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Abstract

We provide a treatment of the intuitionistic 3 modality in the style of justification logic. We introduce a
new type of terms, called satisfiers, that justify consistency, obtain justification analogs for the constructive
modal logics CK, CD, CT, and CS4, and prove the realization theorem for them.
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1 Introduction

Justification logic is a family of modal logics generalizing the Logic of Proofs LP,

introduced by Artemov in [6]. The original motivation, which was inspired by

works of Kolmogorov and Gödel in the 1930’s, was to give a classical provability

semantics to intuitionistic propositional logic. Gödel [20] made the first steps by

translating intuitionistic logic into the modal logic S4, which he rediscovered as

a logic of abstract provability. He noted that S4-provability is incompatible with
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arithmetical reasoning due to the former’s acceptance of the reflection principle and

outlined, in an unpublished lecture [21], a potential way of overcoming this obstacle

by descending to the level of proofs rather than provability. Artemov independently

implemented essentially the same idea in the Logic of Proofs by showing that it

provides an operational view of the same type of provability as S4 [6,7].

The language of the Logic of Proofs can be seen as a modal language where

occurrences of the 2 modality are replaced with proof terms, also known as proof

polynomials, evidence terms, or justification terms, depending on the setting. The

intended meaning of the formula ‘t : A’ is ‘t is a proof of A’ or, more generally,

the reason for the validity of A. Thus, the justification language is viewed as a

refinement of the modal language, with one provability construct 2 replaced with

an infinite family of specific proofs.

It gradually became clear that the applicability of this result goes way beyond

the provability interpretation of the modality, and can be equally well considered

in other settings, including, notably, epistemic logic [9]. Indeed, the connection

between the Logic of Proofs and the modal logic S4 has been extended to other

modal logics (based on classical propositional reasoning), including normal modal

sublogics of S4 [13], the modal logic S5 [11], all 15 logics of the so-called modal cube

between the minimal normal modal logic K and S5 [22], the infinite family of Geach

logics [18], to a certain extent to public announcement logic [14], etc. For more in-

formation on justification logic, the reader is referred to the entry [3] in the Stanford

Encyclopedia of Philosophy, as well as to two recent books [4,24] on the subject.

The correspondence between a justification logic and a modal logic means that

erasing specific reasons in a valid statement about proofs leads to a valid state-

ment about provability and, vice versa, any valid statement about provability can

be viewed as a forgetful projection of a valid statement about proofs. Moreover,

this existential view of 2 as ‘there exists a proof ’ leads to a first-order provability

reading of modal statements and suggests that they can be Skolemized. Such a

Skolemization makes negative occurrences of 2 into Skolem variables and positive

occurrences into Skolem functions, suggesting a further restriction on the way the

2 modalities are filled in with proof terms—the process called realization—negative

occurrences should be filled in with distinct proof variables.

The Logic of Proofs was born out of an analysis of intuitionistic logic with the

goal of explaining it using classical reasoning about proofs. However, other re-

lationships with intuitionistic logic have also been explored. Artemov introduced

the first intuitionistic version ILP of the Logic of Proofs in [8] to unify the seman-

tics of modalities and lambda-calculus. Indeed, as simply typed lambda-calculus

is in correspondence with intuitionistic proofs, he needed to define an intuitionistic

axiomatization of the Logic of Proofs to relate modal logic S4 and λ-calculus. His

axiomatization simply changes the propositional base to intuitionistic while keeping

the other axioms of Logic of Proofs unchanged. He shows that ILP is in correspon-

dence with the 2-only fragment of the constructive logic CS4 as defined in [12]. 4

Recently, Marti and Studer [26] supplied ILP with possible worlds semantics akin to

4 Artemov himself called the logic CS4 “the intuitionistic modal logic on the basis of S4” and denoted it IS4.
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the semantics developed by Fitting for the classical Logic of Proofs [17] and proved

internalized disjunction property in its extension [27].

However, this axiomatization is not enough to obtain a proper intuitionistic

arithmetical semantics, that is, to interpret ‘t : A’ as ‘t is a proof of A in Heyting

Arithmetic,’ which is the motivation behind another line of work for considering

intuitionistic versions of the Logic of Proofs. In order to obtain an intuitionistic

Logic of Proofs complete for Heyting arithmetic, Artemov and Iemhoff [5] added

to ILP extra axioms that internalize admissible rules of intuitionistic propositional

logic. The arithmetical completeness was later shown by Dashkov [16]. Finally,

Steren and Bonelli [31] provide an alternative system of terms for ILP based on

natural deduction with hypothetical judgments.

What unifies all these versions of intuitionistic justification logics is the exclusive

attention to the provability modality. Be the focus on semantics, realization theo-

rem, or arithmetical completeness, the modal language is restricted to the 2 modal-

ity. This restriction was quite natural in the classical setting, where 3 can simply

be viewed as the dual of 2. However, with the freedom of De Morgan shackled

comes the responsibility to treat 3 as a fully independent modality—a responsibil-

ity that we take upon ourselves in this paper. In this first exploration of the kind of

terms necessary to represent the operational side of the intuitionistic 3 modality,

we concentrate on constructive versions of several modal logics. 5

Building on Artemov’s treatment of the 2-only fragment, we add a second type

of terms, which we call satisfier terms, or simply satisfiers, and denote by Greek

letters. Thus, a formula 3A is to be realized by ‘µ :A.’ The intuitive understanding

of these terms is based on the view of 3 modality as representing consistency (with

2 still read as provability). A common way of proving consistency of a theory is to

provide a model for this theory. Similarly, to prove that a formula is consistent with

the theory, it is sufficient to present a model of the theory satisfying this formula.

