
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fault Tolerant Fusion of Office Sensor Data using
Cartesian Genetic Programming

Peter J. Bentley
Braintree Ltd

Department of Computer Science, UCL
London, United Kingdom

p.bentley@cs.ucl.ac.uk

Soo Ling Lim
Braintree Ltd

Department of Computer Science, UCL
London, United Kingdom

s.lim@cs.ucl.ac.uk

Abstract—The Smart Grid of the future will enable a cleaner,

more efficient and fault tolerant system of power distribution.
Sensing power use and predicting demand is an important
component in the Smart Grid. In this work, we describe a
Cartesian Genetic Programming (CGP) system applied to a
smart office. In the building, power usage is directly proportional
to the number of people present. CGP is used to perform data
fusion on the data collected from smart sensors embedded in the
building in order to predict the number of people over a two-
month period. This is a challenging task, as the sensors are
unreliable, resulting in incomplete data. It is also challenging
because in addition to normal staff, the building underwent
renovation during the test period, resulting the presence of
additional personnel who would not normally be present. Despite
these difficult real-world issues, CGP was able to learn human-
readable rules that when used in combination, provide a method
for data fusion that is tolerant to the observed faults in the
sensors.

Keywords—Smart Grid, sensor fusion, data fusion, Cartesian
Genetic Programming (CGP), smart office, fault tolerant, ensemble
learning

I. INTRODUCTION
The Smart Grid is our response to ever-increasing demand

for power. It is a dynamic and diverse system of power supply
which responds to demand [1]. This involves a high degree of
communication between grid operators, utilities and energy
users. For example, in periods of high demand, appliances may
be requested to go into power-saving mode and where possible
power usage rescheduled for periods of lower demand [2].

For the grid to work there must be a reliable source of
information from the end-users about energy demand now and
in the future [1]. In the home this can be achieved by the
creation of smart devices that are able to monitor power usage,
and home hubs that collate and process this information [3]. In
a business, however, the problem of monitoring and predicting
power demand can be more challenging as it depends on office
configuration/layout, the type of business, building usage,
facilities/devices installed, people (staff, visitors, cleaners) [4].

In this work, we focus on a real office building in central
London used by a computer software company. We investigate
the use of a network of smart sensors to gather information
about the usage of the building, and whether an evolutionary

algorithm can predict occupancy levels by fusing data from
multiple sources. As with all hardware-based projects, the
sensors were unreliable, resulting in incomplete data [5]. The
further goal of this work was to use the evolved solutions to
construct a fault-tolerant system that is capable of providing
high quality predictions even when some sensors are offline.

The following section of this paper describes related
literature. Section III describes the hardware and software used
by the system. Section IV describes experiments using CGP to
evolve to evolve data fusion rules to predict occupancy levels,
with results described in section V and analysis in section VI.
Section VII then describes the use of the evolved rules to create
a fault-tolerant data fusion system, with VIII and IX providing
additional experiments and results. Finally, we conclude in
Section X.

II. BACKGROUND
Researchers have been applying computational intelligence

techniques to address sensor related issues such as design and
deployment, localisation, security, optimal routing and
clustering, scheduling, data aggregation and fusion, and QoS
management [6]. Data fusion is a well-known technique that
can be useful for the enhancement of data quality [7, 8]. In this
section, we review relevant works that use evolutionary
algorithms such as GP, GAs, and EP on sensor fusion.

Pinto et al. proposed an approach that allows the
implementation of parallel data fusion techniques in IEEE
802.15.4 networks [9]. Through the use of a genetic machine
learning algorithm, their approach enables a trade-off between
different user-defined metrics.

Chernbumroong et al. investigated the use and contribution
of wrist-worn multisensors for activity recognition in elderly
people [10]. They found that accelerometers are the most
important sensors and heart rate data can be used to boost
classification of activities with diverse heart rates. They
proposed a genetic algorithm-based fusion weight selection
(GAFW) approach which utilises GA to find fusion weights.

