
Reasoning about Multiple Related Abstractions with MultiStar

Stephan van Staden
ETH Zurich, Switzerland

Stephan.vanStaden@inf.ethz.ch

Cristiano Calcagno
Imperial College, London and Monoidics Ltd

ccris@doc.ic.ac.uk

Abstract
Encapsulated abstractions are fundamental in object-oriented
programming. A single class may employ multiple abstrac-
tions to achieve its purpose. Such abstractions are often re-
lated and combined in disciplined ways. This paper explores
ways to express, verify and rely on logical relationships be-
tween abstractions. It introduces two general specification
mechanisms: export clauses for relating abstractions in in-
dividual classes, and axiom clauses for relating abstractions
in a class and all its descendants. MultiStar, an automatic
verification tool based on separation logic and abstract pred-
icate families, implements these mechanisms in a multiple
inheritance setting. Several verified examples illustrate Mul-
tiStar’s underlying logic. To demonstrate the flexibility of
our approach, we also used MultiStar to verify the core iter-
ator hierarchy of a popular data structure library.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.3.3 [Program-
ming Languages]: Language Constructs and Features—
Classes and objects, Inheritance; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Languages, Theory, Verification

Keywords Separation logic, Multiple abstractions, Export
clauses, Axiom clauses, Multiple inheritance

1. Introduction
The use of data abstractions is a hallmark of object-oriented
(O-O) programming. A class is a typical example of such
an abstraction. In interface or general multiple inheritance
hierarchies, such as the one shown in Figure 1, a class can
combine and maintain several abstractions offered by its par-
ents. Although most examples of this paper involve abstrac-
tions in connection with inheritance, not all data abstractions

[Copyright notice will appear here once ’preprint’ option is removed.]

CURSOR

LINEAR_CURSORINDEXED_CURSOR DYNAMIC_CURSOR

BILINEAR_CURSOR

LIST_CURSOR

SET_CURSOR

BILINEAR_SET_CURSOR

Figure 1. The core Gobo cursor hierarchy.

are directly coupled with language constructs. Classes use
them for various purposes: to simplify how clients manipu-
late a class, to separate various concepts that are combined
in a class, or to encourage or enforce particular call proto-
cols. For example, a complex object with a long initializa-
tion phase can use the abstractions ‘initializing’ and ‘ready’,
with methods applicable to an ‘initializing’ object, others to
a ‘ready’ object, and some to both. Or algorithms can ma-
nipulate a mutable data structure under an ‘immutable’ ab-
straction, even if there is no interface making this explicit.

Relationships between data abstractions are important
when reasoning about O-O code. This paper explores the
problem of relating abstractions in an information hiding
setting, where implementation details of abstractions are
hidden from clients. Suppliers must therefore express and
fulfill relationships between abstractions. If a class offers
‘student’ and ‘person’ abstractions (by using inheritance, or
other means), for example, it might allow clients to convert
a ‘student’ abstraction into a ‘person’ one. Clients can then
manipulate the ‘person’ abstraction by calling e.g. library
routines. After the manipulation, they might be allowed to
convert back and assume that the number of exams the ‘stu-
dent’ has taken is still the same. Specification mechanisms
are needed to express and enforce the programmer’s inten-
tions about such relationships. This is especially important
in multiple inheritance hierarchies where classes combine
multiple abstractions in complicated ways.

A flexible mechanism for capturing data abstractions in
O-O specifications is abstract predicate families, as intro-
duced in [25, 27]. An apf (abstract predicate family) P pro-

1 2010/7/29

vides a predicate name for an abstraction; each class C can
define an entry predicate PC . The definition of PC describes
how class C implements the apf P, and is hidden from other
classes. For example, apfs S and P can be used to provide
an abstraction of students and persons in a program respec-
tively. Class STUDENT can define the entries SSTUDENT

and PSTUDENT , while other classes can define their apf en-
tries differently. The predicate x.S(age: a, exm: e) describes
object x under the ‘student’ abstraction: its age is ‘a’ and the
number of exams taken is ‘e’. If the dynamic type of x is
STUDENT, then class STUDENT can use the fact that

x.S(age: a, exm: e)⇔ x.SSTUDENT (age: a, exm: e)

In other words, the dynamic type of the first argument of
an apf predicate (in this case the dynamic type of x) deter-
mines which apf entry applies. Apf predicates can therefore
be seen to mirror dynamic dispatch of O-O programs in the
logic. The apf mechanism is modular and exercises informa-
tion hiding: only the class defining an apf entry knows the
definition and can relate its entry to the apf predicate.

The relationship described before, namely that a ‘student’
abstraction can be converted into a ‘person’ one, can be
expressed as follows:

x.S(age: a, exm: e)⇒ x.P(age: a)

Allowing the back conversion without affecting the number
of exams requires a stronger property that uses separation
logic’s ∗-connective:

x.S(age: a, exm: e)⇔ [x.P(age: a) ∗ x.RestStoP(exm: e)] (A)

where RestStoP abstracts the parts of a ‘student’ abstraction
that are independent from and not included in a ‘person’ one.
With this property, a client can now reason as the following
proof outline shows:

{x.S(age: a, exm: e)}
{x.P(age: a) ∗ x.RestStoP(exm: e)}
{x.P(age: a)}

// Manipulation of ‘person’ abstraction by library routines.
{x.P(age: a+1)}

{x.P(age: a+1) ∗ x.RestStoP(exm: e)}
{x.S(age: a+1, exm: e)}

The Frame rule of separation logic guarantees that the dis-
joint x.RestStoP(exm: e) remains unchanged. In essence, the
client uses property (A) in combination with the Frame rule
to infer an S-based specification for the library manipulation.
It is not necessary to re-specify and re-verify the library –
knowledge of the relationship saves specification overhead
and keeps reasoning modular.

To which objects the property (A) applies is a design
choice: a programmer might express that selected classes in
a heterogeneous hierarchy fulfill the relationship, or that all
classes in a homogeneous hierarchy fulfill it. We introduce
two general specification mechanisms for the two cases: ex-
port clauses to express properties that hold for individual
classes, and axiom clauses to describe properties of entire

hierarchies. If class STUDENT specifies

export
∀x,a,e· x : STUDENT⇒ [x.S(age: a, exm: e)⇔

[x.P(age: a) ∗ x.RestStoP(exm: e)]]
where {}

then a client must know that an object’s dynamic type is ex-
actly STUDENT before using the information in reasoning.
On the other hand, if class STUDENT specifies

axiom
S P: ∀a,e· S(age: a, exm: e)⇔ [P(age: a) ∗ RestStoP(exm: e)]

then clients can use the stronger implication
∀x,a,e· x <: STUDENT⇒
[x.S(age: a, exm: e)⇔ [x.P(age: a) ∗ x.RestStoP(exm: e)]]

Knowledge that the object’s dynamic type is a subtype of
STUDENT (including STUDENT) suffices to use the rela-
tionship. This is much more convenient for clients: a sound
O-O type system will guarantee that if a variable has static
type STUDENT and references an object, then the object’s
dynamic type will always be a subtype of STUDENT.

Axiom clauses offer a general facility to constrain the
implementation of abstractions in subclasses. For example,
class STUDENT can express that the number of exams a
‘student’ has taken is always non-negative, and that all sub-
classes should use its implementation of the ‘student’ ab-
straction:

axiom
exm non neg: ∀a,e· S(age: a, exm: e)⇒ 0≤ e
S constraint: ∀a,e· S(age: a, exm: e)⇔ SSTUDENT (age: a, exm: e)

Axiom clause ‘exm non neg’ guarantees clients that 0≤
e whenever they know x.S(age: a, exm: e) and x <: STU-
DENT. Subclass representation constraints such as the one
expressed in the ‘S constraint’ clause are useful for ensur-
ing safe interaction between statically and dynamically dis-
patched calls on the same object – a pervasive pattern in O-O
programs1.

The claims made in export and axiom specifications must
be checked to obtain sound reasoning. Whether or not a
class fulfills axiom clauses often depends on properties of
particular other classes, such as its parents. For this reason
our proof system has a layered assumption structure: axiom
verification can use export information of all classes in a
program, and method verification can additionally use axiom
information. Several examples in the paper show how export
and axiom clauses are verified and applied in verification.

The paper contains a formalization of our proof system
that extends the one of Parkinson and Bierman [27] with ex-
port/axiom clauses, abstract classes, abstract methods and
shared multiple inheritance2 where fields and methods of

1 Matthew Parkinson pointed out in private communication that the informal
discussion of representation constraints right before Section 5.1 and in
Section 5.5 of [27] can be made rigorous by using export and axiom clauses.
2 Inheritance with virtual base classes in C++ terminology [9].

2 2010/7/29

common ancestor classes are not replicated in the descen-
dant [8]. Apart from the use of apfs to support abstraction
and information hiding, Parkinson and Bierman’s system has
the attractive property that it can verify a wide range of in-
heritance uses and abuses. Flexible handling of inheritance is
vital in a proof system for multiple inheritance, since classes
often interrelate methods and data from parents in compli-
cated ways: methods can intertwine ancestor abstractions as
the example in Section 2.1 shows, or abstractions can share
parts in the case of diamond inheritance. Export and axiom
clauses provide flexible ways to relate abstractions, thereby
giving clients an integrated view of how methods affect ab-
stractions from different inheritance paths. Very few proof
systems exist for multiple inheritance, and no proof system
we know of can facilitate reasoning about multiple related
abstractions at the same level of abstraction as ours.

We implemented our proof system in MultiStar – a fully
automatic verification tool. MultiStar has a two-tier architec-
ture: a GUI front-end that translates Eiffel code and specifi-
cations into a simpler form for verification, and a language-
independent back-end based on jStar [5] for reasoning. The
front-end uses specifications written inside classes. It is eas-
ier to use than jStar, which currently does not have a front-
end and requires separate code and specifications. Future
front-ends for e.g. Java and C# can reuse the MultiStar back-
end: with its support for interface inheritance, export/axiom
clauses, abstract classes and abstract methods, a wide range
of programs can be verified. As we shall see, the benefits of
export and axiom clauses are not limited to multiple inher-
itance. Class DYNAMIC CURSOR of Figure 1 uses only
single inheritance, but cannot be verified with jStar because
it relies on axiom information.

All the examples presented in this paper have been ver-
ified with MultiStar. To demonstrate the flexibility of our
approach, we also used MultiStar to verify the Gobo data
structure library’s core iterator hierarchy of Figure 1. The
complete code and specifications of the examples and Gobo
case study are available online [10].