The satisfier µ justifying the consistency of a formula is, therefore, viewed as an

abstract model satisfying the formula. We keep these satisfying models abstract

so as not to rely on any specific semantics. All the operations on satisfiers that

we employ to ensure the realization theorem for CK, CD, CT, and CS4, as defined

in [35,29,12], are akin to the operations on proof terms. In particular, the opera-

tion + for proof concatenation finds a counterpart in the operation t for disjoint

model union. Similarly, the application operation ·, which internalizes modus po-

nens reasoning by creating a new proof t · s for B from a given proof t of A ⊃ B
and a given proof s of A, has a counterpart ? that creates a new satisfier t ? µ for B

from a given proof t for A⊃B and a given satisfier µ for A. The intuition behind

this satisfier propagation operation ? is that a proof of A ⊃ B, when applied to a

satisfier for A provides evidence that the same model is also a satisfier for B. One

could, perhaps, call it an internalized model ponens.

5 The reason for this is pragmatic: we discuss here only fragments which can be expressed in ordinary
sequent calculus [35,29,12]. The more expressive intuitionistic modal logics require more elaborate sequent
structures [32,30]. We come back to this in the conclusion of this paper.
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k1 : 2(A⊃B)⊃ (2A⊃2B)

k2 : 2(A⊃B)⊃ (3A⊃3B)

d : 2A⊃3A

t : (A⊃3A) ∧ (2A⊃A)

4 : (33A⊃3A) ∧ (2A⊃22A)

Fig. 1. Modal axioms used in this paper

Outline of the paper:

In Sect. 2, we introduce the syntax and proof theory of some constructive modal

logics and, in Sect. 3, we give our definition of a justification logic for constructive

modal logics. Then, in Sect. 4, we prove the main theorem of this paper, the real-

ization theorem linking the various constructive modal logics to the corresponding

justification logic. Finally, in Sect. 5, we point to further questions left as future

work, as this paper is only the beginning of the research program consisting in giving

justification logic for constructive and intuitionistic versions of modal logics.

2 Constructive modal logic

Let a ∈ A for a countable set of propositional variables A. We define

A ::= ⊥ | a | (A ∧A) | (A ∨A) | (A⊃A) | 2A | 3A

to be formulas in the modal language and use standard conventions regarding paren-

theses. We denote formulas by A, B, C, . . . and define the negation as ¬A := A⊃⊥.

In modal logic, the behavior of the 2 modality is determined by the k-axiom

2(A⊃B)⊃2A⊃2B and by the necessitation rule saying that, if A is valid, then so

is 2A, be the logic classical or intuitionistic. In classical modal logic the behavior of

the 3 modality is then fully determined by the De Morgan duality, which is violated

in the intuitionistic case. This means that more axioms are needed to define the

behavior of the 3.

However, there is no unique way of doing so, and consequently many different

variants of “intuitionistic modal logic” do exist. In this paper we consider the

variant that is now called constructive modal logic [35,12,29,2] and that is defined

by adding to intuitionistic propositional logic the two axiom schemes shown in the

left column of Fig. 1 together with the necessitation rule mentioned above. We

call this logic CK. We also consider (i) the logic CD, which is CK extended with

the d-axiom, (ii) the logic CT which is CK extended with the t-axiom, and (iii) the

logic CS4 which is CT extended with the 4-axiom. All three axioms are shown in

the right column of Fig. 1.

Logics CK and CS4 are among those that have been studied most extensively.

They can be given a possible world semantics by combining the interpretation of

classical modal operators with that of intuitionistic implication. That is, a model

for CK [28] is a tuple (W,R,≤, |=) where W is a set of worlds, R is a binary relation

on W , ≤ is a preorder relation on W , and |= is a relation between elements of W

and formulas. In particular, in the case of constructive modal logic, there can be
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fallible worlds in W such that w |= ⊥. In a model for CS4 [1], R is additionaly

reflexive and transitive (similarly to the case of classical S4) and the interaction

of R and ≤ is constrained by the following relationship: (R ◦ ≤) ⊆ (≤ ◦ R). To our

knowledge, contrary to the classical case, the correspondence theory of CD and CT
has not been investigated.

These logics have simple sequent calculi that can be obtained from any se-

quent calculus of intuitionistic propositional logic (IPL) by adding the appropriate

rules for the modalities. In this paper, a sequent is an expression of the shape

B1, . . . , Bn ⇒ C where B1, . . . , Bn, and C are formulas and the antecedent to the

left of ⇒ has to be read as a multiset (i.e., the order of formulas is irrelevant, but

it matters how often each formula appears). We use Γ, ∆, Σ, . . . to denote such

multisets of formulas. For a sequent B1, . . . , Bn ⇒ C we define its corresponding

formula fm(B1, . . . , Bn ⇒ C) to be B1 ∧ · · · ∧Bn ⊃ C. Most sequents in this paper

consist of modal formulas. Thus, whenever we use the term “sequent” without any

qualification, it is assumed that all formulas in it are modal formulas.

