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Abstract—The Smart Grid of the future will enable a cleaner, 

more efficient and fault tolerant system of power distribution. 
Sensing power use and predicting demand is an important 
component in the Smart Grid. In this work, we describe a 
Cartesian Genetic Programming (CGP) system applied to a 
smart office. In the building, power usage is directly proportional 
to the number of people present. CGP is used to perform data 
fusion on the data collected from smart sensors embedded in the 
building in order to predict the number of people over a two-
month period. This is a challenging task, as the sensors are 
unreliable, resulting in incomplete data. It is also challenging 
because in addition to normal staff, the building underwent 
renovation during the test period, resulting the presence of 
additional personnel who would not normally be present. Despite 
these difficult real-world issues, CGP was able to learn human-
readable rules that when used in combination, provide a method 
for data fusion that is tolerant to the observed faults in the 
sensors. 

Keywords—Smart Grid, sensor fusion, data fusion, Cartesian 
Genetic Programming (CGP), smart office, fault tolerant, ensemble 
learning 

I. INTRODUCTION 
The Smart Grid is our response to ever-increasing demand 

for power. It is a dynamic and diverse system of power supply 
which responds to demand [1]. This involves a high degree of 
communication between grid operators, utilities and energy 
users. For example, in periods of high demand, appliances may 
be requested to go into power-saving mode and where possible 
power usage rescheduled for periods of lower demand [2]. 

For the grid to work there must be a reliable source of 
information from the end-users about energy demand now and 
in the future [1]. In the home this can be achieved by the 
creation of smart devices that are able to monitor power usage, 
and home hubs that collate and process this information [3]. In 
a business, however, the problem of monitoring and predicting 
power demand can be more challenging as it depends on office 
configuration/layout, the type of business, building usage, 
facilities/devices installed, people (staff, visitors, cleaners) [4]. 

In this work, we focus on a real office building in central 
London used by a computer software company. We investigate 
the use of a network of smart sensors to gather information 
about the usage of the building, and whether an evolutionary 

algorithm can predict occupancy levels by fusing data from 
multiple sources. As with all hardware-based projects, the 
sensors were unreliable, resulting in incomplete data [5]. The 
further goal of this work was to use the evolved solutions to 
construct a fault-tolerant system that is capable of providing 
high quality predictions even when some sensors are offline. 

The following section of this paper describes related 
literature. Section III describes the hardware and software used 
by the system. Section IV describes experiments using CGP to 
evolve to evolve data fusion rules to predict occupancy levels, 
with results described in section V and analysis in section VI. 
Section VII then describes the use of the evolved rules to create 
a fault-tolerant data fusion system, with VIII and IX providing 
additional experiments and results. Finally, we conclude in 
Section X. 

II. BACKGROUND 
Researchers have been applying computational intelligence 

techniques to address sensor related issues such as design and 
deployment, localisation, security, optimal routing and 
clustering, scheduling, data aggregation and fusion, and QoS 
management [6]. Data fusion is a well-known technique that 
can be useful for the enhancement of data quality [7, 8]. In this 
section, we review relevant works that use evolutionary 
algorithms such as GP, GAs, and EP on sensor fusion. 

Pinto et al. proposed an approach that allows the 
implementation of parallel data fusion techniques in IEEE 
802.15.4 networks [9]. Through the use of a genetic machine 
learning algorithm, their approach enables a trade-off between 
different user-defined metrics. 

Chernbumroong et al. investigated the use and contribution 
of wrist-worn multisensors for activity recognition in elderly 
people [10]. They found that accelerometers are the most 
important sensors and heart rate data can be used to boost 
classification of activities with diverse heart rates. They 
proposed a genetic algorithm-based fusion weight selection 
(GAFW) approach which utilises GA to find fusion weights.  

Sensors for the same measurement application can differ in 
terms of cost and accuracy, while fluctuations in environmental 
conditions can impact both application requirements and 
available energy. Zowj et al. proposed  a  method  that  
employs  a  hierarchy  of  model  ensembles trained by genetic 
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programming: if model ensembles that poll low-cost sensors 
exhibit too much prediction uncertainty, they automatically  
transfer  the  burden  of  prediction  to  other  GP-trained model 
ensembles that poll more expensive and accurate sensors [11]. 

Yoon and Kim propose an efficient genetic algorithm using 
a novel normalisation method in order to address the maximum 
coverage deployment problem in wireless sensor networks 
[12]. A Monte Carlo method is adopted to design an efficient 
evaluation function, and its computation time is decreased 
without loss of solution quality using a method that starts from 
a small number of random samples and gradually increases the 
number for subsequent generations. 