Outline Several examples illustrating the new specifica-
tion mechanisms and proof system follow in Section 2. Sec-
tion 3 presents the MultiStar tool, and Section 4 reports on
the case study with Gobo iterator classes. A formal exposi-
tion of our proof system appears in Section 5. Section 6 con-
cludes and mentions related work. The Appendix contains
an overview of the formal semantics of our proof system,
and a proof of soundness.

2. Examples
The examples are written in a language resembling Eif-
fel [8]. A class is divided into top-level sections. The inherit
section lists its parent classes, the define section its apf entry
definitions, the export and axiom sections its export and ax-
iom clauses respectively, and methods and fields are written
in the feature section. Empty sections are simply omitted.

Two reserved program variables Current and Result denote
the current object (‘this’) and the result of a function call
respectively. Current is never Void (‘null’).

Methods have both static and dynamic specifications. A
specification is written in pre-post form {P} {Q}, or alter-
natively {P1} {Q1} also {P2} {Q2} to indicate that both
are satisfied (Section 5.4 shows how the also form abbre-
viates a single pre-post specification). A method’s dynamic
specification must be satisfied by all subclasses, and is used
to verify dynamically-dispatched calls. A static specification
describes properties about the particular method body, and
is used to verify statically-dispatched calls, including Pre-
cursor (‘super’ or ‘base’) calls and direct calls x.C::m(e) in
C++ style.

We omit the target of a method call or field assignment
if it is Current. Similarly in the logic, f ↪→ e abbreviates
Current.f ↪→ e (meaning that the Current object’s field f
has value e), and if the first argument of an apf predicate or
entry is Current then it is simply omitted. We also employ
the method specification shorthands of [27]: if only a static
specification is listed, the dynamic specification is assumed
to be exactly the same, and if only a dynamic specification
is listed, then a static specification is derived by replacing
each apf predicate whose first argument is Current with the
entry predicate of the class. In other words, if the shorthand
is used in class C, then p(t : e) is replaced with pC (t : e).
Specifications of non-constructor methods are furthermore
propagated down the hierarchy: if a class does not explicitly
list an inherited method, then it is assumed to have the
same static and dynamic specifications as determined for
the parent class. To avoid ambiguity, we require that if the
method is available in multiple parents, then they must all
have identical specifications for it.

The examples do not discuss details that are uninterest-
ing from this paper’s perspective, such as proofs of correct-
ness of simple ancestor classes. Readers interested in details
are referred to the formalization in Section 5; the paper of
Parkinson and Bierman [27] also contains several examples.

2.1 Intertwining ancestor abstractions
Classes CELL and COUNTER are shown in Figure 2.
CELL models mutable integer-valued cells and uses apf
Cell, while COUNTER uses apf Cn. The apfs provide log-
ical abstractions of mutable cells and counters respectively.
Class CCELL in Figure 3, the focus of this example, inherits
from CELL and COUNTER. It intertwines the functionality
of its parents by overriding set value to store the value and
increment the count. It uses apf Cc to provide an abstrac-
tion of such objects in the logic, and ‘grows’ CellCCELL to
accommodate method set value, as we shall see.

The single export clause of CCELL relates the Cc, Cell
and Cn abstractions. Only the predicate in front of where
is exported for reasoning. Predicate definitions following
where are used only to verify the clause and allow a class
to hide implementation/representation details in its interface

3 2010/7/29

class CELL
define x.CellCELL(val: v) as x.value ↪→ v
feature

introduce CELL(v: int)
dynamic {value ↪→ } {Cell(val: v)}
do value := v end

introduce value(): int
dynamic {Cell(val: v)} {Cell(val: v) ∗ Result = v}
do Result := value end

introduce set value(v: int)
dynamic {Cell(val:)} {Cell(val: v)}
do value := v end

value: int
end

class COUNTER
define x.CnCOUNTER(cnt: c) as x.count ↪→ c
feature

introduce COUNTER()
dynamic {count ↪→ } {Cn(cnt: 0)}
do count := 0 end

introduce count(): int
dynamic {Cn(cnt: c)} {Cn(cnt: c) ∗ Result = c}
do Result := count end

introduce increment()
dynamic {Cn(cnt: c)} {Cn(cnt: c+1)}
do tmp: int; tmp := count; count := tmp + 1 end

count: int
end

Figure 2. The CELL and COUNTER classes.

without introducing new predicate families. For example,
if we modify the representation of class CCELL, then the
definition of Rest(x,v) can be changed without invalidating
correctness proofs of client code.

To verify an export clause, we must prove that the ex-
ported predicate follows from the standard apf assumptions
of the class and the predicate definitions after the where key-
word. The proof for CCELL’s export clause is trivial; for de-
tail about standard apf assumptions, the reader is referred to
Section 5.10. Note that export clauses are not verified for
a particular dynamic type, since the standard apf assump-
tions of a class do not assume a particular one. It is therefore
sound to use exported information to verify axiom clauses
and methods of other classes, as we will do in later exam-
ples. However, nothing prevents the user from writing ex-
ported predicates as implications where the antecedent is of
the form x : Type (see the export clause of CCELL). In this
case information in the consequent can be applied only to
objects satisfying this type constraint.

For the constructor we have to prove that its body sat-
isfies the static specification (note that a Precursor call is
syntactic sugar for a direct call):

class CCELL inherit CELL COUNTER
define
x.CellCCELL(val: v, cnt: c) as x.CcCCELL(val: v, cnt: c)
x.CnCCELL(cnt: c) as x.CnCOUNTER(cnt: c)
x.CcCCELL(val: v, cnt: c) as x.CellCELL(val: v) ∗ x.CnCOUNTER(cnt: c)
export
∀x· x : CCELL⇒ [∀c,v· x.Cc(val: v, cnt: c)⇔ x.Cell(val: v, cnt: c)⇔
(x.Cn(cnt: c) ∗ Rest(x,v))] where { Rest(x,v) = x.CellCELL(val: v) }

feature
introduce CCELL(v: int)
dynamic {value ↪→ ∗ count ↪→ } {Cc(val: v, cnt: 0)}
do Precursor{CELL}(v); Precursor{COUNTER}() end

inherit value(): int
dynamic {Cc(val: v, cnt: c)} {Cc(val: v, cnt: c) ∗ Result = v}

also {Cell(val: v, cnt: c)} {Cell(val: v, cnt: c) ∗ Result = v}

override set value(v: int)
dynamic {Cc(val: , cnt: c)} {Cc(val: v, cnt: c+1)}

also {Cell(val: , cnt: c)} {Cell(val: v, cnt: c+1)}
do CCELL::increment(); CELL::set value(v) end

inherit count(): int
dynamic {Cc(val: v, cnt: c)} {Cc(val: v, cnt: c) ∗ Result = c}

also {Cn(cnt: c)} {Cn(cnt: c) ∗ Result = c}

inherit increment()
dynamic {Cc(val: v, cnt: c)} {Cc(val: v, cnt: c+1)}

also {Cn(cnt: c)} {Cn(cnt: c+1)}
end

// In an arbitrary class or library:
use counter(c: COUNTER)

dynamic {c.Cn(cnt: v)} {c.Cn(cnt: v+10)}

use cell(c: CELL, v: int)
dynamic {c.Cell(val:)} {c.Cell(val: v)}

Figure 3. The CCELL class and two library methods.

{value ↪→ ∗ count ↪→ }
CELL::CELL(v)

{CellCELL(val: v) ∗ count ↪→ }
Precursor{COUNTER}()

{CellCELL(val: v) ∗ CnCOUNTER(cnt: 0)}
{CcCCELL(val: v, cnt: 0)}

The constructor body simply passes the needed fields to
parent constructors and treats their internal representations
abstractly thereafter.3

Method value is respecified in CCELL with Cell and Cc
specificiations. Since it inherits the body from CELL, we
must prove that the new static specification is satisfied as-
suming the body’s static specification of CELL. This method
proof obligation is called Inheritance in the formalization,
and readers that are unfamiliar with specification refinement
are referred to Section 5.4 for detail. By applying the Frame
rule (with CnCOUNTER(cnt: c)) and then the rule of Con-
sequence, we can derive each also-ed static specification,

3 To simplify the formal presentation of proofs and make them more trans-
parent, we mention fields explicitly in constructor preconditions. MultiStar
injects them automatically – see Section 3.1 for more discussion.

4 2010/7/29

which is sufficient to conclude the proof4. Another proof
obligation for value is Behavioral subtyping, where we must
show that the dynamic specification listed in CELL follows
from the new one, i.e. that CCELL maintains the old spec-
ification. For the proof, we first ‘choose’ the Cell dynamic
spec5 and then remove the cnt tag by applying the Auxiliary
Variable Elimination and Consequence rules. The applica-
tion of Auxiliary Variable Elimination quantifies the variable
c existentially in the pre- and postcondition, and the applica-
tion of Consequence uses tag reduction information which is
part of CCELL’s standard apf assumptions.

Behavioral subtyping of set value is similar. For its Body
verification obligation, we must prove that both CellCCELL

and CcCCELL static specifications are satisfied. The proof
proceeds as follows:
{CellCCELL(val: , cnt: c)}

CCELL::increment()
{CellCCELL(val: , cnt: c+1)}
{CellCELL(val:) ∗ CnCOUNTER(cnt: c+1)}

CELL::set value(v)
{CellCELL(val: v) ∗ CnCOUNTER(cnt: c+1)}
{CellCCELL(val: v, cnt: c+1)}

An application of Consequence proves the other also-ed
static spec and completes the proof6. As the body oper-
ates on state described by CellCELL and CnCOUNTER, the
proof obligations and separation logic’s faulting semantics
demand that we ‘grow’ CellCCELL to include both state
parcels.