Sensors for the same measurement application can differ in
terms of cost and accuracy, while fluctuations in environmental
conditions can impact both application requirements and
available energy. Zowj et al. proposed a method that
employs a hierarchy of model ensembles trained by genetic

 2

programming: if model ensembles that poll low-cost sensors
exhibit too much prediction uncertainty, they automatically
transfer the burden of prediction to other GP-trained model
ensembles that poll more expensive and accurate sensors [11].

Yoon and Kim propose an efficient genetic algorithm using
a novel normalisation method in order to address the maximum
coverage deployment problem in wireless sensor networks
[12]. A Monte Carlo method is adopted to design an efficient
evaluation function, and its computation time is decreased
without loss of solution quality using a method that starts from
a small number of random samples and gradually increases the
number for subsequent generations.

Kaya et al. proposed a tool condition monitoring system
that uses three-axis cutting forces, torque, three-axis
accelerometer and acoustic emission sensors [13]. Various time
domain and statistical features extracted were used to train
support vector machine models in a binary decision tree, which
was used to predict the condition of the cutting tool. A genetic
algorithm was employed for reducing the dimensionality of the
feature set by selecting the features that correlates best with the
tool condition.

An alternative method for data fusion is for a mobile agent
to fuse the data incrementally as it visits the nodes in a
distributed sensor network. Wu et al. proposed a genetic
algorithm to compute an approximate solution by suitably
employing a two-level encoding scheme and genetic operators
tailored to the objective function [14]. Rajagopalan et al. model
the mobile agent routing problem as a multi-objective
optimization problem, maximizing the total detected signal
energy while minimizing the energy consumption and path
loss, and successfully applied evolutionary multi-objective
algorithms to the problem [15].

A problem of dimensionality can occur with data fusion
and it is possible to find an optimal array configuration of
reduced dimensionality considering a subset of parameters.
Boilot et al. [16] studied the use of pricipal component analysis
as a mathemetical transformation and two types of GAs as
search methods.

III. DATA FUSION USING CGP
For this work, a Workplace Management System was

developed to monitor an office building and make it smarter.
With employees working on different projects on-site and off-
site, and with the office laid out across multiple floors, the
application was developed to address the following problems:

• Heating or cooling is on when there is no-one in the
room

• Lighting is on when there is no-one in the room

• Doors or windows are left open, reducing efficiency of
the heating or cooling.

• Computers are left on (unused) overnight and over
weekends.

• The availability of rooms for meetings and of people
working in the office is unclear, causing wasted
journeys by staff.

• It is difficult to report problems with rooms and track
whether problems have been fixed or not.

• It is difficult to learn about space usage and optimize
space usage, to ensure that no room is over-used or
under-used.

A. Hardware (Sensors)
The office is based in central London, UK, and is a self-

contained, Grade II listed building1 of 5 floors and a capacity
of about 45 people. Because of its historic status, it is necessary
to use wireless sensors; permanently wired sensors would
damage the fabric of the structure.

We used the following devices:

• SmartThings2 Multi Sensor to monitor whether the main
office front door is open or closed.

• SmartThings Motion Sensor to monitor movement in a
space.

• SmartThings Presence Sensor to know when people
arrive or leave the office.

• SmartThings Power Outlet to control lights, electronics
and small appliances.

• Aeon Labs MultiSensor 63 to monitor humidity, motion,
temperature, lights.

• SmartThings mobile app to know when people arrive or
leave the office.

Each device can have multiple sensors (see Table I). The
SmartThings Hub links to all sensors.

TABLE I. DEVICE AND SENSORS

Device Sensors

SmartThings Multi Sensor

Acceleration
Battery
Contact
Temperature
ThreeAxis

SmartThings Motion Sensor
Battery
Motion
Temperature

SmartThings Power Outlet Power
Switch

SmartThings Presence Sensor Battery
Presence

Aeon Labs MultiSensor 6

Acceleration
Battery
Humidity
Illuminance
Motion
Temperature
UltravioletIndex

SmartThings Mobile App Presence

1 In UK, a building is listed when it is of special architectural or historic

interest considered to be of national importance and there are limitations on
the changes that can be made to a building’s interior and exterior.

