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Abstract

An important application of focused variants of Gentzen’s sequent calculus proof
rules is the construction of (possibly) large synthetic inference rules. In this
paper, we examine the synthetic inference rules that arise when using theories
composed of bipolars, and we do this in both classical and intuitionistic logics.
A key step in transforming a formula into synthetic inference rules involves
attaching a polarity to atomic formulas and to some logical connectives. Since
there are different choices in how polarity is assigned, it is possible to produce
different synthetic inference rules for the same formula. We show that this
flexibility allows for the generalization of different approaches for transforming
axioms into sequent rules present in the literature. We finish the paper showing
how to apply these results to organize the proof theory of labeled sequent systems
for several propositional modal logics.

1. Introduction

We start by presenting a simple, motivating example that should illustrate
several key concepts we shall encounter. Let B be a formula and I" be a multiset
of formulas. Consider attempting to build a proof of the following two-sided
sequent

A, o---2>2A, DA+ B,

in which the distinguished implication is such that n > 1 and Ay,..., A, are
atomic formulas. In general, there are many ways to proceed with attempting
to build a cut-free proof of this sequent and we characterize them as one of the
following four possibilities. This sequent can be the conclusion of
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a structural rule (weakening or contraction) or the initial rule;

a right introduction rule, if B is not an atomic formula;

a left-introduction rule that introduces a formula in I'; or

the implication-introduction rule that introduces the distinguished impli-
cation.

- o

The number of possible choices here could be large, particularly if I' contains a
large number of formulas. If we chose the fourth of these possibilities, the proof
would look as follows (at least in the intuitionistic setting):

'+ A, I'NAs>---D A, DA+ B
A, o--->A, DA FB

Note that we again have a large number of possible ways to proceed in attempting
to prove the right premise: indeed, if n > 2, we have all the same choices as
before. Clearly, those choices—and their multiplicative effects as we search for a
sequence of inference steps that terminates in a proof—are in desperate need of
being structured somehow. Focused proof systems provide such structure using
the following two devices.

Focused rule application If you chose to apply the implication-left introduc-
tion on the distinguished implication, then you also commit to repeat
the implication-left rule on the right premise until the atomic formula
Ap results. That is, the left-introduction applied to the distinguished
implication results in the following derived inference rule

-4, ... THA, I'Ay - B
I'A;,>---2A4, DA+ B

LD n times.

Polarization Although the focused application of inference rules provides struc-
ture to attempts to build proofs, there are still so many remaining choices,
that it is possible to impose two different “protocols” for restricting choices
further. The @-protocol insists that the first n premises above are trivial,
meaning that they are proved by the initial rule. Following that protocol,
we have A; € T' for 1 < ¢ < n. Thus, if we set IV to be the result of
removing all occurrences of Ay,..., A, from I', then the derived inference
rule above becomes

I, Ay,...,A,, Ay - B
I"Ay,...,A,,A1 D---DA,DAFB

The second protocol, the T-protocol insists that the right-most premise is
trivial: that is, Ag and B are the same atomic formula. Thus, the derived
inference rule above becomes

r-4, ... T'FA,
I'NA1D---DA, DAy Ay




Using the @Q-protocol, the proof-search semantics of the implication A; D
-+ D A, D Ay is given by forward-chaining: if you have assumptions Ay, ..., A,
then you can add the assumption Ay. Using the T-protocol, the proof-search
semantics of the same implication is given by back-chaining: in order to prove
the conclusion Ag, attempt instead to prove each of Aq,..., A,. The names for
the @ and T protocols comes from Danos, Joinet, and Schellinx [1]: in the @
protocol, the tail (“queue”) of an implication yields a trivial premise while in the
T protocol, the head (“téte”) of an implication yields a trivial premise. A more
modern and flexible presentation of the ) and T protocols speaks, instead, of
the polarity of formulas: for this example, the polarity given to atomic formulas
is the most relevant. In particular, if all atomic formulas have a positive polarity,
the @Q-protocol is enforced, while if all atomic formulas have a negative polarity,
the T-protocol is enforced.

In the next section, we introduce the LKF and LJF [2, 3] focused proof
systems for classical and intuitionistic logics, respectively. Those systems extend
both the notion of focusing and polarity to all formulas, moving beyond the
example above involving only implications and atomic formulas. In particular,
focused rule applications imply that focus is transferred from conclusion to
premises in derivations. This process goes on until either the focused phase ends
(depending on the polarity of the focused formula), or the derivation ends. Once
the focus is released, the formula is eagerly decomposed into subformulas, which
are ultimately stored in the context.

Reading derivations from the root upwards, this forces a sequent derivation
to be organized into focused phases, each of them corresponding to an application
of a synthetic inference rule [4], where the focused formula is rewritten into
(some of) its subformulas.

There is a class of formulas corresponding to particularly interesting synthetic
rules: the bipolars (Section 3). Bipolars are formulas in which polarity can change
at most once among its subformulas. This means that focusing on a bipolar A
gives rise to (possibly many) synthetic inference rules having simple shape, with
leaves involving only atomic subformulas of A. We call a synthetic inference rule
corresponding to the bipolar A a bipole for A.

In this work, we will present a careful study of bipoles, giving a fresh view to
an old problem: how to incorporate inference rules encoding axioms into proof
systems for classical and intuitionistic logics (Section 4).

A key step in transforming a formula into synthetic inference rules involves
attaching a polarity to atomic formulas and to some logical connectives. Since
there are different choices for assigning polarities, it is possible to produce
different synthetic inference rules for the same (unpolarized) formula. In the
example above, there are (at most) 2"*! different possible polarizations for
the atomic formulas in Ay D --- D A, D Ag, each of them corresponding to a
different bipole. We show that this flexibility allows for the generalization of
different approaches for transforming axioms into sequent rules present in the
literature.

The general problem of extending standard proof-theoretical results obtained
for pure logic to certain class of non-logical axioms has been focus of attention for



quite some time now. The main challenge in this effort is to determine a general
procedure that guarantees that such extensions preserve good proof-theoretical
properties.

A remarkable step in that direction was the careful investigation of geometric
axioms. Geometric axioms are first-order formulas that can be converted into
(natural deduction/sequent) inference rules having “a certain simple form in
which only atomic formulas play a critical part”, as described by Simpson [5].
And this “simple rules for atomic formulas” motto seems to be the core of success
in this endurance in the approaches/extensions present in the literature [6].

The fact that bipolars smoothly extend geometric formulas was first noted
in [7] where, among other things, Ciabattoni et al. developed a systematic
procedure for transforming a class of (Hilbert) axioms (called N3) into equivalent
structural inference rules in substructural sequent calculi. Extended to first-order
logic [8], such a procedure showed how to formalize and generalize the results
in [9, 10, 11], where Negri et al. proposed methods for transforming axioms
into inference rules, without affecting the admissibility of the structural rules.
Bipolars are actually first-order atomic-polarized versions of N5 formulas.

Following a parallel path, Viganod presents in [12] a detailed study of extensions
of modal systems with Horn relational theories — a sub-class of geometric theories.
Interestingly enough, the difference between Vigano and Negri’s approaches is
only the protocol: back-chaining versus forward-chaining, respectively.

In this work, we come back to the inception of the axioms-as-rules problem,
showing that the combination of bipolars and focusing is the real essence of
“simple rules for atomic formulas”. This implies that the previously mentioned
works are different faces of the same coin, minted from focusing and polarization.
Moreover, we address these issues with a uniform presentation in both classical
and intuitionistic first-order logics.

We finish the paper by showing how to emulate precisely rules for modalities
in labeled modal systems as synthetic connectives [13, 14] (Section 5). Such tight
emulation means that proof search and proof checking on the focused version of
the translated formulas imitates exactly proof search and proof checking in the
correspondent labeled system. As a result, we are able to show that we can use
focused proofs to precisely emulate modal proofs whenever Kripke frames are
characterized by bipolar properties.

2. Background notions

The formulas of first-order classical and intuitionistic logics are built from
atomic formula along with ¢ and f (true and false), A and V (conjunction and
disjunction), D (implication), and V, 3 (universal and existential quantification).
The logical units are t and f, the binary connectives are A, V, and D, and the
quantifiers are ¥V and 3. Collectively, these are all called logical connectives. Here,
we do not take negation as a logical connective, instead we write B O f to denote
the negation of B.



INTRODUCTION RULES

ATEA B, THA r-AA 'HAB
AANB,TFA ANB,TFA '-AAAB At
ATHA B, THA A A '-A,B

AVvBTFA '-AAvVB I'FAAV B fL,TFEA

-A;,A B TFA, ATHAB
ADB,F"Al,AQ F"A,ADB
[t/z]B, T F A '+ A y/z]|B [y/z]B,T F A '+ A t/z]B
VeB,TF A I'+AVzB JxB, ' A 'kA,3zB

IDENTITY RULE (the initial rule)
PTHFA,P
STRUCTURAL RULES (the contraction rules)

AATFA TFAAA
ATFA TFAA

Figure 1: The classical sequent calculus LK. The LJ calculus results from restricting the
right-hand side of sequents to contain at most one formula. Here, A and B are arbitrary
formulas, and P is an atomic formula. In the V right rule and in the 3 left rule, the eigenvariable
y does not occur free in any formula of the conclusion.

2.1. Sequent calculus proof systems for classical and intuitionistic logic

Figure 1 contains the sequent calculus inference rules for what we shall call
LK. This system is formally different from the one of the same name given
by Gentzen in [15]. In particular, Gentzen’s original system included the cut
inference rule, but we delay until Section 3 to introduce that inference rule, and
when we do it will be as an inference rule in a focused proof system. Other
differences from Gentzen’s original LK proof system—such as the restriction of
the initial rule to atomic formulas—do not change the character of the LK proof
system in any important fashion. Just as in [15], the intuitionistic system LJ
is obtained by restricting the right side of each sequent to contain at most one
formula. This restriction on the right-hand side of sequents is equivalent to the
following two restrictions: (i) no contractions are allowed on the right side and
(4) the rule for introducing implication on the left side is restricted to have the



form
'rA B T'FA

ASBTFA

That is, the right-hand side of the conclusion must be the same as the right-hand
side of the right premise.

