international
conference on Software engineering research and practice (SERP ’02),
Las Vegas, pages 322–328. CSREA Press, 2002.

[14] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.
Enhancing modular OO verification with separation logic. In POPL ’08:
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 87–99, New York, NY, USA,
2008. ACM.

[15] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Ex-
perimental assessment of random testing for object-oriented software. In
ISSTA ’07: Proceedings of the 2007 international symposium on Soft-
ware testing and analysis, pages 84–94, New York, NY, USA, 2007.
ACM.

[16] D. Clarke, S. Drossopoulou, P. Müller, J. Noble, and T. Wrigstad.
Aliasing, confinement, and ownership in object-oriented programming
(IWACO). In Object-Oriented Technology. ECOOP 2008 Workshop
Reader, volume 5475 of LNCS, pages 30–41. Springer, 2008.

[17] Á. Darvas and K. Rustan M. Leino. Practical reasoning about invoca-
tions and implementations of pure methods. In FASE ’07, volume 4422
of LNCS, pages 336–351. Springer, 2007.

BIBLIOGRAPHY 131

[18] Á. Darvas and P. Müller. Reasoning about method calls in interface
specifications. Journal of Object Technology (JOT), 5(5):59–85, June
2006.

[19] Ádám Darvas and Peter Müller. Faithful mapping of model classes to
mathematical structures. IET Software, 2(6):477–499, 2008.

[20] Ewen Denney. Simply-typed underdeterminism. Journal of Computer
Science and Technology, 13:491–508, 1998.

[21] Ewen Denney. A theory of program refinement. Technical Report ECS-
LFCS-99-412, University of Edinburgh, 1999.

[22] Edsger W. Dijkstra. The humble programmer. Commun. ACM,
15(10):859–866, October 1972.

[23] Dino Distefano and Matthew J. Parkinson J. jStar: towards practi-
cal verification for Java. In OOPSLA ’08: Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming systems
languages and applications, pages 213–226, New York, NY, USA, 2008.
ACM.

[24] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen.
Incremental reasoning for multiple inheritance. In IFM ’09, pages 215–
230, Berlin, Heidelberg, 2009. Springer.

[25] Sophia Drossopoulou, Adrian Francalanza, Peter Müller, and Alexan-
der J. Summers. A unified framework for verification techniques for
object invariants. In Jan Vitek, editor, ECOOP, volume 5142 of LNCS,
pages 412–437. Springer, 2008.

[26] ECMA International. Standard ECMA-367. Eiffel: Analysis, Design
and Programming Language. 2nd edition, June 2006.

[27] Margaret A. Ellis and Bjarne Stroustrup. The annotated C++ reference
manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990.

[28] EVE. The Eiffel Verification Environment. http://se.inf.ethz.ch/
research/eve/.

[29] Gobosoft. The Gobo Eiffel Structure Library. http://www.gobosoft.
com/eiffel/gobo/structure/index.html.

http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/eve/
http://www.gobosoft.com/eiffel/gobo/structure/index.html
http://www.gobosoft.com/eiffel/gobo/structure/index.html

132 BIBLIOGRAPHY

[30] Bhargav S. Gulavani, Supratik Chakraborty, Ganesan Ramalingam, and
Aditya V. Nori. Bottom-up shape analysis. In SAS ’09, volume 5673 of
LNCS, pages 188–204. Springer, 2009.

[31] Eric C. R. Hehner. A practical theory of programming. Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

[32] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12:576–580, October 1969.

[33] Bart Jacobs and Frank Piessens. Inspector methods for state abstrac-
tion. Journal of Object Technology, 6(5):55–75, June 2007.

[34] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Tech-
nical Report CW-520, Katholieke Universiteit Leuven, August 2008.

[35] Bart Jacobs, Jan Smans, and Frank Piessens. Verifying the composite
pattern using separation logic. SAVCBS Composite pattern challenge
track, 2008.

[36] I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing,
2010. To appear.

[37] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Jayadev Misra, Tobias Nipkow, and
Emil Sekerinski, editors, FM, volume 4085 of LNCS, pages 268–283.
Springer, 2006.

[38] Neelakantan R. Krishnaswami, Lars Birkedal, Jonathan Aldrich, and
John C. Reynolds. Idealized ML and Its Separation Logic. Draft at
http://www.cs.cmu.edu/~neelk/idealized-ml-draft.pdf, 2006.

[39] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verifica-
tion challenges for sequential object-oriented programs. Formal Aspects
of Computing, 19(2):159–189, 2007.

[40] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: a behavioral interface specification language for Java. SIGSOFT
Softw. Eng. Notes, 31(3):1–38, 2006.

[41] Gary T. Leavens and Peter Müller. Information hiding and visibility
in interface specifications. In ICSE, pages 385–395. IEEE Computer
Society, 2007.

http://www.cs.cmu.edu/~neelk/idealized-ml-draft.pdf

BIBLIOGRAPHY 133

[42] K. R. M. Leino and P. Müller. Verification of equivalent-results methods.
In ESOP ’08, volume 4960 of LNCS, pages 307–321. Springer, 2008.

[43] K. Rustan M. Leino and Rajit Manohar. Joining specification state-
ments. Theor. Comput. Sci., 216(1-2):375–394, 1999.

[44] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic
contexts. In Martin Odersky, editor, ECOOP, volume 3086 of LNCS,
pages 491–516. Springer, 2004.

[45] K Rustan M Leino and Wolfram Schulte. A verifying compiler for a
multi-threaded object-oriented language. Software System Reliability
and Security, 9:351–416, 2007.