Kaya et al. proposed a tool condition monitoring system 
that uses three-axis cutting forces, torque, three-axis 
accelerometer and acoustic emission sensors [13]. Various time 
domain and statistical features extracted were used to train 
support vector machine models in a binary decision tree, which 
was used to predict the condition of the cutting tool. A genetic 
algorithm was employed for reducing the dimensionality of the 
feature set by selecting the features that correlates best with the 
tool condition. 

An alternative method for data fusion is for a mobile agent 
to fuse the data incrementally as it visits the nodes in a 
distributed sensor network. Wu et al. proposed a genetic 
algorithm to compute an approximate solution by suitably 
employing a two-level encoding scheme and genetic operators 
tailored to the objective function [14]. Rajagopalan et al. model 
the mobile agent routing problem as a multi-objective 
optimization problem, maximizing the total detected signal 
energy while minimizing the energy consumption and path 
loss, and successfully applied evolutionary multi-objective 
algorithms to the problem [15]. 

A problem of dimensionality can occur with data fusion 
and it is possible to find an optimal array configuration of 
reduced dimensionality considering a subset of parameters. 
Boilot et al. [16] studied the use of pricipal component analysis 
as a mathemetical transformation and two types of GAs as 
search methods. 

III. DATA FUSION USING CGP 
For this work, a Workplace Management System was 

developed to monitor an office building and make it smarter. 
With employees working on different projects on-site and off-
site, and with the office laid out across multiple floors, the 
application was developed to address the following problems: 

• Heating or cooling is on when there is no-one in the 
room 

• Lighting is on when there is no-one in the room 

• Doors or windows are left open, reducing efficiency of 
the heating or cooling. 

• Computers are left on (unused) overnight and over 
weekends. 

• The availability of rooms for meetings and of people 
working in the office is unclear, causing wasted 
journeys by staff. 

• It is difficult to report problems with rooms and track 
whether problems have been fixed or not. 

• It is difficult to learn about space usage and optimize 
space usage, to ensure that no room is over-used or 
under-used. 

A. Hardware (Sensors) 
The office is based in central London, UK, and is a self-

contained, Grade II listed building1 of 5 floors and a capacity 
of about 45 people. Because of its historic status, it is necessary 
to use wireless sensors; permanently wired sensors would 
damage the fabric of the structure. 

We used the following devices: 

• SmartThings2 Multi Sensor to monitor whether the main 
office front door is open or closed. 

• SmartThings Motion Sensor to monitor movement in a 
space. 

• SmartThings Presence Sensor to know when people 
arrive or leave the office. 

• SmartThings Power Outlet to control lights, electronics 
and small appliances. 

• Aeon Labs MultiSensor 63 to monitor humidity, motion, 
temperature, lights. 

• SmartThings mobile app to know when people arrive or 
leave the office. 

Each device can have multiple sensors (see Table I). The 
SmartThings Hub links to all sensors.  

TABLE I.  DEVICE AND SENSORS 

Device Sensors 

SmartThings Multi Sensor 

Acceleration 
Battery 
Contact 
Temperature 
ThreeAxis 

SmartThings Motion Sensor 
Battery 
Motion 
Temperature 

SmartThings Power Outlet Power 
Switch 

SmartThings Presence Sensor Battery 
Presence 

Aeon Labs MultiSensor 6 

Acceleration 
Battery 
Humidity 
Illuminance 
Motion 
Temperature 
UltravioletIndex 

SmartThings Mobile App Presence 

                                                             
1 In UK, a building is listed when it is of special architectural or historic 

interest considered to be of national importance and there are limitations on 
the changes that can be made to a building’s interior and exterior.  

2 http://www.samsung.com/uk/smartthings/ 
3 http://aeotec.com/z-wave-sensor 
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Fig. 1. Screenshot of the Workplace Management System (WMS). 

B. Software 
The Workplace Management System (WMS) is a web 

application that consists of an admin interface and a user 
interface. The system interacts with the sensors via the 
SmartThings REST API 4 . A SmartApp was developed to 
stream sensor events to the web application. All sensor events 
are stored in the database of the web application. The 
SmartApp is developed using Groovy. The web application is 
developed using the Django web framework 5 , Javascript, 
HTML5, and CSS, and hosted on Amazon Web Services. 