2.2. Polarized formulas

An early focused proof, given in [16, 17], introduced a two-phase proof
system—used to captured the logic programming concepts of goal-reduction and
back-chaining—and proved it to be complete for a subset of intuitionistic logic.
In [18], Andreoli generalized that two phase construction by extending it to all
of linear logic. Subsequently, several additional proof systems appeared in which
somewhat similar proof structures were given for classical and intuitionistic logics:
in particular, LKT and LKQ [1], LJT [19], and LJQ [20]. The focused proof
systems LKF and LJF [2, 3] were designed to generalize all of those proof systems:
in particular, LKF and LJF can accommodate both the @) and T protocols as
well as a mix of those protocols. The proof system LKF, for first-order classical
logic, and the proof system LJF, for first-order intuitionistic logic, are presented
in Figures 2 and 3, respectively. Our presentation has been adapted from the
corresponding proof systems given in [3]: in particular, for ease of comparison
between the intuitionistic and the classical proofs, the proof system LKF' is
presented using two-sided sequents.

In order to obtain their flexibility in capturing various focusing regimes, the
LKF and LJF proof systems use polarized formulas instead of the unpolarized
formulas used in the LK and LJ proof systems of Section 2.1. A polarized
classical (first-order) formula is a formula built using atomic formulas, the
usual first-order quantifiers V and 3, the implication D, and polarized versions
of the logical connectives and constants, i.e., t=, tT,f~, fT, v7, vF, A=, AT,
A polarized intuitionistic (first-order) formula is a polarized classical formula
in which the logical connectives f~ and V~ do not occur. The positive and
negative versions of connectives and constants have identical truth conditions
but different inference rules inside the polarized proof systems. For example, the
left introduction rule for AT is invertible while the left introduction rule for A~
is not invertible.

We shall also find it necessary to use delays: if B is a polarized formula
then we define 0_(B) to be (the always negative) B A~ ¢~ and 9, (B) to be (the
always positive) B AT ¢T. Equivalently, we can take 9, () to be the l-ary version
of either the binary V* or AT and take d_(-) to be the l-ary version of either
the binary vV~ or A~. (The 0-ary version of these four connectives correspond to
the logical units f*, ¢, f=, t7.)

If a formula’s top-level connective is ¢, f+, v, AT, or 3, then that formula
is positive. If a formula’s top-level connective is t—, f—, V—, A~, D, or V, then
it is negative. Note that in the intuitionistic system LJF, we have only one
disjunction and one falsum, both of which exist only with positive polarity. The
way to form the negation of the polarized formula B is with the formula B D f+:
this formula has negative polarity no matter the polarity of B.



In both LKF and LJF, every polarized formula is classified as positive or
negative. This means that we must also provide a polarity to atomic formulas.
As it turns out, this assignment of polarity to atomic formulas can, in principle,
be arbitrary. In particular, an atomic bias assignment is a function §(-) that
maps atomic formulas to the set of two tokens {pos, neg}: if 6(A) is pos then
that atomic formula is positive and if 6(A) is neg then that atomic formula
is negative. We may ask that all atomic formulas are positive, that they are
all negative, or we can mix polarity assignments. In particular, the atomic
bias assignment §7(-) assigns all atoms a positive polarity while §7(-) assigns
all atoms a negative polarity. For this paper, we shall assume that an atomic
bias assignment is also stable under substitution: that is, for all substitutions
0, 6(8A) = 6(A). In first-order logic, this is equivalent to saying that such bias
assignments are predicate determined: that is, if atoms A and A’ have the same
predicate head, then §(A) = §(4").

We say that the pair (J, B) is a polarization of B if 6(-) is an atomic bias
assignment and if every occurrence of ¢, A, f, and V in B is labeled with either
the + or — annotation. If B has n occurrences of these logical connectives then
there are 2™ different ways to place these 4+ or — symbols. We shall also allow
the insertion of any number of 8, (-) and d_(-) into B as well. In other words,
the polarized formula (4, C') is a polarization of B if deleting all delays and all +
and — annotations on logical connectives of C results in B. Note that we use D,
V, and 3 in both unpolarized as well as polarized formulas: we can do this since
the polarity of these connectives is not ambiguous. In classical logic, the polarity
of t, A, f, and V is ambiguous and all of these can be positive or negative. In
intuitionistic logic, only the polarity of ¢ and A is ambiguous. In both of these
logics, however, the polarity of atoms is equally ambiguous. Finally, if (J, B) is
a polarization of B, we shall generally drop explicit reference to ¢ and simply
say that Bis a polarization of B: often, the atomic bias assignment is either
not important or can be inferred from context.

2.3. Focused proof systems

The inference rules of LKF and LJF presented in Figures 2 and 3, respectively,
involve three kinds of sequents

THOFQNA, TUBFA, and THBIUA,

where I', ©, Q and A are multisets of polarized formulas and B is a polarized
formula. The formula occurrence B in a J}-sequent is called the focus of that
sequent.

The system LJF is depicted in a separate figure for the sake of clarity.
However, one can notice that, similarly to what we have for LJ and LK in the
original Gentzen formulations, LJF can be seen as a restriction of LKF, where
the rules for f~ and VvV~ are omitted and only one formula is admitted in the
succedent of sequents. In particular, this implies that (i) in the left rule for D,
the right context of the conclusion is not present in the left premise; (i7) in the
rule D,., the formula placed under focus is not subjected to contraction; and (i7)



ASYNCHRONOUS RULES

L0+ AB QYA T1OFAQNA THOFBOANA
I tOFAVBQHA " L1OFAA B,QGA v
F14BOFAMA  THAOFQNA THBOFQRA .
I'fAANtB,OFQfA ! I'NMAVEB,OFQNA !
Lk ly/z]B,Qf A L ly/z]B,OF Q1A
T -FV2.B,QftA " I{32.B,0FQfA
L1O,AFBOfA _ reerona rteFQtA ja
THOFASB QA" TItherQpA THOF QA"
— t, fir
TNOFQNA T fherQfA
SYNCHRONOUS RULES
T'FAJA TUBFA FyAFA TUBFA FyA-a
TUASBFA ! TUAV- BFA D TA A A EA !
IFALA TEBJA THA4; | A
- Vi
IFAANTBUA THA VEA LA
T [t/z]BF A T+ [t/z]B | A o+ =
Fyve.BFA ' Tr3zByA " THttA " TUf A

IDENTITY RULES
LU N, F N, A h [,P,FP A b

STRUCTURAL RULES

I'NINEA Py PA b 'fYPF-f1A Fﬂ-I—NﬂAR
N{-F-fA ' TH-F-fPA " TUPFA ' TFENIA
CTAOFONA . T FQHDA

l

THC,0FQA TH-FD,OQNA ™"

Here, P is positive, N is negative, C' is a negative formula or positive atom, D a
positive formula or negative atom, IV, is a negative atom, and P, is a positive
atom. Other formulas are arbitrary. In the rules V, and 3; the eigenvariable y
does not occur free in any formula of the conclusion.

Figure 2: The focused classical sequent calculus LKF.



ASYNCHRONOUS RULES

I'NAOFB1- FﬂGFAﬂ~Fﬂ®FBﬂ~N
rfOFA>BfH- " I'fOFAAN Bf- r
I'ftABOFR FﬂA@FR,FﬂRG%Rv+
I'fAAtB,OFR ! I'fAVtB,OFR !
FﬂGFbMBﬂ~V ' [y/z]B,OFR
LtOFVeBft- " I {32.B,0FR !
B rfeFR £
rfertf- " rftt,0FR ! r'f4fH0FR "
SYNCHRONOUS RULES
'+Ay TUBFR I't-A; ) 'y A FR _

— T vt A
A VEA, | 7 Iy A A AR

TVA>BFR !

FEAy TEBY  Ty[t/aBER , TEt/a)BY o
THAANBY 7 T{yVaeBrR " Tr3zBl =~ TrHtt| "

IDENTITY RULES

rum%mﬂl nakgu”

STRUCTURAL RULES

ILNUNFR TPy o THPEAR _ TH-FNf-
LNt F-fR " T-F- P " TYPFR ' TFNy 7
CTHOFR T D
'fC,OFrR > Tq-FDp- 7"

Here, P is positive, N is negative, C is a negative formula or positive atom, D a
positive formula or negative atom, IV, is a negative atom, and P, is a positive
atom. Other formulas are arbitrary. R denotes A; {} Ay where the union of Ay
and A, contains at most one formula. In the rules V¥, and 3; the eigenvariable y
does not occur free in any formula of the conclusion.

Figure 3: The focused intuitionistic sequent calculus LJF.



a sequent of the form I' - B || A, when used in an LJF proof, is such that A is
empty. In that case, we write that sequent as simply I' - B |} .
The soundness of LKF and LJF can be stated as follows.

1. Let B be an unpolarized classical logic formula and let Bbe any polarization
of B. If - -+ B { - is provable in LKF then - B is provable in LK.

2. Let B be an unpolarized intuitionistic logic formula and let B be any
polarization of B. If - f} - - B 1t - is provable in LJF then I B is provable
in LJ.

These claims of soundness will be proved in detail in Section 2.4.
The completeness of LKF and LJF can be stated as follows.

Theorem 1 (Completeness of LKF and LJF). 1. If B is an unpolar-
ized classical logic theorem (i.e., = B is provable in LK) and B is any
polarization of B, then - f} -+ B - is provable in LKF.

2. If B is an unpolarized intuitionistic logic theorem (i.e., = B is provable in
LJ) and B s any polarization of B, then - ff -+ B - is provable in LJF.

The proofs of these completeness theorems are lengthy and are not given here:
the interested reader can find them in [3, 21]. A consequence of the completeness
theorem is that the choice of polarization does not affect provability (although
it can have an impact on the structure of proofs). Hence, if a polarization of
B is provable in LKF (LJF) then every polarization of B is provable in LKF'
(respectively, LJF).

We shall now make an important distinction between the terms derivation
and proof. While they are both tree-structured organizations of inference rules
(focused or not), we shall only use the term “proof” when all leaves of that tree
are closed: that is, all leaves are justified by either an initial rule (l;, I,.) or the
introduction of a logical unit (¢, t;f, f,, f;"). Derivations can have zero or
more leaves that are not the consequence of an inference rule.