We start from the standard sequent calculus G3ip [33] whose rules are shown

in Fig. 2. Then, the systems for the logics CK, CD, CT, and CS4, that we call

LCK, LCD, LCT, and LCS4 respectively, are obtained by adding the rules in Fig. 3

according to the following table. 6

LCK = G3ip + k2 + k3

LCD = G3ip + k2 + k3 + d

LCT = G3ip + k2 + k3 + t2 + t3

LCS4 = G3ip + 42 + 43 + t2 + t3

(1)

Observe that the axiom rule id is restricted to atomic formulas. We rely on that in

the proof of the realization theorem in Sect. 4. But as expected, using the standard

argument by induction on the formula construction, the general form of the axiom

rule is derivable.

Lemma 2.1 (Generalized axioms). For every formula A, the rule idg
Γ, A⇒ Ais derivable in each of G3ip, LCK, LCD, LCT, and LCS4.

Finally, the rule
Γ⇒ A ∆, A⇒ C

cut
Γ,∆⇒ C

is admissible.

Theorem 2.2 (Cut Admissibility). Let LML ∈ {LCK, LCD, LCT, LCS4}. If a se-

quent is provable in LML + cut then it is also provable in LML.

Proof. For LCK, LCD, and LCT, the proof follows as a special case from the work

in [25], and for CS4 the result is stated in [12] as a “routine adaptation of Gentzen’s

method.”

Using Theorem 2.2, we can easily show the completeness of our system.

6 For a survey of the classical variants of these systems, see, for example, [34].
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id
Γ, a⇒ a

⊥L
Γ,⊥ ⇒ C

Γ, A⇒ C Γ, B ⇒ C
∨L

Γ, A ∨B ⇒ C

Γ⇒ A
∨R

Γ⇒ A ∨B
Γ⇒ B

∨R
Γ⇒ A ∨B

Γ, A,B ⇒ C
∧L

Γ, A ∧B ⇒ C

Γ⇒ A Γ⇒ B
∧R

Γ⇒ A ∧B

Γ, A⊃B ⇒ A Γ, B ⇒ C
⊃L

Γ, A⊃B ⇒ C

Γ, A⇒ B
⊃R

Γ⇒ A⊃B

Fig. 2. Sequent calculus G3ip for intuitionistic propositional logic IPL

Γ⇒ A
k2

2Γ,∆⇒ 2A

Γ, B ⇒ A
k3

2Γ,∆,3B ⇒ 3A

Γ⇒ A
d
2Γ,∆⇒ 3A

2Γ⇒ A
42

2Γ,∆⇒ 2A

2Γ, B ⇒ 3A
43

2Γ,∆,3B ⇒ 3A

Γ,2A,A⇒ B
t2

Γ,2A⇒ B

Γ⇒ A
t3

Γ⇒ 3A

Fig. 3. Additional rules for modalities

Theorem 2.3 (Completeness). Let ML ∈ {CK,CD,CT,CS4} and LML be the cor-

responding sequent system. If `ML A, then `LML⇒ A.

Proof. The axioms of IPL can be proved using G3ip in Fig. 2; those in Fig. 1 can

be proved using the corresponding rules in Fig. 3. Finally, the necessitation rule

can be simulated with k2, and modus ponens can be simulated using cut. Now

completeness of the cut-free systems follows immediately from Theorem 2.2.

Theorem 2.4 (Soundness). Let ML ∈ {CK,CD,CT,CS4}. If B1, . . . , Bn ⇒ C is a

sequent provable in the corresponding sequent system LML, then B1 ∧ · · · ∧Bn ⊃ C
is a theorem of ML.

Proof. We proceed by induction on the proof π in LML, making a case analysis

on the bottom-most rule instance in π. For the rules in G3ip, this is straightfor-

ward. Now consider the rule
C1, . . . , Cn ⇒ A

k2
2C1, . . . ,2Cn, D1, . . . , Dm ⇒ 2A

. By induc-

tion hypothesis, `ML C1 ∧ · · · ∧ Cn ⊃A, and, therefore, by intuitionistic reason-

ing, also `ML C1 ⊃ · · · ⊃ Cn ⊃A. 7 By necessitation, `ML 2(C1 ⊃ · · · ⊃ Cn ⊃A),

and, using k1 and modus ponens, we get `ML 2C1 ⊃ · · · ⊃2Cn ⊃2A. Therefore,

7 Throughout the paper we consider ⊃ to be right-associative.
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`ML 2C1 ∧ · · · ∧2Cn ∧D1 ∧ · · · ∧Dm ⊃2A follows by intuitionistic reasoning.

The other cases are similar.

3 Justification logic

Justification logic adds proof terms directly inside its language using formulas ‘t :A’

with the meaning ‘t is a proof of A.’ In the constructive version that we propose

in this section, we will also add satisfiers into the language, using formulas ‘µ : A’

with the underlying intuition that ‘µ is a model of A.’