Now consider the two library routines at the bottom of
Figure 3. The export clause contains the necessary informa-
tion to prove the two triples:
{true} cc := new CCELL(5); use counter(cc) {cc.Cc(val: 5, cnt: 10)}
{true} cc := new CCELL(5); use cell(cc,20) {cc.Cc(val: 20, cnt:)}

The proof of the second triple reduces and expands tags
according to standard apf rules:
{true}

cc := new CCELL(5)
{cc : CCELL ∗ cc.Cc(val: 5, cnt: 0)}
{cc : CCELL ∗ cc.Cell(val: 5, cnt: 0)}
{cc : CCELL ∗ cc.Cell(val: 5, cnt:)}
{cc : CCELL ∗ cc.Cell(val: 5)}

use cell(cc,20)
{cc : CCELL ∗ cc.Cell(val: 20)}
{cc : CCELL ∗ cc.Cell(val: 20, cnt:)}
{cc.Cc(val: 20, cnt:)}

Information about cnt is lost in the postcondition, which is
unavoidable because use cell could call set value more than
once. In a version of CCELL where CnCCELL is defined to
include the CellCELL state and the equivalence of Cc, Cn
and Cell is exported, information about val will likewise be
lost in the first triple. Also note that dynamic type informa-
tion is required to use the exported relationships, since the
subclasses of CCELL are not obliged to implement them.

4 By Lemma 2 on page 13.
5 By Lemma 1 on page 13.
6 By Lemma 3 on page 13.

class CCEL2 inherit CELL COUNTER
define
x.CellCCEL2 (val: v, cnt: c) as x.CellCELL(val: v) ∗ x.CnCOUNTER(cnt: c)
x.CnCCEL2 (cnt: c) as x.CnCOUNTER(cnt: c)
export
∀x· x : CCEL2⇒ [∀v,c· x.Cell(val: v, cnt: c)⇒ x.Cn(cnt: c)] where {}

feature
introduce CCEL2(v: int)
dynamic {value ↪→ ∗ count ↪→ } {Cell(val: v, cnt: 0)}
do Precursor{CELL}(v); Precursor{COUNTER}() end

inherit value(): int
dynamic {Cell(val: v, cnt: c)} {Cell(val: v, cnt: c) ∗ Result = v}

override set value(v: int)
dynamic {Cell(val: , cnt: c)} {Cell(val: v, cnt: c+1)}
do CCEL2::increment(); CELL::set value(v) end

inherit count(): int
dynamic {Cell(val: v, cnt: c)} {Cell(val: v, cnt: c) ∗ Result = c}

also {Cn(cnt: c)} {Cn(cnt: c) ∗ Result = c}
end

Figure 4. The CCEL2 class.

2.2 Access control and call protocols
Our proof system can enforce interesting access control pat-
terns in verified programs. Consider class CCEL2 in Figure 4
which has the same executable code as CCELL but different
specifications. Its export clause relates the Cell and Cn ab-
stractions in a one-directional way. The constructor produces
a Cell apf predicate with which methods value, set value and
count can be called. Verified clients cannot call increment
with the Cell predicate. They must use exported information
to get a Cn predicate, yet they lack information to change
back after the call: no export or axiom clause is available
to do this, and every method producing a Cell predicate re-
quires one. The following proof attempt where cc2 : CCEL2
shows the problem:

{cc2.Cell(val: v, cnt: c)}
{cc2.Cn(cnt: c)}

cc2.increment()
{cc2.Cn(cnt: c+1)}
{???}
{cc2.Cell(val: , cnt:)} // The weakest requirement of set value.

cc2.set value(10)
{cc2.Cell(val: , cnt:)}

While the client has a Cell predicate, the argument tagged
by cnt and returned by count reflects precisely how many
times the value has been set. If the client tries to manipulate
the count by calling increment, then it can never regain
the needed capability to call value and set value, and must
forever treat the object as a simple counter in the code. The
combination of abstract predicate relationships and method
specifications enforces this protocol in verified code.

2.3 Diamond inheritance
Verification of multiple inheritance requires proper handling
of data from several parent classes. Diamond inheritance

5 2010/7/29

class PERSON
define x.PPERSON (age: a) as x.age ↪→ a
export ∀x,a· x.PPERSON (age: a)⇔ x.age ↪→ a where {}
feature

introduce PERSON(a: int)
dynamic {age ↪→ } {P(age: a)}
do age := a end

introduce age(): int
dynamic {P(age: a)} {P(age: a) ∗ Result = a}
do Result := age end

introduce set age(a: int)
dynamic {P(age:)} {P(age: a)}
do age := a end

introduce celebrate birthday()
static {P(age: a)} {P(age: a+1)}
do tmp: int; tmp := age(); tmp := tmp+1; set age(tmp) end

age: int
end

class STUDENT inherit PERSON define
x.PSTUDENT (age: a) as x.PPERSON (age: a)
x.SSTUDENT (age: a, exm: e) as x.PSTUDENT (age: a) ∗ x.exams ↪→ e
x.RestStoPSTUDENT (exm: e) as x.exams ↪→ e
export ∀x,a,e· [x.PPERSON (age: a) ∗ x.RestStoPSTUDENT (exm: e)]⇔

x.SSTUDENT (age: a, exm: e) where {}
axiom S P: ∀a, e· S(age: a, exm: e)⇔ [P(age: a) ∗ RestStoP(exm: e)]
feature

introduce STUDENT(a: int, e: int)
dynamic {age ↪→ ∗ exams ↪→ } {S(age: a, exm: e)}
do Precursor{PERSON}(a); exams := e end

introduce exams(): int
dynamic {S(age: a, exm: e)} {S(age: a, exm: e) ∗ Result = e}
do Result := exams end

introduce take exam()
dynamic {S(age: a, exm: e)} {S(age: a, exm: e+1)}
do tmp: int; tmp := exams; exams := tmp + 1 end

exams: int
end

Figure 5. The PERSON and STUDENT classes.

complicates matters because common ancestor fields are
shared. This is unproblematic for our proof system, although
the abstraction of the shared data is typically lost. Diamond
inheritance can moreover require relationships between sev-
eral abstractions, which this example achieves with axiom
clauses.

An axiom clause consists of a name and a predicate. The
name identifies the clause and allows subclasses to refine the
predicate. We propagate axiom clauses down the hierarchy
to save specification overhead: if a class does not list an
axiom clause with the same name as one in a parent, then it is
assumed to list an identical clause. To avoid ambiguity in the
presence of multiple inheritance, we require that if clauses
with the same name are present in multiple parents, then they
must all be identical. An axiom clause copied in this way

class SMUSICIAN inherit STUDENT MUSICIAN
define
x.PSMUSICIAN (age: a) as x.PPERSON (age: a)
x.SSMUSICIAN (age: a, exm: e) as x.SSTUDENT (age: a, exm: e)
x.MSMUSICIAN (age: a, pfm: p) as x.MMUSICIAN (age: a, pfm: p)
x.SMSMUSICIAN (age: a, exm: e, pfm: p) as x.PPERSON (age: a) ∗

x.RestStoPSTUDENT (exm: e) ∗ x.RestMtoPMUSICIAN (pfm: p)
x.RestStoPSMUSICIAN (exm: e) as x.RestStoPSTUDENT (exm: e)
x.RestMtoPSMUSICIAN (pfm: p) as x.RestMtoPMUSICIAN (pfm: p)
x.RestSMtoSSMUSICIAN (pfm: p) as x.RestMtoPMUSICIAN (pfm: p)
x.RestSMtoMSMUSICIAN (exm: e) as x.RestStoPSTUDENT (exm: e)
axiom

SM S: ∀a, e, p· SM(age: a, exm: e, pfm: p)⇔
[S(age: a, exm: e) ∗ RestSMtoS(pfm: p)]

SM M: ∀a, e,p· SM(age: a, exm: e, pfm: p)⇔
[M(age: a, pfm: e) ∗ RestSMtoM(exm: e)]

feature
introduce SMUSICIAN(a: int, e: int, p: int)
dynamic {age ↪→ ∗ exams ↪→ ∗ performances ↪→ }

{SM(age: a, exm: e, pfm: p)}
do Precursor{STUDENT}(a,e); Precursor{MUSICIAN}(a,p) end

introduce do exam performance()
static {SM(age: a, exm: e, pfm: p)} {SM(age: a, exm: e+1, pfm: p+1)}
do take exam(); perform() end

end

Figure 6. The SMUSICIAN class.

is not refined in the subclass and automatically consistent
with its parent versions. In the general case where a subclass
refines an axiom clause, Parent consistency must be proven
as indicated in the formalization.

The focus of this example is class SMUSICIAN, shown
in Figure 6. It inherits from STUDENT and MUSICIAN,
both which inherit from PERSON. The STUDENT and
PERSON classes are shown in Figure 5; MUSICIAN is sim-
ilar to STUDENT and not shown. A diamond is formed with
PERSON at the top, and an instance of SMUSICIAN has
one ‘age’ field, one set age method, etc. under shared multi-
ple inheritance semantics. The classes use axiom clauses to
specify relationships between abstractions P, S, M and SM.

Since SMUSICIAN is non-abstract, we must prove that
axiom SM S holds for its direct instances. This proof obliga-
tion for axiom clauses is called Implication in the formaliza-
tion. It holds indeed, since under the standard apf assump-
tions of SMUSICIAN, exported information of all classes,
and the assumption Current : SMUSICIAN, we have:

SM(age: a, exm: e, pfm: p)
⇔ // Standard apf assumptions, Current : SMUSICIAN
SMSMUSICIAN (age: a, exm: e, pfm: p)
⇔ // Standard apf assumptions.
PPERSON (age: a) ∗ RestStoPSTUDENT (exm: e) ∗

RestMtoPMUSICIAN (pfm: p)
⇔ // Exported information from STUDENT.
SSTUDENT (age: a, exm: e) ∗ RestMtoPMUSICIAN (pfm: p)
⇔ // Standard apf assumptions.
SSMUSICIAN (age: a, exm: e) ∗ RestSMtoSSMUSICIAN (pfm: p)
⇔ // Standard apf assumptions, Current : SMUSICIAN
S(age: a, exm: e) ∗ RestSMtoS(pfm: p)

6 2010/7/29

The export clause in STUDENT is not closely connected
to multiple inheritance. In fact, any class C inheriting from
STUDENT which defines PC to be PPERSON and SC to be
SSTUDENT will need the export clause to prove Implication
of S P, which we omit here for SMUSICIAN. Axiom verifi-
cation frequently requires exported information of this kind.
What is vital about the export clause in the shared multiple
inheritance setting is that it isolates the shared ancestor state
of SMUSICIAN, namely PPERSON . This allows SMUSI-
CIAN to relate ancestor abstractions in a fairly abstract way.
Only the constructor’s Body verification proof needs the ex-
port clause in PERSON7:

{age ↪→ ∗ exams ↪→ ∗ performances ↪→ }
Precursor{STUDENT}(a,e)

{SSTUDENT (age: a, exm: e) ∗ performances ↪→ }
{PPERSON (age: a) ∗ RestStoPSTUDENT (exm: e) ∗ performances ↪→ }
{age ↪→ a ∗ RestStoPSTUDENT (exm: e) ∗ performances ↪→ }

Precursor{MUSICIAN}(a,p)
{MMUSICIAN (age: a, pfm: p) ∗ RestStoPSTUDENT (exm: e)}
{PPERSON (age: a) ∗ RestMtoPMUSICIAN (pfm: p) ∗
RestStoPSTUDENT (exm: e)}
{SMSMUSICIAN (age: a, exm: e, pfm: p)}

Note that class SMUSICIAN would not have needed ex-
ported information if it ignored the parent constructors and
simply overrode everything. The same is true for proof sys-
tems with less abstraction where method bodies are reveri-
fied in subclasses.