Using the WMS, admin users can create offices, add floors 
and spaces, populate details for each space (e.g., name, image, 
facilities, space type, capacity, size, location), assign other 
admins to receive issue reports about a space, update issue 
status (to do, in progress and completed), and pair the room 
with the respective sensor(s). 

Users of the WMS can have an overview of a specific 
measure (temperature, humidity, luminance, motion, 
occupancy, and issues) for all the spaces in the entire office 
building (Fig. 1), list all the spaces in a floor, and search for 
specific spaces by name. For each space, users can view sensor 
details (temperature, humidity, luminance, motion, occupancy), 
view space details (e.g., name, image, facilities, space type, 
capacity), report new issues (issues can be about facility, 
technology, or catering), assign a priority to the issue, view 
issues and their statuses. 

IV. EXPERIMENT 1 
For the purposes of this work, the WMS was used to gather 

data for a specific task: to understand and predict energy usage 
within the office. Managers of the building report that the level 
of energy usage is directly proportional to the number of 
people in the building. However, in such a dynamic 
environment it is not feasible to count unique people manually 
(cameras and compulsory presence sensors are seen as an 
invasion of privacy). Therefore, the task is refined into two 
parts: 

• To use sensor data in order to predict the number of 
unique members of staff in the building per day. 

                                                             
4 http://docs.smartthings.com/en/latest/index.html 
5 https://www.djangoproject.com/ 

• To use sensor data in order to predict the number of 
unique people in the building per day (which in 
addition to staff may include workmen, surveyors, 
delivery people, cleaners, and visitors). 

Cartesian Genetic Programming [17] (CGP-Library 2.46) 
modified for this application was used to evolve predictions. It 
was chosen because it provides a well-established and reliable 
method for deriving human-readable results, which is 
important for this real-world application. With an accurate 
prediction for both parts, it will then be possible to tailor 
heating/cooling and lighting for the building and have a clear 
prediction of energy requirements. 

A. Data Cleaning and Feature Extraction 
We studied events for two months, from 1 April 2017 to 31 

May 2017 (61 days). For each day, for each device, we 
extracted sensor data from the database as follows: 

• If the device has a humidity sensor, we calculated the 
min, max, average, count, for all the humidity values for 
that day.  

• If the device has a contact sensor, we calculated the 
number of times the event value is “open” 

• If the device has a motion sensor, we calculated the 
number of times the event value is “active” 

• If the device has a presence sensor, we calculated the 
number of times the event value is “present” 

The result comprised 53 features per day, see Table II. Note 
that it was observed that during the period there were several 
sensor failures: 

• After the first 26 days, the Kitchen sensor completely 
failed and stopped producing any data. 

• The Ground Floor Office 2 sensor never reported any 
movement during the entire period (and so this feature 
was removed altogether). 

• For a period of 9 days the Front door contact sensor was 
offline, producing no data. 

• For a period of 18 days the Boardroom sensor 
incorrectly reported no movement. 

Such failures are absolutely typical of current wireless 
sensor devices, and so the resulting somewhat incomplete data 
is seen as a realistic – if very challenging – set of features for 
the experiments. This data was made yet more challenging 
because in addition to normal staff, the building underwent 
renovation for 2 weeks of the test period, resulting the presence 
of additional (very active) personnel who would not normally 
be present. 

 
 
 
 
 
 

                                                             
6 http://www.cgplibrary.co.uk/ 
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TABLE II.  SENSORS IN SMART OFFICE 

Sensor Location Measures (Per Day) Input Number 

Basement Lab 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i8 
i9 
i10 
i11 
i12 

Kitchen 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i13 
i14 
i15 
i16 
i17 

Ground Floor Office 1 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i18 
i19 
i20 
i21 
i22 

Ground Floor Office 2 

Humidity count 
Humidity average 
Humidity min 
Humidity max 

i23 
i24 
i25 
i26 

Reception 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i27 
i28 
i29 
i30 
i31 

Boardroom 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i32 
i33 
i34 
i35 
i36 

First Floor Office 1 Movement count i37 

Second Floor Office 1 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i38 
i39 
i40 
i41 
i42 

Second Floor Office 2 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i43 
i44 
i45 
i46 
i47 

Third Floor Office 1 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i48 
i49 
i50 
i51 
i52 

Third Floor Office 2 

Humidity count 
Humidity average 
Humidity min 
Humidity max 
Movement count 

i53 
i54 
i55 
i56 
i57 

Front Door Contact count i58 

Director 1 Presence count i59 

Director 2 Presence count i60 

 

These 53 features were supplemented with 8 further 
features indicating the day of the week and whether the day 
was a holiday, see Table III. (The UK had 3 public holidays in 
addition to 9 weekends during this period.) 