By observing LKF and LJF inference rules in Figures 2 and 3, we notice
that derivations are constructed by a repeated alternation of two phases: a
synchronous phase, which (reading the derivation from the root upwards) typ-
ically starts with the application of a decide rule (D;,D,) and consists in the
application of synchronous rules, and an asynchronous phase, which starts with
the application of a release rule (R;,R,), and consists in the application of
asynchronous rules, terminating with applications of a store rule (S;,S,.).

Definition 2 (Synthetic inference rule). A synthetic inference rule is an
inference rule of the form

Tift-F- 1A ... Taft-F-1A,
TH-F-ftA

which is justified by a derivation of the form

Tift-F- 1A ... Tuf-F-1A,
Il
Th-F-ftA

10



Here, n > 0 and the inference rules of derivation I are such that no synchronous
rule application occurs above an asynchronous rule application. We also assume
that T1 contains at least one inference rule.

Sequents of the form I' - F - A are called border sequents since they form
the borders (the endsequent and premises) of synthetic inference rules. We will
occasionally identify a synthetic inference rule with the derivation justifying it.
We can speak of such synthetic inference rules in both LKF and LJF and, in
both cases, the last inference rule of (the justification) II must be a decide rule,
either D; or D,.. In the case that that decide rule is D; and it selects for focus
the (negative) formula B, we say that this derivation is a synthetic inference
rule for B.

Our main use of focused proofs in this paper is to examine synthetic inference
rules for formulas from certain theories.

2.4. Encoding unfocused systems in focused systems

In the introduction, we motivated using focusing and polarization to build
large-scale inference rules, such as forward-chaining or back-chaining. In this
section, we start with showing that the small-scale introduction rules in Gentzen’s
original, unfocused proof systems can be emulated precisely using synthetic
inference rules in the corresponding focused proof system. Once we develop
the techniques to show that emulation, we will move to addressing larger-scale
inference rules in Section 3.

Given a polarized formula B we will denote by B° the first-order formula
obtained by removing the annotations on the polarized versions of conjunction,
disjunction, true, and false. For example, if P, ), and R are atoms, then

(PV™ (QAT R)° = PV (QAR)

This translation carries V, 3, D, and atoms to themselves. If T is a set of polarized
formulas, then I'° denotes the set {B° | B € I'}.

It is straightforward to transform a derivation Il of I' } - F - ff A in LKF
(or LJF) into a derivation II° of I'° - A° in LK (respectively, LJ) by ignoring
the release and store rules and by using the contraction rule when replacing
the decide rules and when transforming multiplicative rules into additive ones.
For example, if P, Q, R are atomic formulas assigned positive polarity, the LKF
derivation

PV~ (QATR),Q, R+ -1

PV (QA*R),PH-F -1 PV QAN R Q,RF -1

PV QAN RAPF-f-
PV (QATRUPF- ' PV (QATR)LQA RF-

PV (QANTR)I PV (QATR) - !

PV QAT R -+ -1-

l

+
PV ( QAN R)AQATRE-f- !
l

11



is transformed into the LK derivation

PV(QAR),Q,R}F
PV(QAR),Q,QNRF
PV(QAR),QANR,QANRF
PV(QAR),PF PV(QAR),QARF
PV(QAR),PV(QAR)}F
PV(QAR)F

It is possible to map unfocused LK proofs into LKF proofs in such a way that
every rule application in LK corresponds to a synthetic inference rule in LKF.
To do such an emulation, it is important to break up a sequence of negative or
positive connectives, by inserting the delays 0, (-) and 0_(+). From the definitions
given for delays in Section 2.2, the following additional focused inference rules
can be justified.

TFBUA . L1O.BEQIA
TFa.(B)UA I10,0.B)FQfA *
T4OFBQtA . DYBEA

T1OFd (B),ONA Tlo (B FA %
Following [3], we define the left/right translation functions [-]* and [-]" from

first-order formulas into polarized formulas recursively as follows: if P is an
atom, then [P]' = [P]" = P; otherwise

S = o) [ = o.(t%)
AAB] = o.(Ah A a.(B))  [AVB] = o ([Al'v(B]))
[ASBl = o (A) >0, (Bl MrAl = vad, (A
[Fz.Al = 8_(3z.[A])

o= g (= o)
[AANB = 3,([4]" A [B]) [AVB = a._([A]") v o (B
[AS B = 9,(AI > [B)") Ve Al” = 0.(Va.A]")
[[z.A" = 32.0_([A]")

Since these translations do not use either f~ or vV, the resulting formulas can
be used in both the LJF and LKF proof systems. These translations do not
assign any polarity to atomic formulas and any atomic polarity assignment can
be paired with the result of such translations. The translations are applied to
multisets, say , of polarized formulas in the usual way: [Q]" = {[A]" | A € Q}
and [Q)! = {[A]' | A € Q}. Finally, we define a translation from LK (LJ) sequents
into LKF (LJF) border sequents as follows:

[(A1,..., A, F By,...,Bp)] = [A1,..., A -+ -1 [B1,...,Bn]".

In both translation of multisets of formulas and of sequents, we shall assume that
only one atomic polarity assignment is used for all formulas in these collections
of polarized formulas.

12



Note that if B is a non-atomic unpolarized formula then [B]! is always
negative while [B]" is always positive. If B is atomic, then the polarity of [B]"
and [B]' is the same as the polarity given by the atomic polarity assignment.

As we show below, the delays in [-]' and [-]" break focusing phases and this
allows us to mimic the small step inference rules of LK and LJ derivations in
LKF and LJF, respectively (see also [3]).

2.4.1. Mapping unpolarized proofs to polarized proofs

One important difference between the unpolarized and polarized proofs is
that the former allows contractions at nearly any point in the proof while in the
latter contraction only happens during some occurrences of the decide rules. As a
result, we need to introduce some flexibility in how contexts are related between
an unpolarized proof and the polarized proof emulating it. Given two multisets
of LKF (LJF) formulas T and IV, we say that I extends T' if FV(T") C FV(I")
and every formula occurring in T" also occurs in I with the same or greater
multiplicity — here, FV(A) denotes the set of variables occurring free in A. We
say that an LKF (LJF) border sequent IV 4} - = -t A" extends an LKF (LJF)
border sequent I' ) - = - A if IV extends " and A’ extends A.

Lemma 3. Consider an application of an introduction rule in LK with con-
cluding sequent S and premises Sv,...,S, (for p=0,1,2). Then for any LKF
sequent S’ that extends [S], there exists a synthetic inference rule in LKF with
conclusion S’ and premises Si,...,S, such that for all 1 < i < p, S| extends
[Si]. If we change LK to LJ and LKF to LJF above, this lemma also holds.

PROOF. The proof proceeds by considering all the rules of LK. For example,
consider the implication left-introduction rule for LK (see Figure 1)

IEALA BTEA,
ADB,F}_Al,Ag

Let the border sequent IV {) - - - f} A’ extend
[AD B, [T - - [A]7, [As]"

Thus, A’ extends both [A;]" and [A3]” and I extends [I']! and contains the
formula [A D B]!. The following synthetic inference rule in LKF emulates this
implication left-introduction rule.

T4 b -4 [A]7, A LB -F-f A

T FA A T, DABlEpa T

- Fo (AN A - Do (BYF-na *

Fo (A A T Tya(BhraA

' 49 ([A]") > 0, ([B)") F &
- A

D1

l
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Note that the border sequents I ) - - [A]", A" and [B])', T/ - - - f} A’ extend
L] - = - [AL]7, [A]” and [B]Y D] - = - 4 [Ag]", respectively. Observe that
the stores in the leaves are possible since [A]" is positive (or atomic) and [B]! is
negative (or atomic). A similar construction can be described for all of the other
LK inference rules. Also, the proof that a similar lemma holds for intuitionistic
logic proofs is proved in the same way.

Theorem 4. Let II be an LK derivation of a sequent S from the sequents
S1,...,Sn. Then there exists an LKF derivation II' of [S] from [Si],...,[Sk]
such that each application in I1 of a non-structural rule corresponds to a synthetic
inference rule in II'. If we replace LK with LJ and LKF with LJF, the resulting
statement is also a theorem.

ProOF. We proceed bottom-up by starting from the root of IT and build II’ by
repeatedly applying Lemma 3. Since Lemma 3 is restricted to introduction rules,
we need to consider here the contraction and initial rules in LK. The contraction
rules in LK do not, in fact, translate to any rule or rules in LKF: the definition
of “extends” makes this possible. The initial rule of LK is

PTFA,P

where P is atomic. The corresponding synthetic inference rules in LKF are either

T UPEA

7“
I'F P A or o

depending on whether P has positive or negative polarity, respectively: also, T

and A’ are extensions of [[')! and [A]", respectively, containing P = [P]' = [P]".

2.4.2. Mapping polarized proofs to unpolarized proofs

Given two multisets of LKF (LJF) formulas " and T”, we say that I” is a
contraction of T if T and T contain the same set of formulas but I' can have
more occurrences of them than in TV. We say that an LKF (LJF) border sequent
I"{-F -t A is a contraction of an LKF (LJF) border sequent T {- F - A if T
is a contraction of I" and A’ is a contraction of A.

The following lemma is proved by analyzing the various synthetic inference
rules that result when using decide-rules (D; and D,) on the result of using the
left /right-translation on LK and LJ formulas.

Lemma 5. Let S’ be an LKF border sequent T {} - & -t A’ that is the left/right
translation [-] of some LK sequent. Consider a synthetic inference rule in LKF
with concluding sequent S" and premises Si,...,S, (p >0). It is the case that
0 < p <2 and that there exists

1. an LK sequent S, such that S’ is a contraction of [S], and

2. an LK rule application with conclusion S and premises Si,...,S, such
that for all 0 < i <p, S! is a contraction of [S;].

14



If we change LK to LJ and LKF to LJF above, this lemma remains true.

Theorem 6. Let II' be a proof of a border sequent S’ in LKF such that S" = [S)]
for some LK-sequent S. Then there exists an LK-proof I1 of S such that each
synthetic inference rule in II' corresponds to a single rule application in I1. If
we change LK to LJ and LKF to LJF above, this lemma remains true.