Since Current in SMUSICIAN will always reference an
object whose dynamic type is a subtype of SMUSICIAN,
the Body verification proof of do exam performance can
use axiom information to infer SM-specs for take exam and
perform:

{SM(age: a, exm: e, pfm: p)}
{S(age: a, exm: e) ∗ RestSMtoS(pfm: p)}

take exam()
{S(age: a, exm: e+1) ∗ RestSMtoS(pfm: p)}
{SM(age: a, exm: e+1, pfm: p)}
{M(age: a, pfm: p) ∗ RestSMtoM(exm: e+1)}

perform()
{M(age: a, pfm: p+1) ∗ RestSMtoM(exm: e+1)}
{SM(age: a, exm: e+1, pfm: p+1)}

The specification overhead incurred by axiom clauses is off-
set by specification inference gains: SM, S and M specifica-
tions can be inferred for age, set age and celebrate birthday,
while SM specifications can be inferred for exams, take -
exam, performances and get performance – a total of 13
specifications for methods of SMUSICIAN. These inferred
specifications are guaranteed to be implemented by all sub-
classes, and no dynamic type information is needed to use
them8. Yet the system is still flexible – a subclass can always

7 Unless a class manipulates fields of its ancestors directly, this export clause
would not be needed in languages where constructors of common ancestor
classes cannot be called more than once.
8 The technique used by Chin et al. [4] of inheriting static method speci-
fications and deriving dynamic specifications from them implements “in-
ternal specification inference”, i.e. a class infers and publishes dynamic
specifications for its methods which external clients can use. In con-

choose to satisfy such constraints vacuously by defining se-
lected apf entries as false. Class DCell in [27] provides an
example of this.

3. MultiStar
This section sketches notable aspects of the MultiStar imple-
mentation. MultiStar has a two-tier architecture: a front-end
that translates Eiffel programs and specifications into a sim-
pler form for verification, and a language-independent back-
end based on jStar [5] which implements our proof system.

3.1 Front-end
The front-end provides a graphical user interface within the
EVE integrated development environment, and is part of
the standard EVE download [10]. It translates Eiffel code
and specifications into the back-end’s input format, and pro-
vides access to verification results. Verification is triggered
by picking and dropping an annotated class on the Multi-
Star tool. Class annotations consist of apf entry definitions,
export/axiom clauses and method specifications.

To simplify the proofs and formalization in this paper,
constructor preconditions explicitly mention fields and break
information hiding. The front-end translation of MultiStar
injects them automatically. For example, a user would write
the specification of CCELL’s constructor as

dynamic {true} {Cc(val: v, cnt: 0)}

instead of

dynamic {value ↪→ ∗ count ↪→ } {Cc(val: v, cnt: 0)}

In detail, the front-end facilitates this by:

1. Using jStar’s new statement, whose specification is given
by the triple {true}x := new C{x : C}. This allows us
to omit the fields in the dynamic precondition9.

2. Adding all fields (including ancestor ones) to the static
precondition when checking Body verification, and con-
suming all fields of a parent class and its ancestors right
before the parent constructor is called. This is commu-
nicated to the back-end by emitting special instructions,
and allows us to omit the fields in the static precondition.

The Dynamic dispatch proof obligation, which checks that
the static and dynamic specifications are consistent with
each other, is unaffected because fields are omitted in both

trast to this, the technique of equipping classes with export/axiom clauses
implements “external specification inference”, i.e. clients infer specifi-
cations for methods based on published export/axiom information. A
benefit of the external approach is that clients can infer valid specifi-
cations for library code without re-verifying it. For example, knowing
only the inferred specifications for methods of class SMUSICIAN is
not enough for proving the triple {x.SM(age: a, exm: e, pfm: p)}use stu-
dent(x){x.SM(age: a+1, exm: e+4, pfm: p)} without looking at the imple-
mentation of the library routine use student(st: STUDENT) whose dynamic
specification is {st.S(age: a, exm: e)} {st.S(age: a+1, exm: e+4)}.
9 The dynamic specification of the constructor is used for object initializa-
tion. x := new C(e) abbreviates x := new C; x.C(e) if x is not free in e.

7 2010/7/29

static and dynamic preconditions. In languages where no
fields are shared by ancestors, or constructors of common
ancestors are called only once, the manipulation does not
have to add ancestor fields to the static precondition and
consume fields when a parent constructor is called. This is
the approach jStar uses for Java verification. A front-end
for C++ can use a similar technique because every ancestor
constructor is called exactly once when virtual base classes
are used [9].

3.2 Back-end
The MultiStar back-end extends jStar with support for export
and axiom clauses, abstract classes and multiple inheritance.
The latter two demand generalized method proof obligation
checking.

3.2.1 Export and axiom clauses
The background theory used by the jStar theorem prover is
encoded as a list of sequent rules. A sequent is of the form
P | Q ` R, meaning (P ∗Q)⇒ (P ∗ R). Each sequent rule
has the form
A | B ` C
if
D | E ` F

If the prover is trying to prove a sequent that matches the
rule’s conclusion A | B ` C, it suffices to prove the sequent
where the rule’s premise D | E ` F replaces the matched
predicates. A new proof goal is thus obtained, and the proof
is complete when the goal is of the form G | H ` . For details
the reader is referred to [5].

Exported information is written as sets of implications.
Before verifying an export clause, the background theory is
temporarily extended with the definitions of all predicates in
its where part. For each definition of the form w(x) = P, the
following two rules are generated:

| w(x) `
if
| P `

| ` w(x)
if
| ` P

After all exported implications in the clause have been
checked, the definitions are removed from the background
theory. After all export clauses have been verified, each ex-
ported implication P⇒ (Q1 ∗ . . . ∗Qn) is added to the back-
ground theory as a set of n rules, where rule i ∈ 1..n has the
form
| P ` Qi

if
Qi | Q1 ∗ . . . ∗Qi−1 ∗Qi+1 ∗ . . . ∗Qn `

This rule form retains information about Qi in its premise,
and removal of Qi from the goal sequent’s right-hand side
brings the proof closer to completion.

The background theory augmented with export informa-
tion is then used to verify axiom clauses. The predicates
in axiom clauses are written as implications. After all ax-
iom clauses have been verified, an axiom implication P ⇒

(Q1 ∗ . . . ∗Qn) written in class C is encoded as n rules, with
rule i ∈ 1..n of the form

| P ` Qi

if
Qi | Q1 ∗ . . . ∗Qi−1 ∗Qi+1 ∗ . . . ∗Qn ` x <: C

where x is the pattern variable substituted for Current.
The background theory augmented with export and ax-

iom information is then used for method verification.

3.2.2 Method proof obligations
The back-end accommodates abstract classes and abstract
methods in addition to shared multiple inheritance. An ab-
stract method has no body and hence no static specification.
The back-end takes this into account when expanding spec-
ification shorthands. After shorthand expansion, verification
of method m in class C proceeds as follows (the formaliza-
tion contains details about the proof obligations):

• If m has a static specification and C can be instantiated
(i.e. is non-abstract), then check Dynamic dispatch.

• If m has a body in C, then check Body verification.
• Always check Behavioral subtyping. This succeeds triv-

ially if m is introduced in C: the set of dynamic specifi-
cations for m in C’s parents is empty, and therefore all its
elements are preserved by the new specification.

• If m has a static specification but no body in C, then check
Inheritance.

The treatment subsumes interface inheritance – interfaces
are treated as abstract classes with only abstract methods and
no fields.

4. Case study
The Gobo data structure library [11] is an open-source Eiffel
library covering data structures and algorithms. It contains
classic data structures such as lists, stacks and sets, and pro-
vides several implementations of each structure. The library
is stable and a popular choice among Eiffel developers.

Data structures such as lists and sets can be traversed with
iterators. The iterator (or cursor) hierarchy is characterized
by relatively simple algorithms and extensive use of multiple
inheritance, which makes it an ideal candidate for evaluating
the novel aspects of our proof system and its implementa-
tion. The core classes are shown in Figure 1: a LINEAR -
CURSOR can traverse a data structure forwards, a BILIN-
EAR CURSOR can traverse both forwards and backwards,
an INDEXED CURSOR offers random data structure access
with an integer position or index, and a DYNAMIC CUR-
SOR can modify the data structure being traversed.