In order to perform supervised learning, the actual number 
of unique people present at the office on each day was then 
determined by conducting an extensive survey of every 
employee and examination of diaries, schedules, events and 
bookings. This resulted in two sets of labelled data:  

 

TABLE III.  CALENDAR INPUTS 

Input Name Input Number 

Holiday i0 

Monday i1 

Tuesday i2 

Wednesday i3 

Thursday i4 

Friday i5 

Saturday i6 

Sunday i7 

 

• Dataset A, comprising 61 features for 61 days, which is 
labelled with the number of unique members of staff 
present on each day during the period. 

• DataSet B, comprising 61 features for 61 days, which is 
labelled with the number of unique people present on 
each day during the period. 

B. Model Checking 
Preliminary experiments were performed using 5x2 cross 

validation [18] on both DataSet A and DataSet B, creating 5 
randomized datasets comprising 31 training and 30 test items 
for each. These were used for model-checking in order to find 
optimal number of generations, nodes and optimal function set, 
to maximize fitness, while minimizing overfitting (i.e., achieve 
maximum fitness for training and test sets for all 5 datasets). 
Fitness is the total error (sum of absolute difference between 
output of evolved solution and correct output for all inputs). 

A total of 100 runs for each setting were used, with the 
result that 200,000 was found to be the optimal number of 
generations, using 15 nodes, node arity of 2, 61 inputs, 1 
output, and a function set comprising the following functions: 
add, sub, mul, div, abs, sq, sqrt, pow, cube, exp, sin. 

C. Experiment 1.1 
The aim of Experiment 1.1 is to predict the number of 

unique members of staff in the building per day. Using the 
settings found above, 1000 runs were performed on a 
randomized subset of DataSet A comprising 41 training items, 
and tested on the remaining 20 items. 

D. Experiment 1.2 
The aim of Experiment 1.2 is to predict the number of 

unique people in the building per day. Using the settings found 
above, 1000 runs were performed on a randomized subset of 
DataSet B comprising 41 training items, and tested on the 
remaining 20 items. 

V. RESULTS FOR EXPERIMENT 1 

A. Results for Experiment 1.1 
Table IV (left) shows the top 5 results for Experiment 1.1. 

In all cases CGP was able to predict the number of unique 
members of staff with good accuracy – normally error within 
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1 person. Table V shows the evolved solutions for the 
experiment. 

B. Results for Experiment 1.2 
Table IV (right) shows the top 5 results for Experiment 1.2. 

Again, in all cases CGP was able to predict the number of 
unique people with good accuracy – normally error within 1 
person. Table VI shows the evolved solutions for the 
experiment. 
 

TABLE IV.  AVERAGE ERROR PER DAY FOR TOP 5 SOLUTIONS IN 
EXPERIMENTS 1.1 AND 1.2 

Experiment 1.1 (Mean Error) Experiment 1.2 (Mean Error) 
Soln Training Test Soln Training Test 

294 0.57245 0.783488 179 0.790985 0.8538 

789 0.678688 0.830366 580 0.828016 0.95753 

501 0.695404 0.851852 859 0.943086 0.969066 

94 0.583867 0.858198 488 0.953414 0.976745 

89 0.792186 0.865186 417 0.714335 0.989887 

TABLE V.  TOP 5 EVOLVED RESULTS EXPERIMENT 1.1 

Best Solution Run Number 

!47×!58 + ((!18 + !37)×!57)
,-.

/
 
 

294 

!58 + !13×!42
*+, +-. + !1 -( !3×!32 -!60)  

789 

("17 + "58 − "0 "5 - "3 + "1 + "4×("59 + "42)  501 

!17 + !58
!58 + !16

+ sin !0!5 + !1 + !3 + !1 + !3 
 

94 

!58 + !17-!3 − !58 + !17*!0 + (!4× !52 !8)  89 

TABLE VI.  TOP 5 EVOLVED RESULTS EXPERIMENT 1.2 

Best Solution Run Number 

!22 + !37 + !57 − !6 + !52- !37 + !57 -(!31×!4)!45   179 

!52 + !37 + !58 × !57 + !46 + !57×!47 -!49-  
 

580 

("4×"58 + "52 + "37 + "57)×"46-   859 

!47 + !1 + !37 + !57 + !1 + !37
!8 + !60  488 

("57 + "48)×("47 + "37)+ + "59 + "4 + "1  417 

 