ProoOF. We proceed top-down starting from the leaves of II' and build II by
repeatedly applying Lemma 5. At each step, we get as the conclusion of an LK
rule application a sequent S* such that the one obtained in the corresponding
step of I is a contraction of [S*].

As described in [22], comparing two proof systems can be done at three
different levels of adequacy. Relative completeness claims that the provable
formulas are the same in the two proof systems. Full completeness of proofs
claims that complete proofs of theorems are in one-to-one correspondence between
the two proof systems. Finally, the most demanding notion of adequacy is
full completeness of derivations which claims that (open) derivations (such as
inference rules themselves) are also in one-to-one correspondence between the
two proof systems. What Theorems 4 and 6 imply is that we have this strongest
form of adequacy on derivations, where one step in LK or in LJ corresponds to
one synthetic inference rule in LKF or in LJF, respectively.

3. Synthetic inference rules for bipolar theories

If we limit the alternation of polarity within a negative formula to just one
flip, then the synthetic inference rules for such a formula are particularly simple.
In fact, such synthetic rules do not explicitly mention logical connectives.

Definition 7 (Bipole for B). Let B be a polarized negative formula in either
LKF or LJF. A bipole for B is a synthetic inference rule for B (see Definition 2)
in which all formulas stored using the store rules (S;,S, among the inference
rules justifying this synthetic inference rule) are atomic formulas.

Bipoles are, therefore, synthetic inference rules in which the only difference
between the concluding border sequent and any one of its premises is the presence
or absence of atomic formulas.

Example 8. Let Pi(z), Px(x), Q(x), and R(x,y) be positive atomic formulas
and assume that the polarized formula Yz (((Py(z) D Py(z))AtQ(z)) D JyR(z,y))
1s a member of I''. The following LKF derivation justifies a synthetic inference
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rule for this formula.

I Pi(t) - - Pa(t), A
I, Pi(t)f -+ Pa(t) 1 A
I Pi(t) F Po(t) 1 A I R(t,z) - F - A

I+ Pi(t) D Pa(t) 1 A | ' R(t, z) F -t A 5
I'EP () DP(t) U A 7 T FQ(t) I A A"+ I JyR(t,y) - - A Rl

r'HP1<>3P2< ) AT Q) § A " T U3yRGy FA T

U (Po(t) > Pa(t) A Q() 0 FyR(t,y) - &
r Ww((( Pi(r) > Py(x)) A* Q(x) O JyR(z.y)) F A"
' f-F - A

S,
S

S

r

Note that since we are assuming that atomic polarity assignments are stable
under substitution, it must be the case that the atoms Pi(t), Pa(t), Q(t), R(t, 2)
are all positive. * In order to apply the rule |, in this derivation, it must be the
case that Q(t) € T'. Thus, the corresponding bipole in LKF is

Pl(t)aQ(t)arﬂ' l_TTA7P2(1E) R(t,z),Q(t),I‘ﬂ~ F TTA
QWM. T'N-F-1A

If we were to build the same kind of synthetic inference rule in LJF, the corre-
sponding bipole would be

QWH),I't-F-1E

In both rules, the variable z does not occur in the conclusion.

Following the classification of formulas in intuitionistic linear logic given in
[7], we organize polarized first-order classical and intuitionistic formulas into a
hierarchy based on the alternation of polarized connectives.

Definition 9 (Hierarchy of polarized formulas). We define the following
hierarchy of negative and positive classical formulas (denoted N and PC, re-
spectively). The classes NOC and ’POC are both equal to the set of atomic formulas.
The rest of the hierarchy is defined recursively as follows:

Nn+1 = VaNS na1 |M?+1/\7Nnc+1 |N7?+1\7N7?+1 | Pg—&-l ) Nf—&-l | 737? [t | f~

Por o= 3aPyyy | Pap AP [ P VE PO [ NS | fF

The hierarchy of negative and positive intuitionistic formulas (denoted N'*, PT,
respectively) is defined analogously, by simply omitting the cases of V~ and f~
in the definition of./\/;{+1. Also, in LJF, the classes N{ and P{ are both equal
to the set of atomic formulas.

1Sonia: P, does need to be negative to be stored on the right?
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Definition 10 (Bipolar formula). Any formula in the class N§ is a classical
bipolar formula. Any formula in the class N is an intuitionistic bipolar formula.

Example 11. The formula Va(((Pi(z) D Py(x)) At Q(z)) D JyR(x,y)) under
focus in the conclusion of the derivation of Example 8 can be read as both a
classical and an intuitionistic bipolar formula.

We make the following useful additional definitions. A formula occurrence
in a sequent in LKF or in LJF is in the inner zone if that occurrence appears
between either f} or |} and . An LKF polarized formula B is level-n (for n > 0)
if it is a member of N UPY. An LKF-sequent is level-n if every formula in its
inner zone is of level-n. (Note that a border sequent is of level-n for all natural
number n.) The size of an LKF-sequent is the total number of occurrences of
logical connectives in formulas appearing in that sequent’s inner zone. Note that
the definitions for level and size can be extended directly to the intuitionistic
case by defining level-n using N’/ U P! and by considering LJF sequents instead
of LKF sequents.

Theorem 12. A synthetic inference rule for a bipolar formula is a bipole.

PrOOF. We restrict our attention first to the LJF proof system. Let B be a
polarized negative formula of level-2 and consider a synthetic inference rule for
B € T of the sequent T' {} - - - ff A. The last inference rule of this synthetic
inference rule is D; with premise I || B F A. As we move up within the synthetic
inference rule from this sequent, we first move through synchronous introduction
rules until we arrive at a release rule. At that point, the single formula in that
sequent is of level 1. During the asynchronous phase, any instances of store rules
will store formulas of level 0: in other words, the only formulas stored in this
synthetic inference rule are atomic formulas. Hence, this synthetic inference rule
is a bipole. The same argument can be made for classical bipolar formulas and
synthetic inference rules in LKF.

The following is the converse of Theorem 12.

Theorem 13. If every synthetic inference rule for a given negative formula is
a bipole then that formula is bipolar.

PRrROOF. We first consider LJF proofs. We say that a formula has minimal level
k if it has level k but does not have level k — 1 (for the base case, atoms have
minimal level 0). Assume that every synthetic inference rule of the negative
polarized formula B is a bipole but that B is not a bipolar formula. Hence there
exists k > 3 such that B is of minimal level k. Consider a synthetic inference rule
for B € T of the sequent I'{}- - -t A. During the construction of the synchronous
phase (from conclusion to premise), it is possible to always pick instances of the
synchronous introduction rules so that whenever the inner formula is positive,
its minimal level is k and if it is negative, its minimal level is k¥ — 1. During
the construction of the asynchronous phase, among the formulas stored there
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must be one that is negative and has minimal order £ — 2. Since k£ > 2 that
stored formula is not atomic, and, hence, this synthetic inference rule is not a
bipole, which is a contradiction. This proof can easily be extended to handle
LKF proofs.

Which synthetic rules correspond to a given bipolar formula B can be
computed directly from that formula using the LKF and LJF proof systems. In
general, such synthetic rules have the form

fl,l—"ﬂ"}_'/ﬂ‘A,Zl fT,Fﬂ~|—~ﬂA,ZT
f071—‘ﬂ\'|_'ﬂ~A7Z0

Here, » > 0 and

1. the schematic variables for this rule are I' and A and these range over
multisets of formulas,

2. for 0 < i < r, the multisets I';, A; are atomic subformulas of B,

all free variables in these subformulas range over first-order terms, and

4. all the eigenvariables in fjjj introduced in II by V,. or 3; do not occur
free in the conclusion.

©w

The intuitionistic version of the rule above is required to satisfy the usual
restriction that at most one formula is allowed on the right side of a sequent.
Note that synthetic inference rules do not explicitly mention logical connectives,
only atomic formulas.

In general, the computation of a synthetic inference rule from a bipole formula
starts by trying to build a bipole in which the (left) focus is on the formula B.
As we make choices in which rules to apply during the synchronous phase, we
might need to deal with a focus on an atomic formula occurrence, say A. If A is
negatively biased and focused on the left, then A must also be present on the
right-hand-side, which is possible if A € Ag; dually, if A is positively biased and
focused on the right, then A must also be present on the left-hand-side, which
is possible if A € Ty. If, however, A is negatively biased and focused on the
right or is positively biased and focused on the right, a release rule must be used
and we transition to the asynchronous phase. As we continue constructing the
asynchronous phase, all atoms appearing in the inner zone will be stored on
either the left or right and, hence, they will populate either I'; or A; depending
on which branch that store occurs.

This iterative process for computing bipoles from bipolar formulas is easily
seen to be terminating using the following measure. We assign to every LJF and
LKF sequent S a triple (m,n,p) of natural numbers as follows: m is the total
number of logical connectives occurring in formulas in the inner zone; n is the
number of formulas in the inner zone; and p is 0 if the sequent is an 1} sequent
and 1 if the sequent is a |} sequent. We shall refer to this triple as the measure
of a sequent and we use the usual lexicographic ordering on triples to provide a
well-ordering on this measure. Notice that when moving from the conclusion
to a premise for every rule except the decide rules (D;, D,.), the measure of the
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sequent gets smaller. In particular, the first component gets smaller for any
introduction rule, the second component gets smaller for any store rule (S;, S;),
and the third component gets smaller for the release rules (R;, R;.).

Appendix A contains a AProlog [23, 24] executable specification of a predicate
that relates a bipolar formula to its various bipoles. Given the nature of AProlog,
this specification is both compact and explicit about the scope of bindings
for schematic variables and eigenvariables. The termination of this AProlog
specification is easily shown using the measure of sequents mentioned above.

Our main project in this paper is to have a general method for extending
both LK and LJ with inference rules that capture certain classes of axioms.
From what we have seen in this section, we can now make three observations
concerning this project. The first is that by restricting to bipolar formulas,
these new inference rules involve only atomic formulas (and schematic variables
ranging over contexts). The second is that working with axioms as unpolarized
formulas is not sufficient: in order to construct inference rules, we need to start
with polarized axioms. Finally, a polarized axiom B that is a positive bipolar
formula is logically equivalent to the negative bipolar d_(B). Hence we may
consider, without loss of generality, that axioms in any theory T are negative
formulas.