2 http://www.samsung.com/uk/smartthings/
3 http://aeotec.com/z-wave-sensor

 3

Fig. 1. Screenshot of the Workplace Management System (WMS).

B. Software
The Workplace Management System (WMS) is a web

application that consists of an admin interface and a user
interface. The system interacts with the sensors via the
SmartThings REST API 4 . A SmartApp was developed to
stream sensor events to the web application. All sensor events
are stored in the database of the web application. The
SmartApp is developed using Groovy. The web application is
developed using the Django web framework 5 , Javascript,
HTML5, and CSS, and hosted on Amazon Web Services.

Using the WMS, admin users can create offices, add floors
and spaces, populate details for each space (e.g., name, image,
facilities, space type, capacity, size, location), assign other
admins to receive issue reports about a space, update issue
status (to do, in progress and completed), and pair the room
with the respective sensor(s).

Users of the WMS can have an overview of a specific
measure (temperature, humidity, luminance, motion,
occupancy, and issues) for all the spaces in the entire office
building (Fig. 1), list all the spaces in a floor, and search for
specific spaces by name. For each space, users can view sensor
details (temperature, humidity, luminance, motion, occupancy),
view space details (e.g., name, image, facilities, space type,
capacity), report new issues (issues can be about facility,
technology, or catering), assign a priority to the issue, view
issues and their statuses.

IV. EXPERIMENT 1
For the purposes of this work, the WMS was used to gather

data for a specific task: to understand and predict energy usage
within the office. Managers of the building report that the level
of energy usage is directly proportional to the number of
people in the building. However, in such a dynamic
environment it is not feasible to count unique people manually
(cameras and compulsory presence sensors are seen as an
invasion of privacy). Therefore, the task is refined into two
parts:

• To use sensor data in order to predict the number of
unique members of staff in the building per day.

4 http://docs.smartthings.com/en/latest/index.html
5 https://www.djangoproject.com/

• To use sensor data in order to predict the number of
unique people in the building per day (which in
addition to staff may include workmen, surveyors,
delivery people, cleaners, and visitors).

Cartesian Genetic Programming [17] (CGP-Library 2.46)
modified for this application was used to evolve predictions. It
was chosen because it provides a well-established and reliable
method for deriving human-readable results, which is
important for this real-world application. With an accurate
prediction for both parts, it will then be possible to tailor
heating/cooling and lighting for the building and have a clear
prediction of energy requirements.

A. Data Cleaning and Feature Extraction
We studied events for two months, from 1 April 2017 to 31

May 2017 (61 days). For each day, for each device, we
extracted sensor data from the database as follows:

• If the device has a humidity sensor, we calculated the
min, max, average, count, for all the humidity values for
that day.

• If the device has a contact sensor, we calculated the
number of times the event value is “open”

• If the device has a motion sensor, we calculated the
number of times the event value is “active”

• If the device has a presence sensor, we calculated the
number of times the event value is “present”

The result comprised 53 features per day, see Table II. Note
that it was observed that during the period there were several
sensor failures:

• After the first 26 days, the Kitchen sensor completely
failed and stopped producing any data.

• The Ground Floor Office 2 sensor never reported any
movement during the entire period (and so this feature
was removed altogether).

• For a period of 9 days the Front door contact sensor was
offline, producing no data.

• For a period of 18 days the Boardroom sensor
incorrectly reported no movement.

Such failures are absolutely typical of current wireless
sensor devices, and so the resulting somewhat incomplete data
is seen as a realistic – if very challenging – set of features for
the experiments. This data was made yet more challenging
because in addition to normal staff, the building underwent
renovation for 2 weeks of the test period, resulting the presence
of additional (very active) personnel who would not normally
be present.