VI. ANALYSIS 
Because the evolved solutions for both experiments are 

human-readable, it is possible to analyze how CGP uses the 
input features to produce its output. Fig. 2 shows a tally of 
input features used for both experiments over all runs. It is 
clear that many features are rarely used for any solution: 
typically, those corresponding to Saturday and Sunday 
(perhaps because i0 Holiday duplicates their information). 
Also, humidity features are less commonly used. The most 
commonly used features are those relating to movement, 
presence, the front door, and the working days of the week. 

While these findings are unsurprising, the results also show 
a remarkable degree of variation. Fig. 2 shows that some 
sensors are clearly more useful than others when distinguishing 
between members of staff (Experiment 1.1) and any person 
(Experiment 1.2). For example, movement in the Kitchen is a 
useful way to estimate the number of staff, but not anyone else. 
Movement in Ground Floor Office 1 (used by the Operations 
Manager) is useful to estimate the number of people in general, 
but not the number of staff. 

Examining the top five evolved solutions more closely 
(Tables V and VI) it is possible to see the variation of inputs 
used by each solution. Tables VII and VIII show the features 
used as inputs by the top five evolved solutions for each 
experiment. Each uses a different combination of inputs. In 
Experiment 1.1 only a single feature is used by all the top five 
solutions: i58 the Front Door. Indeed, the simplest solution 
found initially by CGP is simply the square root of i58, i.e., the 
number of unique staff in the building is very roughly equal to 
the square root of the number of times the front door opens and 
closes. This concept is refined, but still visible in all five of the 
top solutions for Experiment 1.1. 

In contrast, for Experiment 1.2, the only common input 
feature for all five top solutions is i57 Third Floor Office 2 
Movement Count, a room used by support staff, and the front 
door is no longer an important feature. 

The fact that the top five solutions for each experiment tend 
to use different features to generate the results is an extremely 
important result, for it enables the creation of an ensemble-
based approach that may be tolerant to faults. 

VII. FAULT-TOLERANT ENSEMBLE-BASED DATA FUSION 
Based on the analysis above we created a fault tolerant data 

fusion system. The system is an ensemble learning approach, 
making use of the best five (out of 1000) evolved solutions as 
described above. Based on the availability of sensor data, and 
the use of the sensors, the best ranked solution is applied to 
new data for the given day, see Algorithm 1. 
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Fig. 2. Usage (y-axis) of different sensors (x-axis) over 1000 evolved solutions for both experiments. In Experiment 1.1 the commonly used inputs (used for 
more than 1 in 5 solutions) are: i0, i4, i17, i42, i47, i52, i57, i59, i60. In Experiment 1.2, the commonly used inputs (used for more than 1 in 5 solutions) are: i1, 
i22, i37, i42, i47, i52, i57, i58, i60. 

TABLE VII.  USE OF INPUTS BY TOP 5 EVOLVED RESULTS FOR EXPERIMENT 1.1 

Run Number i0 i1 i3 i4 i5 i8 i13 i16 i17 i18 i32 i37 i42 i47 i52 i57 i58 i59 i60 

294          X  X  X  X X   

789 X X X    X    X  X    X X X 

501 X X X X X    X    X    X X  

94 X X X  X   X X        X   

89 X  X X  X   X      X  X   

TABLE VIII.  USE OF INPUTS BY TOP 5 EVOLVED RESULTS FOR EXPERIMENT 1.2 

Run Number i1 i4 i6 i8 i22 i31 i37 i45 i46 i47 i48 i49 i52 i57 i58 i59 i60 

179  X X  X X X X     X X    

580       X  X X  X X X X   

859  X     X  X    X X X   

488 X   X   X   X    X   X 

417 X X     X   X X   X  X  

 
 

Algorithm 1: Ensemble-based Data Fusion using previously evolved CGP 
rules. 

1: For each day: 
2:   Get currently available sensor data. 
3:  Rank evolved solutions into order of number of 
   required inputs that match non-zero sensor data. 
4:  If any top-ranked solutions have equal ranking then 
5:   Choose solution with highest fitness ranking 
    from previous experiments. 
6:  Else 
7:    Choose top-ranking solution. 
8:  End If 
7:  Apply solution to data. 
8: End for 
 
 

VIII. EXPERIMENT 2 
The second experiment investigates this fault tolerant 

ensemble-based data fusion system (using the 5 best evolved 
solutions for Experiment 1.1 and 1.2 described previously) by 
testing on both datasets with further faults added. 