Proof terms, intended to replace 2, are denoted t, s, . . ., while satisfiers, intended

to replace 3, are denoted µ, ν, . . . Proof terms are built from a set of proof variables,

denoted x, y, . . ., and a set of (proof ) constants, denoted c, d, . . ., using the opera-

tions application ·, sum +, and proof checker !. Satisfiers are built from a set of

satisfier variables, denoted α, β, . . ., using the operations disjoint union t (binary

operation on satisfiers) and propagation ? (combines a proof term with a satisfier).

t ::= c | x | (t · t) | (t+ t) | ! t

µ ::= α | (t ? µ) | (µ t µ)

While the intuitive meaning of the operations ·, +, and ! on proof terms has

been well documented in justification logic literature and corresponds to rather well

known proof manipulations, it is worth explaining our intuition behind the new

operations ? and t involving satisfiers.

The operation ? is a combination of global and local reasoning. For instance,

assume that ¬¬A is true; therefore, by classical propositional logic, A must be

true. Here ¬¬A being true is a local, contingent fact, whereas the transition is

made based on the classical tautology ¬¬A⊃A. The result is the contingent truth

of A in the same situation where ¬¬A is true. We are working in a language

with explicit proofs for valid statements and explicit satisfiers representing specific

models satisfying a statement. Thus, given a satisfier µ for A and a proof t that

generally A⊃B, we can conclude B. While B is true whenever A is, the justification

used is different in that the former involves a valid transition from A to B justified

by t. Hence, instead of using the same satisfier µ, we record our reasoning in the

new satisfier t ? µ. For instance, if satisfiers are in principle intended to range over

intuitionistic Kripke models, then x : (¬¬A⊃A) becomes a non-trivial assumption

on whether only classical models are considered. Hence, the truth of A depends not

only on the truth of ¬¬A in a model represented by the satisfier µ but also on the

validity of the the law of double negation represented by the proof term t.

The operation t of disjoint model union is akin to that of disjoint set union.

For instance, for sets, one often defines X t Y =
(
X × {0}

)
∪
(
Y × {1}

)
in order

to avoid potential problems of X overlapping with Y and be able to state facts

such as |X t Y | = |X|+ |Y |. Intuitively, our disjoint model union works the same

way. Whatever the nature of models represented by satisfiers µ and ν, any overlaps

among them are resolved before the models are combined and no connection between
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taut : Complete finite set of axioms for IPL

jk2 : t : (A⊃B)⊃ (s :A⊃ t · s :B)

jk3 : t : (A⊃B)⊃ (µ :A⊃ t ? µ :B)

sum : s :A⊃ (s+ t) :A and t :A⊃ (s+ t) :A

union : µ :A⊃ (µ t ν) :A and ν :A⊃ (µ t ν) :A

A⊃B B
mp

B

A is an axiom instance
ian

c1 : . . . cn :A

Fig. 4. Axiomatization of the constructive justification logic JCK

jd2 : t :⊥⊃⊥ jd3 : >⊃ µ :>

jt2 : t :A⊃A jt3 : A⊃ µ :A

j42 : t :A⊃ ! t : t :A j43 : µ : ν :A⊃ ν :A

Fig. 5. Additional justification axioms

the µ and ν parts of the satisfier µ t ν exists. For instance, the disjoint union

of intuitionistic Kripke models M1 = (W1,≤1, V1) and M2 = (W2,≤2, V2) can be

defined as follows: M1 tM2 := (W,≤, V ) where W :=
(
W1 × {0}

)
∪
(
W2 × {1}

)
,

(w, i) ≤ (w′, j) iff i = j and w ≤i w′, and V
(
(w, i)

)
:= Vi(w).

The formulas of justification logic are obtained from the following grammar:

A ::= ⊥ | a | (A ∧A) | (A ∨A) | (A⊃A) | t :A | µ :A

We propose to extend the formulation of justification logics to realize construc-

tive modal logics. The axiomatization of the basic one is shown in Fig. 4. It is

similar to the standard justification counterpart of the classical modal logic K ex-

cept for the additional axiom jk3, which corresponds to the modal axiom k2. The

other axioms taut, jk2, and sum, as well as the rules of modus ponens mp and iterated

axiom necessitation ian are standard, e.g., see [22]. We call this basic logic JCK, and

as in the classical setting, we can define extension of JCK using the axioms defined

in Fig. 5. The logic JCD is obtained from JCK by adding the axioms jd2 and jd3;

the logic JCT is obtained from JCK by adding the axioms jt2 and jt3; and the

logic JCS4 is obtained by adding the axioms j42 and j43 to JCT. Note that the

2 variant of each axiom corresponds exactly to the one used in the classical set-

ting. Our contribution is the definition of the 3 variants operating on the satisfiers

instead of the proof terms.

The intuitive reading of these new satisfier axioms is as follows. The axiom jd3
states that > is satisfied in every model. The axiom jt3 could be understood as the

insistence that the actual model must be part of any other model considered: if A is

true, then it is satisfied in every model. Perhaps, the least intuitive is the axiom j43.

One way of reading it is to say that truth in models is “context-free.” The fact of
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A being satisfied in a model represented by ν does not depend on ν being considered

within the context of another model represented by µ. Put another way, any sub-

model ν of µ can also be considered in isolation and produces the same truth values.