Definition 14 (Rules from polarized axioms). Let (0, T) be a finite set of
bipolar formulas. We define LK(5,T) to be the extension of LK with inference
rules derived from the polarized theory (6,T) as follows. For every B € T and
every synthetic inference rule for B, say,

Tift-F A ... Tof-F-1A,
TH-F-A ’

we place in LK(0,T) the inference rule

TiFA ... TukA,
TFA

Since T')T, ..., T, A A, ..., A, are composed of either atomic formulas or
schematic (context) variables, there are no logical connectives that need to be
“de-polarize” when moving from the first inference rule above to the second.

Example 15. Let § be any atom bias assignment that assigns positive to the
open atomic formulas Py(x), Po(x),Q(z), R(z,y) and all their instances (see
Ezample 8). If the polarized formula

Va(((Pi(z) D Po(2)) A* Q(2)) D JyR(z,y))
is a member of T, then the following rule is contained in LK(0,T)

Pi(t),Q(t),T - A, Py(t) R(t,2),Q(t),TF A
Q). TFA
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while the following rule is contained in LJ(§,T).

Pi(t),Q(),T - Py(t) R(t,2),Qt), T+ E
Q)T+ E

In both of these rules, the eigenvariable z does not occur in the conclusion of the
corresponding rule.

We shall now prove that cut is an admissible rule in the LK(d, T) and LJ(J, T)
proof systems, where the cut frees for these systems are, respectively,

TFAA ATFA I'FA ATFB
TFA TFB

cutLJ.

cutrr and

Our proof here will be simple since we can directly use the cut-elimination
theorem for LJF and LKF given in [3, 21].

Theorem 16 (Cut admissibility for LJ(5,7)). Let (6, T) be a set of bipolar
formulas. The cut rule is admissible for the proof systems LJ(0,T).

PrOOF. The following two cut rules (among others) are proved to be admissible
for LJF in [3].

rifte:-- P I'oPOFR . ite-Cf- Iy, OO FR
1,051 01,0, F R Cut 1,051 05,0, F R Cut

Here, P is a positive formula, C' is a negative formula or a positive atom, and (as
in Figure 3) R denotes A; {} As where the union of Ay and Ay contains at most
one formula. We shall apply these admissibility results for LJF to immediately
yield the cut-admissibility result for LJ{(4,T).

Assume that we have (cut-free) proofs in LJ(d, T) of the sequents I' - B and
B, T'+ E. Using Theorem 4 and Definition 14, we have proofs in LJF of

T. 0 F- A [B]" and T, [B], [T 4+ [E]

Consider the following two cases.

Case 1: B is atomic. In this case, [B]" and [B]' are equal to B. By using
the admissibility of Cut™, we know that 7, [[']' {} - F - f [E]". We cannot apply
Cut™ directly, but it is easy to see that for atomic formula B (of either polarity),
T, [[)* - = - B is provable in LJF if and only if T, [T]'f}- = B{- is provable. We
can now apply the admissibility of Cut~ to derive the sequent 7, [[]! - - - [E]".

Case 2: B is not atomic. In this case, [B]" and [B]' are different: the first has
positive polarity while the second has negative polarity. Since these formulas are
different, a focused cut rule would not apply directly to them. However, using
the completeness theorem for LJF mentioned in Section 2.3 and proved in [3],
since B D B is provable in LJ then every polarization of B D B is provable in
LJF. Thus, it must be the case that we have an LJF proof of -} - [B]" D [B] -
and (by inversion) - {} [B]" F [B]' .. By the admissibility of Cut~, we can
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conclude that there is a (cut-free) LJF proof of T, [T]' f} [B]' - - {} [E]". By the
admissibility of Cut™, we can conclude that there is a (cut-free) LJF proof of
TP (B

Thus, in either case, we have 7,[[]' - F - f [E]". By Theorem 6 and
Definition 14, we can conclude that I' - E has a cut-free LJ{(3,T).

Theorem 17 (Cut admissibility for LK(5,T)). Let (5, T) be a polarized, ge-
ometric theory. The cut rule is admissible for the proof systems LK(6,T).

PRrROOF. Consider the following two cut rules
i EQ N P,AT Toff POy F Qo ff Ay
[, T2 101,02 F Q1,0 1 Ag, Ay
i1 FC,UNA To,C Ok Qs Ay
[, T2 101,02 F Q1,0 1 Ay, Ay

Here, P is a positive formula, C' is a negative formula or a positive atom. The
admissibility of these rules in LKF follows from the cut-admissibility result in
[21] (these two cuts correspond to the dcut; rule in the one-sided variant of
LKF used in that paper). We shall apply the cut-admissibility result for LKF to
immediately yield the cut-admissibility result for LK(d, T).

Assume that we have (cut-free) proofs in LK(d, T) of the sequents I' - B, A
and B,I' - A. Using Theorem 4 and Definition 14, we have proofs in LKF of

T, F - (B [A]" and T, (B, [T - [A]"

The rest of this proof follows the same steps as the proof regarding LJ(d, T)
(Theorem 16).

Let B be a first-order formula. If (4, B) is an LJF-polarization of B then it is
also an LKF-polarization of B since there are more options for polarizing classical
formulas. The converse obviously does not hold. Moreover, the set of formulas
which can be polarized as a bipolar is strictly greater in the classical setting.
Indeed, for any atomic bias assignment, the formula (P; D P) V (Q1 D Q2)
can be polarized classically to yield the bipolar (P; D P2) V™ (Q1 D Q2) while
there is no polarization of this formula that gives rise to an intuitionistic bipolar
formula.

4. Synthetic inference rules for geometric theories

The quest of generating sequent proof calculi for a large class of axiomatic
extensions of classical and intuitionistic logics has been focus of attention for
quite some time now. As it is well-known, simply adding an axiom as a theorem
in the logical system is not a solution, since the resulting system may not yield
the same theorems of the extended logic [25, 26].

Such a problem can be overcome by converting axioms of a certain shape
into rules of sequent calculus in such a way that the logical content of the axiom
is replaced by the meta-linguistic meaning of sequent rules [5, 9, 12, 10, 11, 27].
In this section, we will show how bipolar formulas and focusing provide a
generalization of such a method.
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4.1. Geometric axioms as bipolar formulas

There are many examples of geometric theories in different areas of logic and
mathematics, such as topology and category theory [6]. Since geometric axioms
form a proper subclass of bipolars, the approach developed in this paper can be
applied for translating this class of axioms into synthetic inference rules.

Definition 18. A geometric implication is a first-order formula having the form
Vz(Pl/\/\Pm :)HflMl\/...\/anMn)7

where each P; is an atomic formula, each M; is a conjunction of atomic formulas
Qs ijj , and none of the variables in the lists Ty, ..., T, are free in P;. A
geometric theory is a finite set of geometric implications. We shall also assume
that if the list of variables T; is empty then M; is just an atom: otherwise, this
formula can be written as a conjunction of geometric implications. For example,
if T1 is empty, then the following equivalence holds

Vz(P D (/\ Qu) VM) = /\(VE(P D (QuVvM)))

=1 =1

A coherent implication [6] is the universal closure of implications of the form
Dy D Do, where D; is built up from atoms using conjunction, disjunction and
existential quantification. It is routine to check that coherent implications are
intuitionistically equivalent to conjunctions of geometric implications (see e.g.,
[6, Proposition 2.6]).

As one can expect, different polarizations of geometric implications can give
rise to different bipoles. Note that if we wish to polarize the displayed formula in
Definition 18, the conjunctions within M; must be polarized positively (assuming
that the list of variable Z; is a non-empty). Hence, the polarized geometric
implication

VZ(PE AT AT PE S 33 M VE L VE 3R, M)
is a bipolar formula, where X* means that X may have any polarity and
T o Nt A+ + =+t
M;=@Q; A" ... A ijj.

As an example, consider the polarization of formulas such that A and V
are replaced by their positive versions, the atoms P; (1 < ¢ < n) are assigned
a positive bias, and all the atoms Q;, are given any polarization (for all and

1<j<n,1<j <kj). A synthetic rule corresponding to a bipole for this
formula is

Qi[ /7], P, TFA ... @,L[@L/En],F,FFAG
PTFA

RS

22



which is justified by a derivation with the following structure:
Qip1, P, T+ - A Q,pn; P, T A
P.Tf Mipi -1+ A P.Ty Mupn - A
PTHATP LA P YV 3g;MFA
P,ryvz.(ANT POV 3T M) - A

+
/\l7l

/\T7Sl
Rr,\/-;»75|l

+
/\rvlv‘

Vi, D1

where the variable renaming substitution p; is equal to [y;/Z;], the symbols Q;
and P denote the multisets of atomic formulas Qj,, ..., ijj and Pi,..., Py,
respectively, and the eigenvariables in the lists ¥, ...,%, do not occur free in
the conclusion. In [10, 27, 28], the GRS synthetic inference rule is called the
geometric rule scheme.

Another class of formulas described in [27, Chapter 5] are the co-geometric
axioms, which are of the form

vz (VT 1My A ... AN, M, D PV ...V Py,),

where M; is the disjunction of atoms Qj, V...V Q;,_ (for 1 < j <n). If the
disjunctions on the right of the implication are polarized negatively, then the
polarized axiom can be a bipolar formula. In particular, the polarized formula

vz (VZ, My AE L ANEYT, M, D PV L VT Py,
with M; = Q;, V7 ... Vv~ ijj and P; polarized negatively, gives rise to the
synthetic inference rule in LKF (called co-geometric rule scheme in [27])

FF@I[@1/§1]7?7A F}_@n[?n/§"}7ﬁ7A
I'-P,A

co-GRS,

If we restrict ourselves to the intuitionistic case, we must have m = 1 and
M; = @Q; for 1 < j <n. The synthetic rule in this case is given by

TEQi/m] .. TFQnly,/7]
TP

co-GRS;.

Given a (classical or intuitionistic) geometric/co-geometric theory T', a complete
proof calculus for it can be obtained by adding to an appropriate base (classical
or intuitionistic) proof system the rules that follow the scheme corresponding
to the (polarized) axioms in T. Observe that our setting avoids the closure
condition rules in [9] since contraction is implicit in the focused setting. Moreover,
all the structural properties of the basic sequent calculi are preserved by the
addition of rules following the schemes given above.