[46] Chenguang Luo and Shengchao Qin. Separation logic for multiple in-
heritance. Electr. Notes Theor. Comput. Sci., 212:27–40, 2008.

[47] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. Au-
tomatic testing of object-oriented software. In SOFSEM ’07, volume
4362 of LNCS, pages 114–129. Springer, 2007.

[48] Anna Mikhajlova and Emil Sekerinski. Class refinement and interface
refinement in object-oriented programs. In John Fitzgerald, Cliff B.
Jones, and Peter Lucas, editors, FME ’97: Industrial Applications and
Strengthened Foundations of Formal Methods, volume 1313 of Lecture
Notes in Computer Science, pages 82–101. Springer Berlin Heidelberg,
1997.

[49] Carroll Morgan. The specification statement. ACM Trans. Program.
Lang. Syst., 10:403–419, July 1988.

[50] Carroll Morgan. Programming from specifications (2nd ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1994.

[51] Joseph M. Morris. A theoretical basis for stepwise refinement and the
programming calculus. Sci. Comput. Program., 9:287–306, December
1987.

[52] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invari-
ants for layered object structures. Science of Computer Programming,
62(3):253–286, 2006.

[53] David A. Naumann. Observational purity and encapsulation. Theor.
Comput. Sci., 376(3):205–224, 2007.

134 BIBLIOGRAPHY

[54] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local rea-
soning about programs that alter data structures. In CSL ’01, volume
2142 of LNCS, pages 1–19. Springer, 2001.

[55] Richard F. Paige and Jonathan S. Ostroff. ERC – an object-oriented
refinement calculus for Eiffel. Form. Asp. Comput., 16(1):51–79, April
2004.

[56] Matthew Parkinson and Gavin Bierman. Separation logic and abstrac-
tion. In POPL ’05: Proceedings of the 32nd annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
247–258, New York, NY, USA, 2005. ACM.

[57] Matthew J. Parkinson. Local reasoning for Java. PhD thesis. Tech-
nical Report UCAM-CL-TR-654, University of Cambridge, Computer
Laboratory, November 2005.

[58] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, ab-
straction and inheritance. In POPL ’08: Proceedings of the 35th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 75–86, New York, NY, USA, 2008. ACM.

[59] Mohammad Raza and Philippa Gardner. Footprints in local reasoning.
Logical Methods in Computer Science, 5(2:4):1–27, 2009.

[60] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS ’02: Proceedings of the 17th Annual IEEE Sym-
posium on Logic in Computer Science, pages 55–74, Washington, DC,
USA, 2002. IEEE Computer Society.

[61] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-
method specifications. In FM ’08, volume 5014 of LNCS, pages 68–83.
Springer, 2008.

[62] Alexandru Salcianu and Martin C. Rinard. Purity and side effect anal-
ysis for Java programs. In VMCAI ’05, volume 3385 of LNCS, pages
199–215, 2005.

[63] Bernd Schoeller, Tobias Widmer, and Bertrand Meyer. Making specifi-
cations complete through models. In Architecting Systems with Trust-
worthy Components, volume 3938 of LNCS, pages 48–70. Springer, 2006.

[64] A. J. Summers, S. Drossopoulou, and P. Müller. The need for flexible
object invariants. In IWACO ’09: International Workshop on Aliasing,

BIBLIOGRAPHY 135

Confinement and Ownership in Object-Oriented Programming, pages 1–
9, New York, NY, USA, 2009. ACM.

[65] Stephan van Staden and Cristiano Calcagno. Reasoning about multiple
related abstractions with MultiStar. In Proceedings of the ACM inter-
national conference on Object oriented programming systems languages
and applications, OOPSLA ’10, pages 504–519, New York, NY, USA,
2010. ACM.

[66] Stephan van Staden, Cristiano Calcagno, and Bertrand Meyer. Verifying
executable object-oriented specifications with separation logic. In Theo
D’Hondt, editor, ECOOP, volume 6183 of Lecture Notes in Computer
Science, pages 151–174. Springer, 2010.

[67] Stephan van Staden, Cristiano Calcagno, and Bertrand Meyer. Free-
finement. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’12, pages
7–18, New York, NY, USA, 2012. ACM.

Publications arising from the work of this thesis are [65], [66], and [67].

	Introduction
	History and motivation
	Overview of contributions

	Background material
	Language syntax
	Logic syntax and semantics
	Specification refinement
	The specification environment
	Statement verification
	Method verification
	Class and program verification
	Useful lemmas

	Reasoning about related abstractions
	Examples
	Intertwining ancestor abstractions
	Access control and call protocols
	Diamond inheritance

	MultiStar
	Front-end
	Back-end

	Case study
	Formalisation
	Language syntax
	Operational semantics
	Logic syntax and semantics
	Specification refinement
	The specification environment
	Export information verification
	Axiom verification
	Statement verification
	Method verification
	Class and program verification

	Conclusions and related work

	Verifying executable contracts
	Background
	The abstract setting: triples and footprints
	The concrete setting

	Precondition verification
	Postcondition verification
	Class invariant verification
	Model-based specifications
	Relative purity and predicate extraction
	Relative purity
	Predicate extraction

	Implementation
	Conclusions and related work

	Correctness by construction
	Freefinement
	The Inputs
	The Extended Language and Formal System
	System V2 and Refinement
	The Refinement of Refinement Systems
	Discussion

	Applications
	Lambda Calculus
	Hoare Logic
	Discussion

	Constructing correct OO programs
	Language and proof rules
	Development calculus

	Related Work

	Conclusion
	Semantics of the proof system
	Antitone Galois connections