A. Experiment 2.1 
To test the fault tolerant data fusion system, Dataset A 

described in the previous experiments was randomly corrupted 
with 50 sensor readings set to zero, in order to simulate 50 day-
long failures spread over all the inputs, in addition to the 
existing sensor failures. Algorithm 1 was then applied (using 
the five best evolved results as shown in Table V). 

B. Experiment 2.2 
To test the fault tolerant data fusion system, Dataset B 

described in the previous experiments was also randomly 
corrupted with 50 sensor readings set to zero, in order to 
simulate 50 day-long failures spread over all the inputs. 
Algorithm 1 was then applied (using the five best evolved 
results as shown in Table VI). 
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Fig. 3. Ensemble-based Data Fusion using CGP rules for Experiment 2.1. Error (y-axis) of the 5 previously evolved solutions (number of predicted people too 
few or too many) per day (x-axis) on Dataset A with 50 further random errors added.  The line shows the result produced by the ensemble solution. 
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Fig. 4. Ensemble-based Data Fusion using CGP rules for Experiment 2.2. Error (y-axis) of the 5 previously evolved solutions (number of predicted people too 
few or too many) per day (x-axis) on Dataset B with 50 further random errors added. Results for Solution 488 day 41, and Solution 179 days 31 and 47 are 
cropped as the true values were very large. The line shows the result produced by the ensemble solution.  

 

IX. RESULTS FOR EXPERIMENT 2 

A. Results for Experiment 2.1 
Table IX (left) shows the average error for the five 

solutions for Experiment 2.1 and the result of the fault-tolerant 
ensemble learning system. Fig. 3 shows the results for each 
day. Performance is slightly degraded by the additional loss of 
sensor information, with some solutions at worst predicting 4 
members of staff too many or too few in the building. The 
ensemble result is extremely good, on average only 0.3 wrong 
(less than half the average error of the best evolved solution 
alone) and at worst predicting 2 members of staff too many or 
too few. 

B. Results for Experiment 2.2 
Table IX (right) shows the average error for the five 

solutions for Experiment 2.2 and the result of the fault-tolerant 
ensemble learning system. Fig. 4 shows the results for each 
day. The additional loss of sensor information significantly 
affected performance in some cases, with solutions 488 and 
179 failing completely for some days, predicting an infinite 
number of people in the building. Nevertheless, the ensemble 
result remains extremely good, with the average error less than 
half the error of the best solution alone, and at worst predicting 
2 people too many or too few in the building. 

TABLE IX.  AVERAGE ERROR PER DAY FOR TOP 5 SOLUTIONS IN 
EXPERIMENTS 2.1 AND 2.2 

Experiment 2.1 Experiment 2.2 
Soln Mean Error Soln Mean Error 

294 0.688888917 179 ∞ 

789 0.766368133 580 1.068208933 

501 0.766046983 859 1.183191533 

94 0.713926983 488 ∞ 

89 0.836625633 417 1.033114467 

Ensemble 0.301135333 Ensemble 0.49976155 

X. CONCLUSIONS 
Smart Grids require good information from energy users. In 

this work, we applied Cartesian Genetic Programming to the 
problem of understanding and predicting energy usage within a 
real London office building, by fusing data gathered from 
smart sensors. In the building, power usage is directly 
proportional to the number of people present. CGP was used to 
perform data fusion on the data collected from smart sensors 
embedded in the building in order to predict the number of 
people over a two-month period. This was a challenging task, 
as the sensors were unreliable, resulting in incomplete data. It 
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was also challenging because in addition to normal staff, the 
building underwent renovation for 2 weeks of the test period, 
resulting the presence of additional personnel who would not 
normally be present. Despite these difficult real-world issues, 
CGP was able to learn human-readable rules that provided low 
error rates (occupancy prediction no more than 2 people 
wrong) for both staff and for all people who visited the office. 
One of the key benefits of CGP was that it provided a large 
variety of solutions, each using a different subset of sensor 
inputs to produce the same result. This enabled the creation of 
an ensemble learning fault-tolerant data fusion system which 
applies the appropriate evolved rules based on which subset of 
sensors are currently operational. Experiments showed that this 
fault-tolerant system showed good performance even when 50 
further faults were simulated over the 61 days, outperforming 
all evolved rules alone.  
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