As the following example illustrates, not all bipolar formulas are geometric
or co-geometric formulas.

Example 19. In set theory, the following implication relates the subset and
membership predicates:

Vyz.(Ve(z €y Dax €2z) Dy C2).
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This formula yields a bipolar formula in both LKF and LJF under any polarization
of the binary atomic predicates € and C. Assuming that these predicates are
given positive polarity, the corresponding LJF-synthetic inference rule is

zeyl'Fzez yCz,I'FE
'k

Assuming that these predicates are given negative polarity, the corresponding
LJF-synthetic inference rule is

zeyl'Fzez
I'FyCz

In both of these synthetic inference rules, x is an eigenvariable for that rule.

4.2. Universal azioms as bipoles

A universal implication is a restricted geometric formula of the form
VZ(PLA...APp DQ1V...VQy)

where all the P; and @); are atomic formulas. This subset of geometric implications
allows for more choices in the selection of polarities while still remaining bipolar
formulas. In fact, polarized universal implications (in LKF) can have the form

VE(PEAE A PE S QEVELLVEQD).

Consider the LKF-polarized version of the universal implication with the con-
nectives A and V and the atoms @Qi,...,Q, all polarized negatively. The
correspondent synthetic rule is

T'-P,Q,A ... TFP, QA
T'FQ,A

RR.

is called the right universal rule scheme in [28]. In the intuitionistic setting,
we can use this polarization only when n = 1, in which case the LJF synthetic

inference rule is
r-P ... THP,

TFQ

RR;.

Figure 4 presents four synthetic rules in the classical setting, corresponding
to different possible polarity assignments. For example, RL. is given by the
following polarizations: {A*, Vvt P, Qf} and {At, Vv, P, Qj}

A special case of universal implications are Horn clauses, that is, formulas
of the form VZ(Py A ... A P, D Q), where where all the P; and @ are atomic
formulas. As such, a Horn clause is also a universal implication and the various
polarizations described above can be applied to them, yielding different synthetic
inference rules. In particular, if we polarize atoms and conjunctions negatively
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I'FPLO.A ...TFP,.O.A PTHA ...Q, PTFA
17Q7 - aQ? RRC Qla 5 = Q7 ) RLC
I'-0,A PTFA

'e-P,A...TFP,,A Q,TFA ... Qn,TFA
'kA

55 PTHFQA

Figure 4: Synthetic (classical) rule schemes corresponding to different polarizations of universal
implications.

in the Horn clause above, the resulting LJF-synthetic inference rule is the

back-chaining rule
r-p ... T'FP,

'@

BC.

On the other hand, if we polarize atoms and conjunctions positively in the Horn
clause above, the resulting LJF-synthetic inference rule is the forward-chaining

rule
r,p,...,P,,Q+B

T.P,....P,B

FC.

Finally, it is worth noting that, in the classical setting, it is possible to extend
the first-order language with new function symbols, so that any axiom can be
converted to a finite set of coherent implications [6]. We illustrate such a method
next.

Example 20. Given a first order binary relation R, a (i, j, m,n)-convergency
axiom (see [12]) has the form

Vayz((RY(z,y) A R (x,2)) D Ju.(R™(y,u) A R"(z,u)))

where RO (x,y) is defined to be x =y and R (x,y) is defined to be Jv.R(x,v) A
Ri(v,y) fori > 1. As noted before, such formulas are bipolars iff conjunctions
in the head of the implication are polarized positively. This restriction can be
bypassed using skolemization. In fact, by prenexing quantifiers and then skolem-
izing the remaining existential quantifiers, convergency azioms are transformed
into a set of Horn (relational) formulas of the form

VE(R(Shtl) VANPAAN R(Sm,tm) D R(So,to))

where s;,t; are terms built from Z and Skolem function constants.

Convergency axioms generalize Scott-Lemmon azioms [29] (a.k.a. Geach
azioms), which correspond to a “confluence” condition on the relational structure
of modal logic (see Section 5).

In the next section we will shed some light on the behavior of axioms falling
outside the boundary of bipolar formulas.
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4.3. Beyond bipoles

Theorems 12 and 13 set a boundary to the process of transforming axioms
into rules in the classical /intuitionistic settings, since they identify the exact class
of formulas that can be seen as synthetic inference rules.? In this section, we
illustrate how to relate non-bipolars to the systems of rules formalism, introduced
in [28]. Such formalism is an extension of the azioms-as-rules formalism, since
it allows for different sequent rules connected by conditions on the order of their
applicability and with the possibly of sharing meta-variables for formulas or
sets of formulas. While in [28] systems of rules were applied to the class of
generalized geometric implications, in [30] a connection between hypersequents
and a subclass of systems of rules is shown for propositional intermediate logics.

We will only illustrate how the systems of rules method would work for some
chosen examples, since a complete discussion of the subject would fall out the
scope of the present paper.

Example 21. The powerset axiom in set theory, written as
A =Vz3uwVy(Ve((z € y) D (z € 2)) D (y € w)),

is not bipolar due to the alternation of the positive and negative quantifiers. It is
also not a generalized geometric implication, since it has a negative occurrence
of implication. If we write B(z,w) for Vy(Vz((z € y) D (zr € 2)) D (y € w)), a
focus on A would justify the following inference rule
B(s,w),T'{t-F-f A
ry-F-ftA

decide on A,Y, Ry, 3

where s is the substitution instance of Vz and w is not free in s nor in ', A.
Now, B(s,w) is bipolar with corresponding bipole
zey,I'f-F-frozes A yew, IVt -F-f A
VA

decide on B(s,w), etc.

Here, x an eigenvariable of this inference: in particular, it is not free in vy, s,
and IV, A’. The idea in [28] is to combine the above rules in a system, with the
decide on A occurring below any occurrences of the decide on B(s,w), and the
decide on A is turned into a “silent rule” that adds the eigenvariable w to the
signature of Tt -+ -} A:

zey,I't-F-tzes, A" yewI't-F-A
F/ﬂ~|—-ﬂA/

I‘ﬂ-l—:-ﬂA

m provided that w is new.

2The same kind of characterization is present in [7] in the setting of axioms as structural
rules over propositional intuitionistic linear logic.
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In this compound inference rule, the assumption B(s,w) is not written as an
assumption in the sequent but rather as a synthetic Tule that is allowed only
above the lower inference rule.

Another interesting example is the following quantificational instance of the
axiom —a V ——a considered in [30].

Example 22. Let B by the polarized formula Vz[(P(z) D fT) Vvt ((P(xz) D
1) D f1)], where the atomic formula P(z) is positive. The derivation

I'F P(t) | A T, P(t) fr-F - A"
U'BP)DfPEA TV (P(t)D fH)D frEA"

LPM S f - F A (PO S F) D F A
D1 PH S OV (PO SIS 1A
T va(P@) o POV (P@) o 7)o f) F A

justifies the system of rules
I, P(t) - A
', P(t) - A T = AV

A r'cA
TFA

The system of rules above corresponds exactly to the 2-system derived in [30] by
translating the hypersequent rule equivalent to the (propositional version of) B.

5. Labeled proof systems for propositional modal logics

In this section, we show how to similarly apply focused proof systems LKF
and LJF to the proof theory of propositional modal logics.

Following the same lines as in Section 2.4 for first-order systems, we shall
show how to emulate precisely rules for modalities in labeled modal systems
as synthetic connectives. Such tight emulation means that if one does focused
proof search or proof checking on the polarized first-order translation of modal
formulas, one is modeling nothing more or less than proof search and proof
checking in the corresponding modal labeled system. As a result, we are able to
show that we can use focused proofs to precisely emulate modal proofs whenever
Kripke frames are characterized by bipolar properties.

This section is an extended version of [13]. While in that earlier work only
(classical) modal systems from [11] were addressed, we show here that different
classical and intuitionistic modal systems present in the literature can simply be
computed using both polarization and focusing.
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5.1. Modal logic

The language of (propositional, normal) modal formulas consists of a denu-
merable set P of propositional symbols and a complete base of propositional
connectives enhanced with the unary modal operators [0 and { concerning
necessity and possibility, respectively.

The semantics of modal logics is often described using Kripke models. Here,
we will follow the approach in [5], where a modal logic is defined directly by
the first-order formulas capturing its intended Kripke semantics. However, here,
we will map modal formulas into polarized formulas in LKF by generalizing
the left/right translation []"/" from Section 2.4. Formally, given a first-order
variable z (intended to range over worlds), we define the translations [-]7, and
[]L. from modal formulas into polarized first-order formulas as follows: if P is
propositional symbol, then [P]” = [P]. = P(x) (where P is also consider a
predicate symbol in first-order logic); if the top-level symbol of A is a logical
connective or quantifier, then [A]fp/ " mimics the same translation as [A]"/"; and
if the top-level symbol is a modal operator, then we have

D4, = Vy(R(z,y) 2 0.([4]))  [OA, = 0.(Vy(R(z,y) O [A]}))
(04, = 0-(y(R(z.y) AT [A]y)) (04 = Fy(R(z,y) A* 0_([A]}))

where R(z,y) is a binary predicate (that denotes the accessibility relation in a
Kripke frame). Thus, following well-known characterizations of modal logic (see,
for example, [5]), we know that

Fx A ifand only if Fpxp Va.[A]L
where K is proof system for basic classical modal logic, and we know that
'_IK A if and only if }_LJF Vl’[A};

where I K is proof system for basic intuitionistic modal logic.

Several additional modal logics can be defined as extensions of K or IK by
simply restricting the class of frames we consider. Many of the restrictions we
are interested in are definable as formulas of first-order logic over the binary
predicate R(x,y) which encodes the accessibility relation. Table 1 contains
some common restrictions on frames by listing the modal axiom capturing them
together with the corresponding first-order formulas used to restrict the frame
relation in the classical setting [31]. This is also true for any extension of LJF
by path axioms plus contrapositives w.r.t. their corresponding models [32, 5].