We successfully verified the core cursor hierarchy of Fig-
ure 1 with MultiStar. The overall effort for specification and
verification was five person-days. Most of the time was spent
on finding and revising specifications, since we did not mod-
ify the code. Table 1 shows the experimental results. The to-

8 2010/7/29

Class LOC1 LOC2 Time(s)
BILINEAR CURSOR 99 124 1.306
BILINEAR SET CURSOR 44 50 0.841
CURSOR 130 158 1.039
DYNAMIC CURSOR 50 66 1.070
INDEXED CURSOR 46 57 0.698
LINEAR CURSOR 98 123 1.327
LIST CURSOR 238 271 1.643
SET CURSOR 38 44 0.738
8 classes 743 893 8.662

Table 1. Experimental results of the Gobo iterator case
study. LOC1 and LOC2 denote the lines of code before and
after specification respectively. MultiStar was executed on a
2.53 GHz Intel Core 2 Duo with 4 GB RAM.

abstract class DYNAMIC CURSOR [G] inherit CURSOR [G]
feature

introduce abstract replace(v: G) dynamic
{Cursor(ds: d) ∗ d.DS(content: c1, iters: i) ∗

d.IsOff(res: False, ref: Current, iters: i, content: c1)}
{Cursor(ds: d) ∗ d.DS(content: c2, iters: i) ∗

d.Replaced(ref: Current, value: v, newcontent: c2, oldcontent: c1, iters: i)}

inherit item(): G static
{Cursor(ds: d) ∗ d.DS(content: c, iters: i) ∗

d.IsOff(res: False, ref: Current, iters: i, content: c)}
{Cursor(ds: d) ∗ d.DS(content: c, iters: i) ∗

d.ItemAt(res: Result, ref: Current, iters: i, content: c)}

introduce swap(other: DYNAMIC CURSOR [G]) static
{Cursor(ds: d) ∗ d.DS(content: c1, iters: i) ∗ other.Cursor(ds: d) ∗

d.IsOff(res: False, ref: Current, iters: i, content: c1) ∗
d.IsOff(res: False, ref: other, iters: i, content: c1)}
{Cursor(ds: d) ∗ d.DS(content: c2, iters: i) ∗ other.Cursor(ds: d) ∗

d.Swapped(ref1: Current, ref2: other, iters: i, oldcontent: c1, newcontent: c2)}
do

v: G; w: G;
v := item(); w := other.item();
replace(w); replace(v)

end
end

Figure 7. A simplified extract of DYNAMIC CURSOR

tal time taken by MultiStar is reported, which includes trans-
lating Eiffel code, expanding specification shorthands and
checking all proof obligations.

Since iterators rely on properties of the data structures
(containers) they traverse, we annotated the container classes
with the required specifications. Particularly interesting are
the axiom clauses that iterators demand. Consider for exam-
ple the simplified extract of DYNAMIC CURSOR in Fig-
ure 7. The [G] denotes that DYNAMIC CURSOR has a
generic parameter G. Method swap takes another cursor ref-
erencing the same container, and additionally requires that
there are data elements (items) at both cursor positions (the
cursors are not ‘off’). The Body verification proof of swap

uses several properties of containers that can be expressed as
axioms, including the following one:

∀ r1,r2,iter1,iter2,i,c1,c2,c3 ·
[ItemAt(res: r1, ref: iter1, iters: i, content: c1) ∗
ItemAt(res: r2, ref: iter2, iters: i, content: c1) ∗
Replaced(ref: iter1, value: r2, newcontent: c2, oldcontent: c1, iters: i) ∗
Replaced(ref: iter2, value: r1, newcontent: c3, oldcontent: c2, iters: i)]
⇒
Swapped(ref1: iter1, ref2: iter2, iters: i, oldcontent: c1, newcontent: c3)

This invariant property relates the ItemAt, Replaced and
Swapped abstractions. Informally, it states that if a data
structure has items r1 and r2 at iterators iter1 and iter2, and
we replace the item at iter1 with r2 and the item at iter2 with
r1, then the resulting data structure has the same contents
as the original one except that the items at iter1 and iter2
have been swapped. The example involves neither multiple
inheritance nor splitting of superclass and subclass state,
and illustrates the generality and expressive power of axiom
clauses.

The complete specifications and code of the case study
are included in the download [10].

5. Formalization
This section contains a formal treatment of the programming
language with specifications and its proof system. The lan-
guage features abstract classes and multiple inheritance. Ex-
port and axiom specifications are supported. The proof sys-
tem is based on the one of Parkinson and Bierman in [27].
For space reasons we focus mostly on the new extensions.

5.1 Language syntax
The grammar of our kernel language with multiple inheri-
tance and specifications is shown in Figure 8. A sequence
of c’s is denoted by c. The letters G and H are used for class
names, p for apf names, t for tag names, w for auxiliary pred-
icate names, a for axiom names, m for method names, and f
for field names. Variables are denoted by u, x, y and z.

Separate namespaces exist for class names, p, w, a, m
and f. The type system ensures absence of clashes when
names are introduced. This precludes method overloading
and field shadowing, for instance, and guarantees that meth-
ods or fields with the same name in parent classes stem from
common ancestors.

A constructor in our formalization is simply an intro-
duced method m where m is a class name. Except for the re-
striction that subclasses cannot inherit or override construc-
tors, no special treatment is needed otherwise.

To provide subclasses with the opportunity to respecify
a method and to simplify the proof rules that follow later,
we require a subclass to inherit or override explicitly all
non-constructor methods present in its parents (in MultiStar
and the examples, specification shorthands are employed to
achieve this). The shared semantics of multiple inheritance
is used, which is popular in Eiffel [8] and known as inher-
itance with virtual base classes in C++ [9]. Common an-

9 2010/7/29

L ::= Ab class G inherit H define D export E axiom A feature M F end
Ab ::= abstract | ε
D ::= x.pG (t : y) as P Define clause
E ::= P where {W} Export clause
W ::= w(x) = P Where clause
A ::= a: P Axiom clause
M ::= introduce m(Args) Rt Sd Ss B Method declaration
| override m(Args) Rt Sd Ss B
| inherit m(Args) Rt Sd Ss
| introduce abstract m(Args) Rt Sd
| inherit abstract m(Args) Rt Sd

F ::= f: Type Field declaration
Sd ::= dynamic Spec Dynamic specification
Ss ::= static Spec Static specification
Spec ::= {P} {Q} | {P} {Q} also Spec Specification
B ::= do s end Method body
s ::= x: Type Local variable declaration
| x := e Assignment
| x := y.f Field lookup
| x.f := e Field assignment
| x := y.m(e) | y.m(e) Dynamically dispatched call
| x := y.G::m(e) | y.G::m(e) Direct method call
| x := new G Object allocation

e ::= x | e + e | e = e | Void | 0 | 1 | 2 | . . . Expression
Type ::= int | bool | G
Args ::= x: Type Formal arguments
Rt ::= ε | : Type Return type

Figure 8. The kernel language grammar.

cestor fields are shared, and method overriding overrides all
ancestor versions. To avoid ambiguity, a class can inherit a
method only if its body (if there is one) is the same along all
inheritance paths. Direct method calls can encode language
mechanisms which allow a particular ancestor implementa-
tion to be chosen, so no generality is lost.

We assume the formal argument names of methods stay
the same in subclasses. This simplifies the proof rules that
follow, which would otherwise need additional substitutions.

5.2 Operational semantics
The shared semantics of multiple inheritance ensures that
1) only dynamic type information is needed at runtime (in
contrast to what ‘select’ clauses of Eiffel’s replicated inher-
itance demand), and 2) the usual semantics of casts can be
adopted (in contrast to replicated inheritance in C++, where
casting can change pointer values [9]).

The operational semantics is therefore similar to e.g.
Java’s and omitted. Configurations contain a stack, a heap
and a sequence of statements under execution. The stack
maps variables to values which include object ids. The heap
maps object ids to records containing a dynamic type G and
field-value mappings.

5.3 Logic syntax and semantics
The predicates used in specifications and proofs have the
following grammar.

P, Q, S, T, ∆ ::= ∀x·P | P⇒Q | false | e = e′ | x : G | x <: G | x.f ↪→ e | P ∗ Q

| x.p(t : e) Apf predicate
| x.pG (t : e) Apf entry
| w(x) Auxiliary predicate

The predicate x : G means x references an object whose
dynamic type is exactly G, and x<: G means x references an
object whose dynamic type is a subtype of G. In both cases
x 6= Void, and x : G⇒ x <: G holds. Within a context, if x
is declared of type G then x <: G whenever x 6= Void.

The first argument of an apf predicate or entry is written
as a prefix. For apf predicates it is never Void because of the
standard apf assumptions needed to produce an apf predicate
from an entry (these are detailed in Section 5.10 below).
Other arguments are tagged with names and form a set (i.e.
they are order-independent), which is especially useful in the
multiple inheritance setting. The reader is referred to [27] for
an in-depth treatment of apfs.

Other predicates have the usual intuitionistic separation
logic semantics. Informally the predicate x.f ↪→ e means that
the f field of object x has value e, and P ∗ Q means that
P and Q hold for disjoint portions of the heap. Readers are
referred to [24, 26, 28] for a formal treatment of separation
logic. Symbols such as⇔, ¬, true, ∨, ∧ and ∃ are encoded
in the standard way. Every occurrence of in a predicate
denotes a fresh existentially quantified variable, where the
quantifier is placed in the innermost position. FV(P) denotes
the free variables of P; every method precondition P must
satisfy Result /∈ FV(P).

In the rest of the formalization, the symbols P, Q, S
and T are used for assertions and predicates, and ∆ for
assumptions.

5.4 Specification refinement
We expand on Parkinson and Bierman’s formalization of
specification refinement [27]. If the specification {P1} {Q1}
is refined by {P2} {Q2}, then any s that satisfies {P1} {Q1}
also satisfies {P2} {Q2}. Under the assumptions ∆, the
specification {P1} {Q1} is refined by {P2} {Q2} if we
can prove ∆ ` {P1} {Q1} =⇒ {P2} {Q2}, i.e. provide
a proof tree with leaves ∆ ` {P1} {Q1} and root ∆ `
{P2} {Q2} built with the structural rules of separation logic
(Consequence, Frame, Auxiliary Variable Elimination, Dis-
junction, and others). In the context of method specification
refinement, ∆ contains the standard apf assumptions of a
class as well as export and axiom information of all other
classes, and the Consequence and Frame rules are given by:

∆⇒(P′⇒P) ∆ ` {P} {Q} ∆⇒(Q⇒Q′)
Consequence

∆ ` {P′} {Q′}

∆ ` {P} {Q}
Frame

∆ ` {P ∗ T} {Q ∗ T}

The Frame rule is applicable whenever Result /∈ FV(T),
and expresses that disjoint portions of the heap stay un-
changed.

10 2010/7/29

Method specifications can be combined with also (Defi-
nition 1 in [27]):

{P1} {Q1} also {P2} {Q2}
def
=

{(P1 ∧ x = 1) ∨ (P2 ∧ x 6= 1)} {(Q1 ∧ x = 1) ∨ (Q2 ∧ x 6= 1)}

where x denotes a fresh auxiliary variable. The specifi-
cations {P1} {Q1} and {P2} {Q2} are equivalent w.r.t.
∆ iff both ∆ ` {P1} {Q1} =⇒ {P2} {Q2} and ∆ `
{P2} {Q2} =⇒ {P1} {Q1}. Two specifications are equiv-
alent iff they are equivalent w.r.t. all ∆. It can be shown
that also is commutative, associative and idempotent mod-
ulo equivalence with identity {false} {true}. The notation
alsoi∈I {Pi} {Qi} denotes the specification {Pe1} {Qe1}
also . . . also {Pem} {Qem}, where e1 . . . em are the elements
of set I. Furthermore, when I is the empty set:

alsoi∈∅ {Pi} {Qi}
def
= {false} {true}

It always holds that ∆ ` {P} {Q} =⇒ {false} {true}.
Other useful lemmas involving also are given in Section 5.11.
Finally, we use the abbreviation

∆ ` {P1} {Q1}
Current : G

=⇒ {P2} {Q2}
def
= ∆ ` {P1} {Q1} =⇒ {P2 ∗Current : G} {Q2}

in the formalization of the Dynamic dispatch proof obliga-
tion for methods in Section 5.9.