The logics JCK, JCD, JCT, and JCS4 can be seen as the operational version of the

constructive modal logics CK, CD, CT, and CS4 respectively, defined in the previous

section. Indeed if one forgets about the proof term and satisfier annotations and

considers them as empty 2 and 3 respectively, the logics prove the same theorems.

Definition 3.1. We define the operation of forgetful projection (·)◦ that maps

justification formulas onto corresponding modal formulas recursively: ⊥◦ := ⊥,

a◦ := a for all propositional variables a, (t :A)◦ := 2A◦, (µ :A)◦ := 3A◦, and, fi-

nally, (A ∗B)◦ := A◦ ∗B◦ for ∗ ∈ {∧,∨,⊃}. We extend this definition to multisets

of formulas: (A1, . . . , An)◦ := A◦1, . . . , A
◦
n.

It is easy to show by induction on the Hilbert derivation in JL that

Lemma 3.2 (Forgetful projection). Let JL ∈ {JCK, JCD, JCT, JCS4} and ML be the

corresponding modal logic. If `JL F , then `ML F
◦.

The more difficult question however is: can we prove the converse? This result

is called realization, namely that every theorem of a certain modal logic can be

‘realized ’ by a justification theorem. However, it is not such an easy result as it may

seem. It is not possible to directly transform a Hilbert proof of a modal theorem

into a Hilbert proof of its realization in justification logic as the rule mp in a Hilbert

system can create dependencies between modalities. The standard solution to this

issue is to consider a proof of the modal theorem in a cut-free sequent calculus as the

absence of cuts in the proof will prevent the creation of dependencies. The detailed

statement and proof of this result can only be presented in the next section, as we

have to introduce some basics first.

We state below two lemmas that are crucial for the realization proof: the Lift-

ing Lemma and the Substitution Property. They are extensions of standard results

from the justification logics literature to the constructive case. Repeating verba-

tim the proof from [7], we obtain the Lifting Lemma and its variant showing that

necessitation can be internalized within the language of these justification logics.

Lemma 3.3 (Lifting Lemma). Let JL ∈ {JCK, JCD, JCT, JCS4}. If

A1, . . . , An `JL B,

then there exists a proof term t(x1, . . . , xn) such that for all proof terms s1, . . . , sn

s1 :A1, . . . , sn :An `JL t(s1, . . . , sn) :B.

Corollary 3.4. Let JL ∈ {JCK, JCD, JCT, JCS4}. If `JL A1 ∧ · · · ∧An ⊃B, then

there exists a proof term t(x1, . . . , xn) such that for all proof terms s1, . . . , sn we

have `JL s1 :A1 ∧ · · · ∧ sn :An ⊃ t(s1, . . . , sn) :B.

In our constructive setting, we also need a 3 variant of this statement.
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Corollary 3.5. Let JL ∈ {JCK, JCD, JCT, JCS4}. If

`JL A1 ∧ · · · ∧An ∧ C ⊃B,

then there is a satisfier µ(x1, . . . , xn, β) such that for all proof terms s1, . . . , sn and

any satisfier ν

`JL s1 :A1 ∧ · · · ∧ sn :An ∧ ν : C ⊃ µ(s1, . . . , sn, ν) :B. (2)

Proof. By intuitionistic reasoning and Cor. 3.4, we get a proof term t(x1, . . . , xn)

such that

`JL s1 :A1 ∧ · · · ∧ sn :An ⊃ t(s1, . . . , sn) : (C ⊃B).

Using the instance t(s1, . . . , sn) : (C ⊃B)⊃ ν : C ⊃ (t(s1, . . . , sn) ? ν) :B of the ax-

iom jk3, we can see that (2) holds for µ(x1, . . . , xn, β) := t(x1, . . . , xn) ? β.

Finally, we generalize the standard definition of substitution to our setting.

Definition 3.6. A substitution σ maps proof variables to proof terms and satisfier

variables to satisfiers. The application of a substitution σ to a proof term t or

satisfier µ, denoted tσ or µσ respectively, is defined recursively as follows:

cσ := c xσ := σ(x)

(t · s)σ := tσ · sσ (t+ s)σ := tσ + sσ

(! t)σ := !(tσ) ασ := σ(α)

(t ? µ)σ := tσ ? µσ (µ t ν)σ := µσ t νσ

where c is a proof constant, x is a proof variable, and α is a satisfier variable. The

application of σ to a justification formula A yields the formula Aσ, where each proof

term t (respectively satisfier µ) appearing in A is replaced with tσ (respectively µσ).

The proof of the Substitution Property from [7] is easily adaptable to our case:

Lemma 3.7 (Substitution Property). Let JL ∈ {JCK, JCD, JCT, JCS4}. If `JL A,

then `JL Aσ for any substitution σ.