5.2. Labeled proof systems for modal logics

The idea behind labeled proof systems for modal logic is to internalize
elements of the corresponding Kripke semantics (namely, the worlds of a Kripke
structure and the accessibility relation between such worlds) into the syntax and
proof rules. As concrete examples of such a system, here we will consider the
modal systems presented in [5, 12, 11]. Labeled modal formulas are either labeled
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Axiom Condition First-Order Formula
T:OAD A Reflexivity Vz R(ﬂc x)
4:0A D OOA Transitivity | Vz,y, z.(R(z, R(y,z)) D R(x, z)
5:04 > 0O0A Euclideaness | Vz,y, z.(R(z, y) A R(z,2)) D R(y, 2)
B:ADO0A Symmetry Vz,y.R(z,y) D Ry, )
3:0(0A D> B)vO(@EB D> A) | Connectedness | Va,y, z.(R(z,y) A R(z, z)) D
(R(y,2) vV R(2,y))
D:0A D QA Seriality VzIy.R(z,y)
2: 00A D O0A Directedness | Vz,y,z.(R(z,y) A R(z, z)) D
Jt(R(y,t) A R(z,t))

Table 1: Axioms and corresponding first-order conditions on R.

formulas of the form z : A or relational atoms of the form xRy, where x and y
range over a set of variables and A is a modal formula. In the following, we will
use ¢ and 9 to denote labeled modal formulas. Labeled sequents have the form
' A, where I', A are multisets containing labeled modal formulas and where A
has the usual restriction of containing at most one formula in the intuitionistic
case.

In Figure 5, we present the propositional rules and some modal rules for the
core labeled classical modal calculus. The additional modal rules for systems
G3K [11] and S(K) [12] are depicted in Figures 6a and 6b, respectively®. The
rules of the intuitionistic modal system Lgg¢ [5] correspond to the rules of G3K
with the restriction that the consequent may have at most one labeled formula.
In an intuitionistic version of S(K), sequents have the restriction of having at
most one labeled modal formula (there is a brief discussion of an intuitionistic
version of S(K) in [12], Sec. 6.2 end of page 148).

5.3. From labeled modal formulas to polarized first-order formulas

The translation [-]'/" from labeled modal formulas into polarized first-order
formulas is defined as [z : AJV/" = [A]¥" and [xRy)"/" = R(z,y). In the following,
we will sometimes use the natural extension of this notion to multisets of labeled
formulas.

Finally, we define a translation from labeled sequents into focused sequents

[(501,--~780nF1/117~--,¢m)] = [Sal]la"'v[@n]lﬂ" - 'ﬂ[wlra"'a[wm]r

with the restriction of m < 1 for LJF.
The results of Lemmas 3 and 5 and Theorems 4 and 6 can be then easily
transported to the modal case.

30Observing that we adopt additive rules for conjunction and disjunction, multiplicative
rules for implication and explicit contraction.
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INITIAL RULES

x:PTHAx:P it xRy, T'F A, xRy ity
STRUCTURAL RULES
oo, I'FA c A Y C
o TFA ! TFAY 7
PROPOSITIONAL RULES
z:ATHA A xz:B,T'FA A I'tAz:A T'HFA,2: B
x: ANB,T'FA ! z: ANB,T'FA 2 'HFAz: AANB
z:ATEFA x:B,FI—AL 'tAz: A RV I'-Az:B RY
c:AVB,TFA V' TFAz:AVB "Y' TFAz:AvB 2
I'tA,z: A m:B,FI—AgL r: ATFAz:B
2:ADB,DF AL A, ° TFAz:A>B

s frral Traaz!

MODAL RULES

cRy,TFAjy: A zRy,y: A, THA
TrAz: 04 & z: 0ATFA

Lo

Figure 5: Some classical labeled rules, where P is an atomic formula and the eigenvariable y
does not occur free in any formula of the conclusion of rules R[] and L.

Theorem 23. Let II be a G3K derivation of a sequent S from the sequents
Si,...,Sn. Assume that the predicate R(x,y) has positive polarity. Then there
exists an LKF derivation II' of [S] from [Si],...,[Sn] (such that each rule
application in 11 corresponds to a synthetic inference rule in IU'). The exact same
statement holds for Lo and LJF. For S(K), it holds when R(x,y) has negative
polarity.

PrOOF. The proof proceeds exactly as in Lemma 3 and Theorem 4, so we will

show only the classical cases involving modal connectives. For the modal rules in

the core fragment, the translation of the R[] from Figure 5 is given by following
derivation in LKF

F/7 R(.’I},y) ﬂ S ﬂ [A}Z, A/

' Rz, y) = [A] 1 A

I = vy (R(z, y) O [A]) f# A

I 0. (Vy(R(z,y) O [A]y)) I A

'f-F-f A "

Sl7 Sr
Vr, Dr
97, Ry
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y: A xRy, T'H A
x:DA,ny,F}—ALDS 'FA,zRy y: ATHEA

LO,

Z‘Ry,FFA,yA R<> .’EDA,F"Al,AQ

tRy,THAz:0A 73 '+ A, zRy Fl—A,y:ARO
'HA, z:0A s

(a) Labeled modal rules for G3K
(b) Labeled modal rules for S(K)

Figure 6: Labeled systems for the logic K.

where I is any extension of [I'] and A’ is any extension of [A] containing the
formula [z : OA]" = 0, (Vy(R(x,y) D [A];)). Note that the condition on free
variables in the definition of extension ensures that V can be applied in the
derivation above, as the constraint on eigenvariables is satisfied. Note also that
the polarity of R(x,y) does not affect the shape of the derivation. The case for
L is analogous.

For the distinguished modal rules in Figure 6, consider the derivation

F,[A]Lﬂd—%rA’

b Ry) b A T 40 ([A]) F A
I | R(z,y) D 9, ([A]L) - A

I Vy(R(z,y) D 9. ([A]})) F A 5

T/ A :

Rlaalasl

l

l

where I is any extension of [I'] containing [z : JA]" = Vy(R(z,y) D 0.([A]})
and A’ is any extension of [A]. Now, if the polarity of R(z,y) is positive, then
7 consists of the application of I, R(x,y) should occur in I" and the synthetic
inference rule is the translation of the rule L3 presented in Figure 6a.

If R(x,y) has, instead, negative polarity, then focus is lost in 7w and R(x,y) is
stored in the right context, producing the border sequent IV {} - - -t R(z,y), A'.
Hence the synthetic inference rule is the translation of the rule Lg presented
in Figure 6b.

Finally, the initial rule

xRy, T'F A, xRy ity

has corresponding synthetic rules in LKF

Iy

I
I"F R(x,y) | A [; I R(z,y) F A
U f-Fga T Uf-Foa
depending whether R(z,y) has positive or negative polarity, respectively, where
l

I is any extension of [I']' containing R(z,y) and A’ is any extension of [A]”
containing R(x,y).
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Theorem 24. Let II' be a proof of a sequent S” in LKF such that S’ = [S] for
some G3K-sequent S. Assume that the predicate R(x,y) has positive polarity.
Then there exists a proof I of S in G3K such that each synthetic inference rule
in I corresponds to a single rule application in II. The exact same statement

holds for Loo and LJF. For S(K), it holds when R(x,y) has negative polarity.

PrOOF. Let T be a border sequent such that each formula in 7" is the translation
of some G3K/S(K) formula and assume that 7" is the conclusion of a synthetic
inference rule Z in LKF with border sequent premises Ti’7 1 <7< 2. Observe
that the last rule applied in = should be necessarily a decide rule. We claim
that there exists G3K/S(K) sequents T,T;, 1 < ¢ < 2 such that T"/T is a
contraction of [T]/[T;] and T; are the premises of an inference rule in G3K/S(K)
with conclusion T'. The proof is done by case analysis on all possible G3K/S(K)
formula ¢ on the translation of which a decide is applied. Suppose that one such
cases is a D, rule on ¢ = x : 0 A. Assume that [z : QA]" € A’. Then we have
the following synthetic inference rule in LKF

I b1 [A]L, A
W TN
DRy 4 & TEO AR VA
I Sy(R(wy) A 0_(A],) 4 &7
DA "

If R(x,y) is positive, then 7 consists of the rule |, and IV must contain the
formula R(z,y), corresponding to the rule application of R{3 in Figure 6a. If
R(zx,y) has negative polarity, then focus is lost in 7 and R(z,y) is stored in the
right context, producing the border sequent I - F -} R(x, y), A’, corresponding
to an application of the rule RQg presented in Figure 6b. Observe that decide
rules in LKF carry an implicit contraction, which is discarded in G3K/S(K) by
the contractions on translations.

We can now prove the theorem by proceeding top-down, starting from the
leaves of IT" and building II by repeatedly applying the method above described.
At each step, we get as the conclusion of a G3K/S(K) rule application a sequent
S* such that the one obtained in the corresponding step of IT' is a contraction
of [S*].

The strong correspondence between labeled rule applications and LKF/LJF
synthetic inference rules can also be used to get an immediate proof of the
completeness of G3K, S(K) and L.

Corollary 25. The systems G3K and S(K) (and Lo respectively) are complete
with respect to modal logic K (IK respectively).

PrOOF. Follows from the completeness of LKF/LJF and Theorem 24.
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5.4. Labeled systems for extensions of K and IK

While [12] presents a detailed study of extensions of the modal system S(K)
with Horn relational theories (see Section 4.2), in [5, 11] the systems G3K
and Lo, were extended in order to capture theories given by geometric frame
conditions. In all such works, the idea was to modularly add, to a base modal
system, rules defined from the axioms according to a proper chosen scheme.

In the view of Theorem 12, different polarizations? of the frame conditions
presented in Table 1 correspond to different synthetic inference rules, and the
statements of Theorems 23 and 24 hold also for the corresponding bipolar
extensions of G3K/S(K)/Lny.

In Figure 7 we present the relational rules capturing frame properties of
Table 1, where A,V are polarized using the positive polarity. The rules in the
first column are derived when R is given a positive polarity and correspond
to the geometric rule scheme presented in [5, 11]. For the rules in the second
column, R was given negative polarity and they correspond to the un-skolemized
version of the rules appearing in [12].

Observe that the unfocused rule corresponding to the possible bipolars for
Axiom D does not depend on the polarization of R, having the form

R(z,y),['F A
T'FA

where y ¢ T, A.