5.5 The specification environment
Most of the proof rules that follow use an environment Γ,
which maps axiom and method names to their specifications
for all classes in a program:
Γ ::= G.a 7→ P Axiom specification
| G.m 7→ (x,{P} {Q}) Method dynamic specification
| G::m 7→ (x,{S} {T}) Method static specification
| Γ

The x in a specification of m denote its formal argument
names. Γ is guaranteed to be a partial function for well-
typed programs, and we write Γ(G.a) = P for G.a 7→P ∈ Γ,
Γ(G.m) = (x,{P} {Q}) for G.m 7→ (x,{P} {Q}) ∈ Γ, and
Γ(G::m) = (x,{S} {T}) for G::m 7→ (x,{S} {T}) ∈ Γ.

5.6 Export information verification
A class can make information about itself available to other
classes in an export clause. Export clauses are frequently
used to specify relationships between apfs or their entries,
and to expose apf entry definitions. Information can be hid-
den in predicates defined after the keyword where: the def-
initions are not exported, so other classes must treat these
predicates abstractly.

Export information must be verified since other classes
use it for reasoning. Under the predicate definitions follow-
ing where, the assumptions about a class must imply ex-
ported information. This is captured by the following proof
rule:

[∆ ∧ (∀x1 ·w1(x1)⇔ Q1) ∧ . . . ∧ (∀xn ·wn(xn)⇔Qn)]⇒ P

∆ `e P where {w1(x1) = Q1; . . . ; wn(xn) = Qn}

Since the assumptions about a class do not include as-
sumptions about the exact dynamic type of Current, export
information can be used to verify axioms and methods of
other classes in a program.

5.7 Axiom verification
Information about a class and all its subclasses can be made
available in an axiom clause. This knowledge can be used
later to verify methods. To simplify the treatment, we require
that a class explicitly lists all axiom clauses applicable to
it (in MultiStar and the examples, specification shorthands
achieve this).

In the rule for axiom verification, the assumptions ∆
include information about class G and export information
from all other classes. A subclass must preserve all axioms
of its parents and may refine the predicate associated with
an axiom name (the Parent consistency [P.c.] obligation). A
non-abstract class must also show that the predicate holds
for its direct instances (the Implication [Imp.] obligation).

∀i ∈ I· Γ(Hi.a) = Qi ∧ ∀j ∈ (1..n \ I)· Hj.a /∈ dom(Γ)
(∆ ∧ P)⇒

∧
i∈I Qi [P.c.]

Ab6=ε ∨ (∆ ∧Current : G)⇒P [Imp.]

∆; Γ `a a: P in Ab G parents H1 . . . Hn

5.8 Statement verification
The assumptions ∆ used to verify statements contain infor-
mation about the enclosing class as well as export and axiom
information from all other classes. The rules for most state-
ments are standard (see e.g. [26, 27]). For allocation:

allfields(G) = {f1,f2,. . . ,fn}
∆; Γ `s {true}

x := new G
{x.f1 ↪→ ∗ x.f2 ↪→ ∗ . . . ∗ x.fn ↪→ ∗ x : G}

where allfields(G) denotes the set of field names listed in G
and all its ancestors.

Dynamically dispatched calls use the dynamic specs of
methods in Γ, while direct calls use the static ones. Provided
x is not y and x is not free in e, the rules for result-returning
calls are:

Γ(G.m) = (u,{P} {Q})
∆; Γ `s {P[y, e/Current,u] ∗ y <: G}

x := y.m(e)
{Q[y, e, x/Current, u,Result]}

Γ(G::m) = (u,{S} {T})
∆; Γ `s {S[y, e/Current, u] ∗ y 6= Void}

x := y.G::m(e)
{T[y, e, x/Current, u,Result]}

Two important structural rules here are Frame and Con-
sequence. The Frame rule is the key to local reasoning. Pro-
vided s modifies no variable in FV(T):

∆; Γ `s {P}s{Q} Frame
∆; Γ `s {P ∗ T}s{Q ∗ T}

The rule of Consequence allows the use of assumptions ∆:
∆⇒(P′⇒P) ∆; Γ `s {P}s{Q} ∆⇒(Q⇒Q′)

Consequence
∆; Γ `s {P′}s{Q′}

11 2010/7/29

5.9 Method verification
The rules for method verification in [27] are extended here to
the multiple inheritance case. As for statement verification,
the assumptions ∆ used to verify method definitions contain
information about the method’s enclosing class as well as
export and axiom information from all other classes.

The rule for method introduction shown below requires
no modification for multiple inheritance. A newly introduced
method’s static and dynamic specifications must be consis-
tent10 if the class is non-abstract, and its body must satisfy
the static specification. These two requirements are captured
by the Dynamic dispatch [D.d.] and Body verification [B.v.]
proof obligations respectively.

B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
Ab6=ε ∨ ∆ ` {SG} {TG}

Current : G
=⇒ {PG} {QG} [D.d.]

∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m introduce m(Args) Rt Sd Ss B in Ab G parents H

An abstract method can be introduced without any proof
obligations, since there is only a dynamic specification and
no method body.

∆; Γ `m introduce abstract m(Args) Rt Sd in Ab G parents H

The next rule is used whenever an abstract method is im-
plemented or a method body is redefined. Consistency must
be proven between the new dynamic specification and those
in parent classes; this is embodied in the Behavioral sub-
typing [B.s.] proof obligation. The other proof obligations
are identical to those for method introduction above. The H1

. . . Hn are the immediate superclasses of G.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
B = do s end
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]

Ab6=ε ∨ ∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]
∆; Γ `s {SG}s{TG} [B.v.]

∆; Γ `m override m(Args) Rt Sd Ss B in Ab G parents H1 . . . Hn

When a non-abstract method is inherited, its static spec-
ification must follow from those in parents. The Inheritance
[Inh.] obligation ensures that this will be the case. The Be-
havioral subtyping and Dynamic dispatch obligations serve
the same purposes as mentioned before.

10 We establish that the dynamic specification follows from the static one
when the dynamic type of Current is G. If the dynamic type of x is G,
then the body of m in G will be executed if x.m is called. The static and
dynamic specifications must be consistent with each other in this case, since
the dynamic specification is used for reasoning about the call statement,
whereas the body was verified only w.r.t. the static specification.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀k ∈ (1..n \ I)· Hk.m /∈ dom(Γ)
∀j ∈ J· Γ(Hj::m) = (x,{SHj} {THj})
∀l ∈ (1..n \ J)· Hl::m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
Ss = static {SG} {TG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]
∆ ` (alsoj∈J {SHj} {THj}) =⇒ {SG} {TG} [Inh.]

Ab6=ε ∨ ∆ ` {SG} {TG}
Current : G

=⇒ {PG} {QG} [D.d.]

∆; Γ `m inherit m(Args) Rt Sd Ss in Ab G parents H1 . . . Hn

The next rule applies whenever an abstract method is
inherited or a non-abstract method is inherited and made
abstract. Such a method has no static specification, so only
the consistency of its dynamic specification w.r.t. those in
parent classes is required with the Behavioral subtyping
proof obligation.

∀i ∈ I· Γ(Hi.m) = (x,{PHi} {QHi})
∀j ∈ (1..n \ I)· Hj.m /∈ dom(Γ)
Sd = dynamic {PG} {QG}
∆ ` {PG} {QG} =⇒ (alsoi∈I {PHi} {QHi}) [B.s.]

∆; Γ `m inherit abstract m(Args) Rt Sd in Ab G parents H1 . . . Hn

5.10 Class and program verification
For class verification, different assumptions are used to
verify the various class sections. The formula ∆APF con-
tains class-specific information and is used to verify export
clauses. The assumptions ∆E contain export information
from all classes, and are used together with ∆APF to verify
axioms. The formula ∆A contains axiom information of all
classes, and is used with ∆APF and ∆E in method definition
verification.

∀Ei ∈ E ·∆APF `e Ei

∀Ai ∈ A · (∆APF ∧∆E); Γ `a Ai in Ab G parents H

∀Mi ∈M · (∆APF ∧∆E ∧∆A); Γ `m Mi in Ab G parents H

∆APF ,∆E ,∆A; Γ `c

Ab class G inherit H define D export E axiom A feature M F end

Finally, here is the rule for program verification:

∀i ∈ 1..n· Li = . . . class Gi . . . export Ei axiom Ai feature . . . end
∆E =

∧
i∈1..n

∧
Eik
∈Ei

exportinfo(Eik)

∆A =
∧

i∈1..n

∧
Aik
∈Ai

axiominfo(Gi,Aik)

Γ = specs(L1 . . . Ln)
∀i ∈ 1..n· apf (Li), ∆E ,∆A; Γ `c Li

∆E ∧∆A; Γ `s {true}s{true}
`p L1 . . . Ln s

exportinfo(P where . . .) def
= P

axiominfo(G, a: P) def
= ∀x <: G · P[x/Current], where x is fresh.

Predicate definitions following the where keyword are
hidden by exportinfo, and the definition of axiominfo reflects
the fact that subclasses preserve axioms.

The function apf translates the abstract predicate family
definitions of a class into a formula – its standard apf as-
sumptions. It is adapted from [27] for tagged arguments:

12 2010/7/29

apf (Ab class G . . . define D1 D2 . . . Dn export . . . end) def
=

apf G(D1) ∧ . . .∧ apf G(Dn)

apf G(x.pG (Y) as P) def
=

FtoE(p,G,Y) ∧ EtoD(x.pG (Y) as P) ∧ (∀x <: G · TR(p,x,Y))

FtoE(p,G,t : y) def
=

∀x,y· x : G⇒ [x.p(t : y)⇔ x.pG (t : y)]

EtoD(x.pG (t : y) as P) def
=

∀x,y· x.pG (t : y)⇔ P

TR(p,x,t : y) def
=∧

t′:y′ + t′′:y′′ ≡ t:y
∀y′· x.p(t′ : y′)⇔ x.p(t′ : y′ + t′′ :)

MultiStar and the examples assume that every class im-
plicitly exports tag reduction information. In other words, for
every entry (x.pG (Y) as P) in the define section of a class G,
(∀x <: G · TR(p,x,Y) where {}) is implicitly exported.