Remark 3.8. In our formulation, the Substitution Property holds because the

rule ian is formulated in its strongest form, with all proof constants being inter-

changeable. Combined with the schematic formulation of all axioms, this makes

derivations impervious to substitutions. A more nuanced formulation would be to

restrict ian to a specific set of instances collected in a constant specification (our

variant corresponds to the total constant specification). It is a standard fact in

justification logic that the substitution property only holds for schematic constant

specifications, i.e., those invariant with respect to substitutions. The only differ-

ence for our logics is that a schematic constant specification must additionally be

schematic with respect to substitutions of satisfiers for satisfier variables.
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4 Realization theorem for constructive modal logic

Assume we have a justification formula F and its forgetful projection F ◦. In that

case we call F a realization of F ◦. Similarly, a justification sequent Γ⇒ C, that

is, a sequent consisting of justification formulas, can be the realization of a modal

sequent Γ◦ ⇒ C◦. In order to define the notion of normal realization we need the

notions of positive and negative occurrence of subformulas.

An occurrence of a subformula A of F is called positive if this position of A in

the syntactic tree of F is reached from the root by following the left branch of an

⊃ branching an even number of times; otherwise it is called negative. For example,

the displayed subformula A is positive in the formula (A⊃B)⊃ C but negative

in the formula A⊃ (B ⊃ C). The polarity of the occurrence of a subformula in a

sequent Γ⇒ C is given by its polarity in the formula fm(Γ⇒ C).

Definition 4.1. A realization Γ⇒ C of Γ◦ ⇒ C◦ is called normal if the following

condition is fulfilled: if t :A (respectively µ :A) is a negative subformula occurrence

of Γ⇒ C, then t is a proof variable (respectively µ is a satisfier variable) that occurs

in Γ⇒ C exactly once.

We can now state and prove the main theorem of this paper.

Theorem 4.2 (Realization). Let ML ∈ {CK,CD,CT,CS4}, JL be the correspond-

ing justification logic, i.e., JCK, JCD, JCT, or JCS4 respectively, and LML be the

cut-free sequent calculus for ML. If `LML Γ′ ⇒ C ′ for a given modal sequents, then

there is a normal realization Γ⇒ C of Γ′ ⇒ C ′ such that `JL fm(Γ⇒ C).

Corollary 4.3. Let ML ∈ {CK,CD,CT,CS4} and JL be the corresponding justifica-

tion logic. If `ML A, then `JL F for some justification formula F such that F ◦ = A.

Proof of Theorem 4.2. The proof goes largely along the lines of that for the 2-only

classical fragment (see [7,13]). The operation t on satisfiers plays the same role as

the operation + on proof terms. Thus, we only show in detail cases for the new

rules. As a matter of a shorthand, we say that a justification sequent Γ⇒ C is

derivable in JL if its corresponding formula is, i.e., if `JL fm(Γ⇒ C).

Let π be an LML proof of Γ′ ⇒ C ′. We assign a unique index i ∈ {1, . . . , n} to

each of n occurrences of 2 and 3 in its endsequent Γ′ ⇒ C ′. We define the modal

flow graph of π, denoted Gπ, as follows: its vertices are all occurrences of formulas

of the form 2A and 3A in π. Two such occurrences are connected with an edge iff

they are occurrences of the same formula within the same rule instance and

• either one occurs within a side formula in a premise and the other is the same

occurrence within the same subformula in the conclusion

• or one occurs within an active formula in a premise and the other is the corre-

sponding occurrence within the principal formula in the conclusion.

Each connected component of Gπ has exactly one vertex in the endsequent of π

and all vertices in the connected component are assigned the same index as this

representative in the endsequent. E.g., in the following instance of k2, modalities
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connected by edges are vertically aligned and given the same index:

25a ∨37b , c⊃ d ⇒ 39g ⊃28h
k2

22(25a ∨37b),26(c⊃ d),23e,210320f ⇒ 215(39g ⊃28h)
(3)

In the absence of the cut rule, the resulting graph is a forest where each tree

has its root in the endsequent and is identified with a unique modality type ♥ and

unique index i. We denote it a ♥i-tree. Branching occurs in the branching rules,

as well as in the rules with embedded contraction, e.g., in t2 each modality in A

within 2A in the conclusion of the rule branches to the corresponding occurrence

in A and the corresponding occurrence in 2A in the premise. Each leaf of a ♥i-tree

is either in a side formula of an axiom id or ⊥L, in which case it is called an initial

leaf, or in the conclusion of a modal rule from Fig. 3 that introduced ♥i, in which

case it is called a modal leaf. For instance, if (3) is used in π, then the 22-, 26-,

23-, 210-, 320-, and 215-trees in Gπ have modal leaves in the conclusion of (3).

We call the number of modal leaves of a ♥i-tree occurring in the succedents of

modal rules the multiplicity of i, denoted by mi, which is a non-negative integer.

From the tree π of modal sequents, we construct another tree π0 of justification

sequents by replacing

each 2i for mi > 0 with zi := yi,1 + · · ·+ yi,mi for proof variables yi,1, . . . , yi,mi ;

each 2i for mi = 0 with zi := yi,0 for a proof variable yi,0;

each 3i for mi > 0 with ωi := βi,1 t · · · t βi,mi for satisfier variables βi,1, . . . , βi,mi ;

each 3i for mi = 0 with ωi := βi,0 for a satisfier variable βi,0.

All proof variables yi,j and all satisfier variables βi,j must be pairwise distinct.