Axiom 3 is a geometric implication but not a Horn clause, hence it is not
considered in [12]. Axiom 2 is also not a Horn clause, but it can be transformed,
using skolemization (see Example 20), into a set of Horn formulas, and it is
considered in [12] under the name convergency.

The geometric and right universal rule schemes for 2 and 3 are given by

R(y,u), R(z,u),I'F A
R(z,y), R(z,2), '+ A

2GRs

' AR(z,y) THAR(z,2z) R(yu),R(z,u),'FA
rFA 2R

where © does not occur in the conclusion.

R(y,z),T'FA R(z,y),l'FA
R(z,y), R(z,2), T A

GRS

R(y,z),TFA R(z,y),TFA TFARy T'FAR(z)
TFA SRR

4Remembering that, in the directedness axiom, A in the head of the clause should necessarily
be translated to AT. Any polarization of the other axioms results on bipolar formulas.
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Axiom Geometric rule scheme
T R(z,z), ' A
“Tra  foms
4 R(z,z), T F A A
R(z,y), R(y,2),T F A "%
5 R(y,2),T'FA 5
R(xz,y), R(z,2), [ - A 79"
R(y,z),T'F A
B (y, ) .

Pt TR
R(z,y), T A "9F

Right universal rule scheme

T
'+ A, R(z, ) R

I'kAR(z,y) TFA R(y,z2)
'+ A, R(z, 2)

RR

'+ A R(z,y) TFA,R(z,2)

I+ A, R(y, 2) R
'+ A, R(z,y)

——— 2% g
T'FARyz

Figure 7: Axioms and corresponding sequent rules.

6. Conclusion

We have described how the notion of synthetic inference rule that is provided
by sequent calculus notions of polarization and focusing can be used to provide
inference rules that capture certain classes of axioms. In particular, focused
proof systems naturally lead to the notion of bipolar formulas and these result
in synthetic inference rules that only need to mention atomic formulas. We
show that geometric formulas are examples of such bipolar formulas and that
polarized versions of such formulas yield known inference systems derived from
geometric formulas. Certain subsets of geometric formulas admit more than one
polarization and these variations explain the forward-chaining and backward-
chaining variants of their synthetic inference rules. The cut-elimination theorem
for focused proof systems also provides a direct proof of cut-elimination for the
proof systems that arise from incorporating synthetic inference rules based on
polarized formulas. Additionally, all of these results work equally well in both
classical and intuitionistic logics using the corresponding LKF and LJF focused
proof systems. Finally, we show how to account for and generalize labeled proof
systems for propositional modal logics.
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Appendix A. Computing bipoles from bipolar formulas

We briefly describe a logic program that can compute bipole inference rules
from bipolar formulas: this implementation uses the AProlog programming
language [23, 24]. The key novelties of the syntax of AProlog for this implemen-
tation are the following. Since this logic programming language is typed, the
keyword kind is used to introduce a new primitive type, and the keyword type
is used to introduce new typed constructors. Also, the backslash \ is an infix
binding construction: for example, the expression pi x\ B denotes the universal
quantification of x over the formulas B. This same backslash operator is also
used to build A-bindings within terms.

The datatype of polarized formulas is given by the following declarations.

kind i, atm, fm type.

type atm atm -> fm.

type all, some (i => fm) -> fm.
type imp, pand, nand, por, nor fm -> fm -> fm.
type ptrue, ntrue, pfalse, nfalse fm.

Formulas and atoms are given a polarity using the following declarations and
clauses. Here, the predicate delta encodes an atomic bias assignment (see
Section 2.2).

kind bias type.

type pp, nn bias.

type delta atm -> bias -> o.

type neg, pos fm -> o.

type patom, natom fm -> o.

patom (atm A) :- delta A pp.

natom (atm A) :- delta A nn.

neg (imp _ _) & neg (all _).

neg (nand _ _) & neg (nor _ _) & neg ntrue & neg nfalse.
neg A :- natom A.

pos (some _).

pos (pand _ _) & pos (por _ _) & pos ptrue & pos pfalse.
pos A :- patom A.

The various sequents are encoded using the following declarations and clauses.

kind premise type.

type truep premise.

type andp premise -> premise -> premise.
type allp (i -> premise) -> premise.
type primitivep premise -> o.

type borders premise -> o.

kind rhs type.

type rl, rr fm -> rhs.
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type async list fm -> list fm -> rhs -> premise.

type syncR list fm -> fm -> premise.

type syncl list fm -> fm -> fm -> premise.
primitivep (async _ _ _).

primitivep (synclL _ _ _) & primitivep (syncR _ _).
borders (async _ []1 (rr _)).

borders truep.

borders (andp P1 P2) :- borders Pl, borders P2.
borders (allp P) :- pi x\ borders (P x).

The following four sequent structures are encoded using the corresponding
AProlog terms, all four of which are also considered to be primitive premises
(using the specification for primitivep above).

'tOkF Eqf- | (async Gamma Theta (rl E))

'tOF-fE | (async Gamma Theta (rr E))
ryBrE (syncL Gamma B E)
r-BlE (syncR Gamma B E)

Figure A.8 encodes the various rules of LJF (except for the decide rules)
using the binary predicate rule. Figure A.9 defines three predicates: rotate
ensures that tree-structure of primitive premises is organized more as a list;
redl holds if exactly one inference rule is applied to exactly one premise in its
first argument; and reduce repeatedly applies red1 until only border sequents
remain. Consider proving the goal

reduce (synclL Gamma F (atm B)) Premises.

for different instantiations of the variable F and for different polarity assumptions
on atomic formulas. First, assume that all atomic formulas are positive. If F is
instantiated with the term

(all u\ all v\ all w\ imp (atm (adj u v))
(imp (atm (path v w)) (atm (path u w)))),

which encodes the formulas VuVoVw(adj v v O path v w D path u w) then
AProlog will solve this goal formula by computing the following substitution.

Gamma = atm (adj X Z) :: atm (path Z Y) :: L
Premises = async (atm (path X Y) :: atm (adj X Z)
atm (path Z Y) :: L) nil (rr (atm B))

The inference rule computed by solving this query is

adj X Z,path Z Y,path X Y,L -+ -1 B
adj X Z,path ZY,L{ - -1 B

Here, X, Y, and Z are schema variables of type i, L is a schema variable of
type list fm, and B is a schema variable of type fm. Next, assume that all
atomic formulas are negative. Executing the same goal as before (for the same
instantiation for F) yields the substitution
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type rule premise -> premise -> o.

rule (async Gm [ptruel|Th] R) (async Gm Th R).
rule (async Gm [pand B C|Th] R) (async Gm [B,C|Th] R).
rule (async Gm [pfalse|Th] R) truep.
rule (async Gm [por B C|Th] R) (andp (async Gm [B|Th] R)
(async Gm [CITh] R)).
rule (async Gm [some B|Th] R) (allp x\ async Gm [B x|Th] R).
rule (async Gm [C|Th] R) (async (C::Gm) Th R) :-
neg C; patom C.
rule (async Gm [] (rl (nand B C)))(andp (async Gm [] (rl B))
(async Gm [] (rl C))).
rule (async Gm [] (rl ntrue)) truep.
rule (async Gm [] (rl (imp B C))) (async Gm [B] (rl C)).
rule (async Gm [] (rl (all B)))
(allp x\ async Gm [] (rl (B x))).
rule (async Gm [] (rl D)) (async Gm [] (rr D)) :-
pos D; mnatom D.
rule (synclL Gm (all B) R) (syncL Gm (B T) R).
rule (syncL Gm A A) truep :- natom A.
rule (synclL Gm (imp B C) R)
(andp (syncR Gm B) (syncL Gm C R)).
rule (synclL Gm (nand B C) R) (synclL Gm B R).
rule (synclL Gm (nand B C) R) (synclL Gm C R).
rule (syncL Gm P R) (async Gm [P] (rr R)) :- pos P.
rule (syncR Gm A) truep :- patom A, memb A Gm.
rule (syncR Gm ptrue) truep.
rule (syncR Gm (pand B C)) (andp (syncR Gm B) (syncR Gm C)).
rule (syncR Gm (por B C)) (syncR Gm B).
rule (syncR Gm (por B C)) (syncR Gm C).
rule (syncR Gm (some B)) (syncR Gm (B T)).
rule (syncR Gm N) (async Gm [] (rl N)) :- neg N.

Figure A.8: The predicate rule encodes the rules of LJF (Figure 3) except for D; and D;.

type rotate, redl, reduce premise -> premise -> o.
rotate Prim Prim :- primitivep Prim.

rotate truep truep.

rotate (andp R S) (andp R T) :- primitivep R, rotate S T.
rotate (andp truep U) T :- rotate U T.

rotate (andp (andp R S) U) T :- rotate (andp R (andp S U)) T.
rotate (andp (allp R) S) T :- rotate (allp x\ andp (R x) S) T.
rotate (allp R) (allp T) :- pi x\ rotate (R x) (T x).

redl G H :- primitivep G, rule G H.

redl (andp G1 G2) (andp H G2) :- redl G1 H, !.

redl (andp G1 G2) (andp G1 H) :- redl G2 H.

redl (allp G) (allp K) :- pi x\ redl (G x) (K x).

reduce Gs Hs :- redl Gs Ks, rotate Ks Rs, reduce Rs Hs.
reduce Gs Gs :- borders Gs.

Figure A.9: Three predicated useful for computing bipoles.
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Premises = andp (async Gamma nil (rr (atm (adj X Y))))
(andp (async Gamma nil (rr (atm (path Y Z)))) truep)
B = path X Z

Thus, the inference rule computed by solving this query is

Tf-F-fadi XY TH -+ -fpathY Z
Tf-F-fpath X Z

For a final example, consider solving this goal but where F is instantiated to the
term

(all u\ all v\ imp (all w\ imp (atm (in w u)) (atm (in w v)))
(atm (subset u v))).

and where atomic formulas have negative bias. The computed substitution is
then

Premises = (allp w\ andp (async (atm (in w X) :: Gamma) nil
(rr (atm (in w Y)))) truep)
B = subset X Y

Thus, the inference rule computed by solving this query is

I'NinwXf{-F-ftinwY
I'ft-F-ftsubset XY

Here, w is an eigenvariable for this inference figure and it corresponds to the
binding allp w\ in the answer substitution for Premises above.
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