Theorem. The program verification rule is sound. (The
proof, sketched in the Appendix, depends on the layered as-
sumption structure of export and axiom clauses that avoids
circularity in reasoning11.)

5.11 Useful lemmas
Lemmas 1 and 2 are frequently used in proofs of Behavioral
Subtyping and Inheritance:

Lemma 1. ∆ ` (alsoi∈I {Pi} {Qi}) =⇒{Pk} {Qk} for all
k ∈ I.

Lemma 2. If ∆ ` {P} {Q} =⇒ {Si} {Ti} for all i ∈ I,
then ∆ ` {P} {Q} =⇒ (alsoi∈I {Si} {Ti}).
For Body Verification:

Lemma 3. If ∆; Γ `s {Si}s{Ti} for all i ∈ I, then under
assumptions ∆ and Γ, s satisfies (alsoi∈I {Si} {Ti}).

6. Conclusions and related work
The presented proof system supports two complementary
mechanisms that can express relationships between abstrac-
tions in the logic. Such relationships are pervasive in O-O
programs, and facilitate flexible client reasoning, access con-
trol, specification inference, and constraints on the imple-
mentation of abstractions. Moreover, the system offers a
sound way to verify various forms and uses of shared multi-
ple inheritance. By virtue of extending Parkinson and Bier-
man’s system, the examples in [27] illustrate that it can also
deal with behavior extension, restriction and modification, as
well as representation replacement in subclasses. It is mod-
ular and every method body is verified only once. MultiStar
implements these features in an automatic tool that, as the
Gobo case study shows, holds good promise for verifying
real-world software.
11 The layered assumption structure does not rule out axioms that depend on
other axioms. If we want an axiom Q in class C2 that depends on axiom P
in class C1, we can write the axiom (∀x<: C1· P[x/Current])⇒Q in class
C2 instead, where x is a fresh variable. After axiom verification, method and
statement verification can use (∀y <: C2· Q[y/Current]) where y is fresh.
The proof system enables the specification and verification of invariants for
aggregate structures involving multiple objects of different types.

We are not aware of any other proof system or tool that
can verify our examples and case study. Nevertheless, there
are many relationships with other work:

Axiom clauses We do not know of any existing specifica-
tion mechanisms that are closely related to axiom clauses.

Class invariants form the basis of several O-O specifi-
cation and verification approaches, including Spec# [1] and
JML [19]. Two main flavors of class invariants exist: private
invariants, as exemplified by the object invariants of Spec#,
and public invariants [18], which include JML’s derived in-
variants and the invariants of Jacobs and Piessens for de-
scribing relationships between inspector methods [12]. Class
invariants, like axiom clauses, constrain subclasses. How-
ever, there are several important differences between them.
Class invariants either define exactly when an object is con-
sistent (private invariants), or describe abstract properties of
consistent objects (public invariants). Axiom clauses have no
notion of object consistency. Class invariants are expected
to hold at particular points in a program and may be broken
at others, according to the employed invariant protocol [7].
Axiom clauses are true invariants in the sense that they hold
everywhere. The relationships they describe cannot be vio-
lated by assignment statements, and hence there are no prob-
lems with e.g. method callbacks [20, 21]. Class invariants
are expressed in terms of fields (including model fields) and
pure method calls. Public invariants constrain operations that
must establish or preserve them. Private invariants constrain
the pure methods they use and indirectly also other oper-
ations by depending on the private invariant. Axioms are
expressed as logical predicates, and they constrain logical
abstractions of data. The verification of class invariants in-
volves the inspection of method bodies (private invariants –
for the proof obligations see e.g. [22]), or private invariants
and the specifications and/or bodies of pure methods (public
invariants). Axiom clauses are verified prior to methods and
do not depend on methods in any way. The main differences
between class invariants and axiom clauses are summarized
in Table 2.

Export clauses There is some correspondence between the
class axioms of Kassios [15, 16] and apfs/export clauses.
Class axioms can be used to axiomatize the specification
and program attributes of a class. In a class implementation,
class axioms typically describe abstract state (represented
by specification attributes) as a function of the concrete im-
plementation state (represented by program attributes). This
corresponds loosely to the way apf entry definitions relate
the concrete state to apf arguments. Furthermore, class ax-
ioms can describe consequences of a specification attribute
such as a class invariant, which typically include framing
properties and relationships between other specification at-
tributes. This corresponds somewhat to export clauses that
describe properties of apf arguments or relationships be-
tween them. The framework of class axioms does not in-
clude inheritance, so despite the similar names, it is best to

13 2010/7/29

Class invariants Axiom clauses
Related to object consistency No notion of object consistency
Hold at particular program points Hold everywhere
Expressed i.t.o. fields and pure method calls Expressed as logical predicates
Constrain operations Constrain logical abstractions of data
Verification involves methods Verification cannot involve methods

Table 2. The main differences between class invariants and axiom clauses.

compare them with export and not axiom clauses. Class ax-
ioms can also define method specifications/implementations,
which apfs and export clauses are incapable of.

In jStar [5], the modifier ‘export’ can be added to an apf
entry definition to expose it to all other classes. Even though
our export clauses are more general and flexible than this
mechanism, MultiStar supports it as a useful shorthand.

The rules for lossless casting by Chin et al. [4] describe
relationships between predicates that provide full and par-
tial views of objects. A view predicate describes the con-
tents of the fields of an object directly: a full view of object
o provides full knowledge of all o’s fields, while a partial
view with respect to class C describes only values of fields
introduced by C and its ancestors. View predicates and re-
lationships between them are generated automatically. The
relationships do not have to be verified and do not constrain
subclasses.

Krishnaswami et al. use so-called ‘static specifications’
in [17] to specify relationships between abstract predicates.
Although not presented in an O-O context, these relation-
ships must be satisfied by implementations and are thus re-
lated to our export clauses.

The lemma functions of VeriFast [13] record proofs of
relationships between predicates. The relationships are then
used in reasoning; the proof of the Composite pattern in [14]
provides a good example. Lemma functions, like export
clauses, do not constrain subclasses.

Multiple inheritance Surprisingly few systems exist for
reasoning about multiple inheritance. The system in [23]
also uses separation logic, but without abstraction mecha-
nisms such as apfs. Most of the paper is devoted to elemen-
tary separation logic proof rules that also apply in a single-
inheritance context. Diamond inheritance is never treated,
and the bodies of inherited methods are reverified in sub-
classes.

The focus of [6] is on behavioral subtyping. It proposes
to verify behavioral subtyping of methods lazily, i.e. only to
the extent demanded by client code. Supplier code is then
continually re-verified as a client’s use of it grows.

The restricted form of interface inheritance is easily han-
dled by our proof system: an interface is simply an ab-
stract class with only abstract methods and no fields. Many
verification tools for object-oriented programs, including
Spec# [1] and the JML toolset [2], provide support for spec-

ifying and verifying interface inheritance. Both Spec# and
JML use pure expressions of the programming language for
specification, and follow a class invariant-based approach to
verification.

A. Proof system semantics
An outline of the semantics and soundness proof follows.
Our system’s semantics is similar to that of Parkinson and
Bierman’s system in [27]. The most interesting difference
is the treatment of export and axiom information in the
soundness proof of the program verification rule (Theorem
11 below).

The semantics of the logical formula is defined in terms
of a state σ, an interpretation of predicate symbols I, and
an interpretation of logical variables L. The interpretation I
maps predicate names to their definitions, whereas a defini-
tion maps a list of arguments to a set of states:

I : Preds→ (Vals∗ →P(Σ))
L : Vars→ Vals

Predicates are defined in the standard way:

σ, I, L |= pred(X)⇔ σ ∈ (I(pred)(L(X)))

Definition 4. I |= ∆ iff σ, I, L |= ∆ for all σ and L.

Under mild syntactic restrictions, obeyed in this paper
and detailed in [26], one can show that every set of disjoint
predicate definitions is satisfiable:

Lemma 5. For any set of definitions W1, . . . Wm, D1, . . . Dn

where Wi has form wi(xi) = Qi and Dj is listed in class Gj,
there exists an interpretation I such that I |= [

∧
i∈1..m ∀xi·

wi(xi) ⇔ Qi] ∧ [
∧

j∈1..n apf Gj (Dj)] provided that no two
distinct definitions in the set define the same predicate.

The semantics of our proof system’s judgements is de-
fined next. We do not define the semantics of `e and `a

explicitly, since we work with their premises (valid logical
formulae whose existence is guaranteed) instead. For triples,
the usual partial-correctness semantics for separation logic is
used: if the precondition holds in the start state, then 1) the
statements will not fault (access unallocated memory, for ex-
ample), and 2) if the statements terminate, then the postcon-
dition holds in the resulting state.

Definition 6. I |=n {P}s{Q} iff whenever σ, I, L |= P then
∀m ≤ n·

14 2010/7/29

1. σ,s −→m fault does not hold, and
2. if σ,s −→m σ′,ε then σ′, I, L |= Q

The index n deals with mutual recursion in method defi-
nitions. I |=n Γ means that all methods in Γ meet their spec-
ifications when executed for up to n steps.

Definition 7 (Method verification semantics). If m in G is
non-abstract, let s denote its body.
I, Γ |=0 G.m 7→ (x,{P} {Q}) always holds.
I, Γ |=n+1 G.m 7→ (x,{P} {Q}) iff

I |=n Γ⇒ I |=n+1 {P ∗Current : G}s{Q}
if G is non-abstract and true otherwise.

I, Γ |=0 G::m 7→ (x,{S} {T}) always holds.
I, Γ |=n+1 G::m 7→ (x,{S} {T}) iff

I |=n Γ⇒ I |=n+1 {S}s{T}

I |=n Γ iff ∀methodspec ∈ Γ· I, Γ |=n methodspec

We next define the semantics of the statement judgement.