Let us call a rule justificational if it is one of k2, k3, d, or 42. All other rules,

including the rules 43, t2, and t3, as well as the rules in Fig. 2 are simple. Let k be

the number of instances of justificational rules in π. We will construct a sequence of

substitutions σ1, . . . , σk that, when applied to π0, produces a sequence π1, . . . , πk of

trees such that πh+1 = πhσh+1. Note that for any justification sequent in the tree πh,

its forgetful projection is the modal sequent from the corresponding node of the

tree π and that every occurrence of 2i or 3i in π is replaced in πh with ziσ1 . . . σh
or ωiσ1 . . . σh respectfully. For τh := σh ◦ · · · ◦ σ1 let us call ziτh and ωiτh the h-

prerealizations of 2i, and 3i respectively. 8 For any sequent occurrence ∆⇒ D

in π, we call (∆⇒ D)τh its h-prerealization and denote it ∆h ⇒ Dh.

Let the k justificational rules be ordered linearly in a way consistent with the tree

order of π: for arbitrary k ≥ j > i ≥ 1, the jth rule is not inside a subtree rooted

at the premise of the ith rule. By induction on i = 0, . . . , k we will show that,

(i) for any subtree of πi with no occurrences of modal rules i+ 1, . . . , k the end-

sequent ∆i ⇒ Di of this subtree is derivable in JL, i.e., h-prerealizations of a

sequent occurrence ∆⇒ D from π become derivable as soon as h overtakes the

8 The term prerealization is used here in its layman’s meaning of an almost but not quite a realization and
is unrelated to the use in [22].
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numbers of all justificational rules used to derive the sequent in π;

(ii) yi,0τh = yi,0 and βi,0τh = βi,0 for all justificational rules above h = 1, . . . , k,

i.e., terms prerealizing modalities not contributing to mi remain fixed points

for all substitutions.

In particular, after all justificational rules are processed in πk, the k-prerealization

Γk ⇒ Ck of the endsequent of π will be derivable in JL making it a realization. More-

over, since no negative occurrence of a modality from the endsequent can be traced

to a leaf in a succedent of a sequent from π, in this realization all such negative

modalities are realized by proof and satisfier variables. We prove it by a secondary

induction on the depth of the proof up to the first unprocessed justificational rule.

For a simple rule, the JL-derivability of the i-prerealization of its premise(s) im-

plies the JL-derivability of the i-prerealization of its conclusion. For the rules from

Fig. 2 the reasoning is propositional. For rules t2 and t3 (applicable only to LCT
and LCS4), it follows by axioms jt2 and jt3 of JCT and JCS4. For LCS4, assume that

for a rule instance
2k1G

1, . . . ,2krG
r, B ⇒ 3jA

43
2k1G

1, . . . ,2krG
r, D1, . . . , Dp,3lB ⇒ 3jA

from π the i-

prerealization of the premise is derivable in JL, i.e.,

`JL zk1 :G1
i ∧ · · · ∧ zkr :Gri ∧Bi ⊃ ωjτi :Ai.

By Cor. 3.5, there is a satisfier µ(x1, . . . , xr, β) such that

`JL ! zk1 : zk1 :G1
i ∧ · · · ∧ ! zkr : zkr :Gri ∧ ωl :Bi ⊃ µ(! zk1 , . . . , ! zkr , ωl) : ωjτi :Ai .

It now follows by j42 and j43 of JCS4 and propositional reasoning that

`JL zk1 :G1
i ∧ · · · ∧ zkr :Gri ∧D1

i ∧ · · · ∧D
p
i ∧ ωl :Bi ⊃ ωjτi :Ai

making the i-prerealization of the conclusion of the rule derivable in JL.

This observation alone establishes the base of the main induction, i.e., that all

0-prerealizations of modal sequents derived without the use of justificational rules

are derivable in JL.

For the step of the main induction, consider the premise of the hth justifica-

tional rule and assume its (h− 1)-prerealization is derivable by IH. For each of the

justificational rules we will show how to apply an additional substitution to make

its conclusion derivable. By the Substitution Property (Lemma 3.7), this substi-

tution preserves the derivability of all h-prerealizations of modal sequents whose

(h−1)-prerealizations are derivable by the IH, including the premise of the hth jus-

tificational rule. Thus, the h-prerealization of its conclusion is also derivable and

the argument about simple rules can be applied to extend this result down un-

til the next justificational rule. The cases of the k2 and 42 rules are treated the

same way as in [13] by means of Cor. 3.4. It remains to process the two remaining

justificational rules.

We start with the case where the hth rule in π is the qth introduction of 3j
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by a justificational rule out of mj :
G1, . . . , Gr, B ⇒ A

k3
2k1G

1, . . . ,2krG
r, D1, . . . , Dp,3lB ⇒ 3jA

.

Assume that the (h− 1)-prerealization of the premise is derivable in JL, i.e.,

`JL G1
h−1 ∧ · · · ∧Grh−1 ∧Bh−1 ⊃Ah−1 . (4)

By Cor. 3.5 there is a satisfier µ(x1, . . . , xr, β) such that

`JL zk1 :G1
h−1 ∧ · · · ∧ zkr :Grh−1 ∧ ωl :Bh−1 ⊃ µ(zk1 , . . . , zkr , ωl) :Ah−1.