Definition 8. ∆; Γ |= {P}s{Q} iff for all I and n, if I |= ∆
and I |=n Γ, then I |=n+1 {P}s{Q}

In other words, for all interpretations which satisfy the
assumptions ∆, if all methods in Γ meet their specifications
for up to n steps, then s meets its specification for up to n +
1 steps.

The judgements are sound with respect to their semantics.

Lemma 9.

1. If ∆; Γ `m . . . m . . . , then ∀I· if I |= ∆ then for all n and
every spec of m we have I, Γ |=n spec

2. If ∆; Γ `s {P}s{Q} then ∆; Γ |= {P}s{Q}

Whenever a judgement is derivable under weak assump-
tions, it can also be derived under stronger ones.

Lemma 10.

1. If ∆; Γ `m . . . m . . . and ∆′ ⇒ ∆, then ∆′; Γ `m . . . m
. . .

2. If ∆; Γ `s {P}s{Q} and ∆′ ⇒ ∆, then ∆′; Γ `s

{P}s{Q}
3. If ∆APF ,∆E ,∆A; Γ `c L and ∆′ ⇒ ∆APF ,

then ∆′,∆E ,∆A; Γ `c L

Finally, here is the soundness statement and detailed
proof sketch of the program verification rule.

Theorem 11. If a program and its main body s can be
proved with the program verification rule, then ∀I,n· I |=n

{true}s{true}.
Proof.

1. The goal. We have to prove ∀I,n· I |=n {true}s{true},
which abbreviates ∀I,n· whenever σ, I, L |= true, then
∀m ≤ n· 1) σ,s −→m fault does not hold, and 2) if σ,s
−→m σ′,ε then σ′, I, L |= true. This can be simplified to
∀n· σ,s −→n fault does not hold.

2. Strengthened assumptions. Let ∆T
def=

∧
i∈1..t apf (Li),

where L1 . . . Lt are all classes in the program. By Lemma
10, we can strengthen the assumptions under which all
classes and the main body have been verified. For every
class Li, we have ∆T , ∆E , ∆A; Γ `c Li, and ∆T ∧∆E ∧
∆A; Γ `s {true}s{true} also holds for the main body s.

3. The interpretation I ′. Since ∆T ∧ ∆E ∧ ∆A; Γ `s

{true}s{true}, Lemma 9 guarantees ∆T ∧ ∆E ∧ ∆A;
Γ |= {true}s{true}. This abbreviates ∀I,n· if I |=
∆T∧∆E∧∆A and I |=n Γ, then I |=n+1 {true}s{true},
which can be simplified to ∀I,n· if I |= ∆T ∧∆E ∧∆A

and I |=n Γ, then ∀m ≤ n + 1· σ,s −→m fault does
not hold. Now if we can find an I ′ such that I ′ |=
∆T ∧∆E ∧∆A and ∀n· I ′ |=n Γ, then we can instantiate
I to I ′ in the formula and simplify to obtain ∀n· σ,s−→n

fault does not hold. Therefore I ′ serves as a witness that
s will never fault, which is exactly our goal.
Let I ′ be the interpretation whose existence is guaranteed
by Lemma 5 for all the where and define clauses in the
program. Clearly I ′ |= ∆T . We next prove I ′ |= ∆E and
then I ′ |= ∆A.

4. Satisfiability of ∆E . Consider an arbitrary export clause
E = P where {w1(x1) = Q1; . . . ; wn(xn) = Qn} in class
L. Since apf (L) `e E, we know [apf (L) ∧ (

∧
i∈1..n ∀xi

·wi(xi) ⇔ Qi)] ⇒ P. The interpretation I ′ satisfies the
antecedent, so we also have I ′ |= P. Therefore I ′ |= ∆E ,
and I ′ |= ∆T ∧∆E .

5. Satisfiability of ∆A. We prove this by induction. If class
G has children H1 . . . Hk, let level(G) def= 1 + max(0,
level(H1), . . . , level(Hk)). Furthermore, P(n) def= ∀ G in
the program such that level(G) ≤ n and for all axiom
clauses a: P in the listing of G, (∆T ∧ ∆E) ⇒ axiom-
info(G, a: P).

• Base case. Consider an arbitrary class G with level(G)
≤ 1 and an axiom clause a: P appearing in it. G has no
subclasses, and
(a) If G is abstract, there are no objects with dynamic

type G or a subtype thereof, thus axiominfo(G, a:
P) holds vacuously and ∆T ∧∆E implies it.

(b) If G is non-abstract, then the only objects whose
dynamic type is a subtype of G are direct instances
of G. Since (∆T ∧ ∆E ∧ Current : G) ⇒ P by
the Implication premise, we therefore also know
(∆T ∧∆E)⇒ axiominfo(G, a: P).

Thus P(1) holds.
• Step case. Suppose P(n) holds. Now consider a class

G at level n+1 with axiom clause a: P. Every child H
of G must list a, say a: Q. By the induction hypothesis
we know (∆T∧∆E)⇒ axiominfo(H, a: Q), and by the
Parent Consistency premise of a: Q we know (∆T ∧
∆E ∧Q)⇒ P. Therefore (∆T ∧∆E)⇒ axiominfo(H,
a: P). We have (∆T∧∆E)⇒ axiominfo(G, a: P) if G is
abstract, and the same holds if G is non-abstract since

15 2010/7/29

the Implication premise of a: P guarantees (∆T∧∆E∧
Current : G)⇒ P. Thus P(n+1) holds.

So I ′ |= ∆T ∧∆E ∧∆A.
6. Wrapping up. We still have to prove ∀n· I ′ |=n Γ.

Let m be an arbitrary method in the program. Since
∆T ∧ ∆E ∧ ∆A; Γ `m m, by Lemma 9 we know for
all n and every spec of m that I ′, Γ |=n spec. Thus
∀n · ∀methodspec ∈ Γ· I ′, Γ |=n methodspec, in other
words ∀n· I ′ |=n Γ. 2

Acknowledgments
Special thanks to Matthew Parkinson, Peter O’Hearn, Bertrand
Meyer, Sebastian Nanz, Carlo Furia and Martin Nordio for
feedback on early versions of this work. Matthew Parkinson
also helped with the implementation of MultiStar’s back-
end. Van Staden is supported by ETH Research Grant ETH-
15 10-1. Calcagno is partially funded by EPSRC.

References
[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#

programming system: An overview. In CASSIS ’05, volume
3362 of LNCS, pages 49–69. Springer, 2005.

[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. International Journal on Software
Tools for Technology Transfer (STTT), 7(3):212–232, 2005.

[3] L. Cardelli. A semantics of multiple inheritance. Inf. Comput.,
76(2-3):138–164, 1988.

[4] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Enhancing
modular OO verification with separation logic. In POPL
’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
87–99, New York, NY, USA, 2008. ACM.

[5] D. Distefano and M. J. Parkinson J. jStar: towards practical
verification for Java. In OOPSLA ’08: Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming
systems languages and applications, pages 213–226, New
York, NY, USA, 2008. ACM.

[6] J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incre-
mental reasoning for multiple inheritance. In IFM ’09, pages
215–230, Berlin, Heidelberg, 2009. Springer.

[7] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Sum-
mers. A unified framework for verification techniques for ob-
ject invariants. In J. Vitek, editor, ECOOP, volume 5142 of
LNCS, pages 412–437. Springer, 2008.

[8] ECMA International. Standard ECMA-367. Eiffel: Analysis,
Design and Programming Language. 2nd edition, June 2006.

[9] M. A. Ellis and B. Stroustrup. The annotated C++ refer-
ence manual. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990.

[10] EVE. The Eiffel Verification Environment. http://eve.
origo.ethz.ch/.

[11] Gobosoft. The Gobo Eiffel Structure Library. http://www.
gobosoft.com/eiffel/gobo/structure/index.html.

[12] B. Jacobs and F. Piessens. Inspector methods for state abstrac-
tion. Journal of Object Technology, 6(5):55–75, June 2007.

[13] B. Jacobs and F. Piessens. The VeriFast program verifier.
Technical Report CW-520, Katholieke Universiteit Leuven,
August 2008.

[14] B. Jacobs, J. Smans, and F. Piessens. Verifying the composite
pattern using separation logic. SAVCBS Composite pattern
challenge track, 2008.

[15] I. T. Kassios. Dynamic frames: Support for framing, depen-
dencies and sharing without restrictions. In J. Misra, T. Nip-
kow, and E. Sekerinski, editors, FM, volume 4085 of LNCS,
pages 268–283. Springer, 2006.

[16] I. T. Kassios. The dynamic frames theory. Formal Aspects of
Computing, 2010. To appear.

[17] N. R. Krishnaswami, L. Birkedal, J. Aldrich, and J. C.
Reynolds. Idealized ML and Its Separation Logic. Draft
available online at http://www.cs.cmu.edu/~neelk/

idealized-ml-draft.pdf. 2006.

[18] G. T. Leavens and P. Müller. Information hiding and visibility
in interface specifications. In ICSE, pages 385–395. IEEE
Computer Society, 2007.

[19] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for Java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[20] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification
and verification challenges for sequential object-oriented pro-
grams. Formal Aspects of Computing, 19(2):159–189, 2007.

[21] K. R. M. Leino and P. Müller. Object invariants in dynamic
contexts. In M. Odersky, editor, ECOOP, volume 3086 of
LNCS, pages 491–516. Springer, 2004.

[22] K. R. M. Leino and W. Schulte. A verifying compiler for
a multi-threaded object-oriented language. Software System
Reliability and Security, 9:351–416, 2007.

[23] C. Luo and S. Qin. Separation logic for multiple inheritance.
Electr. Notes Theor. Comput. Sci., 212:27–40, 2008.

[24] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In CSL ’01, volume
2142 of LNCS, pages 1–19. Springer, 2001.

[25] M. Parkinson and G. Bierman. Separation logic and abstrac-
tion. In POPL ’05: Proceedings of the 32nd annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 247–258, New York, NY, USA, 2005. ACM.

[26] M. J. Parkinson. Local reasoning for Java. PhD thesis. Tech-
nical Report UCAM-CL-TR-654, University of Cambridge,
Computer Laboratory, November 2005.

[27] M. J. Parkinson and G. M. Bierman. Separation logic, abstrac-
tion and inheritance. In POPL ’08: Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 75–86, New York, NY, USA,
2008. ACM.

[28] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS ’02: Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 55–
74, Washington, DC, USA, 2002. IEEE Computer Society.

16 2010/7/29