We define σh : βj,q 7→ µ(zk1 , . . . , zkr , ωl). Note that σh affects exactly one satisfier

variable, which is neither yi,0 nor βi,0 and which corresponds to the justificational

rule being processed. In particular, βj,qτh−1 = βj,q and βj,qτh = βj,qσh. Thus,

`JL zk1 :G1
h−1 ∧ · · · ∧ zkr :Grh−1 ∧ ωl :Bh−1 ⊃ βj,qτh :Ah−1.

Applying σh substitution, we obtain by the Substitution Property,

`JL zk1 : (G1
h−1σh) ∧ · · · ∧ zkr : (Grh−1σh) ∧ ωl : (Bh−1σh)⊃ βj,qτh : (Ah−1σh)

because (a) σh does not affect the proof variables zk1 , . . . , zkr , (b) σh does not affect

the satisfier variable ωl 6= βj,q because j and l are indices of diamonds of opposite

polarity, and (c) σh does not affect the satisfier βj,qτh = µ(zk1 , . . . , zkr , ωl) because

the only variables occurring in it are zk1 , . . . , zkr , and ωl. It follows by union that

`JL zk1 :G1
h ∧ · · · ∧ zkr :Grh ∧D1

h ∧ · · · ∧D
p
h ∧ ωl :Bh ⊃ ωjτh :Ah

where ωj = βj,1 t · · · t βj,q t · · · t βj,mj . Thus, the h-realization of the conclusion

is also derivable in JL.

The case of the rule
G1, . . . , Gr ⇒ A

d
2k1G

1, . . . ,2krG
r, D1, . . . , Dp,⇒ 3jA

for LCD is sim-

ilar. By the IH, (4) holds for Bh−1 = >. Repeating all the steps for k3 and using

a fresh satisfier variable β in place of ωl for 3>, we obtain

`JL zk1 :G1
h ∧ · · · ∧ zkr :Grh ∧D1

h ∧ · · · ∧D
p
h ∧ β :>⊃ ωjτh :Ah .

It remains to note that `JL β :> by axiom jd3 of JCD. It follows that

`JL zk1 :G1
h ∧ · · · ∧ zkr :Grh ∧D1

h ∧ · · · ∧D
p
h ⊃ ωjτh :Ah .

The crucial difference between justificational and simple rules is that, unlike the

former, the latter require an additional substitution on top of all the previous ones.

5 Conclusion and future work

In this paper, we proposed justification counterparts for some constructive modal

logics, which, for the first time, employ the notion of satisfiers to realize the
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2Γ,Γ⇒ A
k42

∆,2Γ⇒ 2A

2Γ,Γ, B ⇒ A
k43

∆,2Γ,3B ⇒ 3A

2Γ,Γ, B ⇒ 3A
k4′3

∆,2Γ,3B ⇒ 3A

Fig. 6. More rules for modalities

3-modality. This led us to define an operator combining proof terms and satis-

fiers, which is crucial to the realization of the constructive modal axiom k2. How-

ever, surprisingly, the only other operation needed on satisfiers is the disjoint union,

an equivalent to the sum for proof terms. In particular, while the 2-version of the

4-axiom traditionally requires the proof checker operator !, the 3-version of axiom 4
do not seem to necessitate any additional operation on satisfiers. In the following,

we list a handful of directions for future work:

• Semantics of our proposed logics. Modular models from [10,23] should provide

a good starting point, but require significant adjustments.

• We have chosen to work with the logics that have simple, known cut-free sequent

calculi, a property on which the realization proof strongly relies. The same

method can be further extended to CK4 and CD4 that are obtained from CK
and CD, respectively, by adding the 4-axiom. To our knowledge, these logics have

not been independently studied, but it is possible to ‘constructivize’ the classical

rule k42 in the same way as for the rules in Fig. 3. That is, corresponding

sequent systems to CK4 and CD4 may be obtained via the rules in Fig. 6:

LCK4 = G3ip + k42 + k43 + k4′3

LCD4 = G3ip + k42 + k43 + k4′3 + d

We decided to forgo this extension for pragmatic reasons: without a cut-free cal-

culi for these constructive modal logics in the literature we would need to provide

a full cut-elimination proof. Even though it should be possible to directly adapt

for example the proof from [25], it would have changed the focus of this paper.

• There exist other, more elaborate realization proofs, e.g., from [19], that provide

realizations with additional properties and/or structure. Applying them to

modal logics with non-classical propositional basis remains future work.

• We believe that our way of justifying the 3 modality would similarly work for

the “intuitionistic variant” of modal logic [30], which is obtained from the con-

structive variant by adding the three axioms k3 : 3(A ∨ B) ⊃ (3A ∨ 3B) and

k4 : (3A⊃2B)⊃2(A⊃B) and k5 : 3⊥⊃⊥. There are no ordinary sequent calculi

for such logics, so the proof of realization provided here could not be straightfor-

wardly adapted. However, there are nested sequent calculi for all logics in the in-

tuitionistic S5-cube [32], even in a focused variant [15], which means that we might

still be able to prove a realization theorem by extending the method used in [22].
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