6 http://www.cgplibrary.co.uk/

 4

TABLE II. SENSORS IN SMART OFFICE

Sensor Location Measures (Per Day) Input Number

Basement Lab

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i8
i9
i10
i11
i12

Kitchen

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i13
i14
i15
i16
i17

Ground Floor Office 1

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i18
i19
i20
i21
i22

Ground Floor Office 2

Humidity count
Humidity average
Humidity min
Humidity max

i23
i24
i25
i26

Reception

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i27
i28
i29
i30
i31

Boardroom

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i32
i33
i34
i35
i36

First Floor Office 1 Movement count i37

Second Floor Office 1

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i38
i39
i40
i41
i42

Second Floor Office 2

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i43
i44
i45
i46
i47

Third Floor Office 1

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i48
i49
i50
i51
i52

Third Floor Office 2

Humidity count
Humidity average
Humidity min
Humidity max
Movement count

i53
i54
i55
i56
i57

Front Door Contact count i58

Director 1 Presence count i59

Director 2 Presence count i60

These 53 features were supplemented with 8 further
features indicating the day of the week and whether the day
was a holiday, see Table III. (The UK had 3 public holidays in
addition to 9 weekends during this period.)

In order to perform supervised learning, the actual number
of unique people present at the office on each day was then
determined by conducting an extensive survey of every
employee and examination of diaries, schedules, events and
bookings. This resulted in two sets of labelled data:

TABLE III. CALENDAR INPUTS

Input Name Input Number

Holiday i0

Monday i1

Tuesday i2

Wednesday i3

Thursday i4

Friday i5

Saturday i6

Sunday i7

• Dataset A, comprising 61 features for 61 days, which is
labelled with the number of unique members of staff
present on each day during the period.

• DataSet B, comprising 61 features for 61 days, which is
labelled with the number of unique people present on
each day during the period.

B. Model Checking
Preliminary experiments were performed using 5x2 cross

validation [18] on both DataSet A and DataSet B, creating 5
randomized datasets comprising 31 training and 30 test items
for each. These were used for model-checking in order to find
optimal number of generations, nodes and optimal function set,
to maximize fitness, while minimizing overfitting (i.e., achieve
maximum fitness for training and test sets for all 5 datasets).
Fitness is the total error (sum of absolute difference between
output of evolved solution and correct output for all inputs).

A total of 100 runs for each setting were used, with the
result that 200,000 was found to be the optimal number of
generations, using 15 nodes, node arity of 2, 61 inputs, 1
output, and a function set comprising the following functions:
add, sub, mul, div, abs, sq, sqrt, pow, cube, exp, sin.

C. Experiment 1.1
The aim of Experiment 1.1 is to predict the number of

unique members of staff in the building per day. Using the
settings found above, 1000 runs were performed on a
randomized subset of DataSet A comprising 41 training items,
and tested on the remaining 20 items.

D. Experiment 1.2
The aim of Experiment 1.2 is to predict the number of

unique people in the building per day. Using the settings found
above, 1000 runs were performed on a randomized subset of
DataSet B comprising 41 training items, and tested on the
remaining 20 items.

V. RESULTS FOR EXPERIMENT 1

A. Results for Experiment 1.1
Table IV (left) shows the top 5 results for Experiment 1.1.

In all cases CGP was able to predict the number of unique
members of staff with good accuracy – normally error within

 5

1 person. Table V shows the evolved solutions for the
experiment.

B. Results for Experiment 1.2
Table IV (right) shows the top 5 results for Experiment 1.2.

Again, in all cases CGP was able to predict the number of
unique people with good accuracy – normally error within 1
person. Table VI shows the evolved solutions for the
experiment.

TABLE IV. AVERAGE ERROR PER DAY FOR TOP 5 SOLUTIONS IN
EXPERIMENTS 1.1 AND 1.2

Experiment 1.1 (Mean Error) Experiment 1.2 (Mean Error)
Soln Training Test Soln Training Test

294 0.57245 0.783488 179 0.790985 0.8538

789 0.678688 0.830366 580 0.828016 0.95753

501 0.695404 0.851852 859 0.943086 0.969066

94 0.583867 0.858198 488 0.953414 0.976745

89 0.792186 0.865186 417 0.714335 0.989887

TABLE V. TOP 5 EVOLVED RESULTS EXPERIMENT 1.1

Best Solution Run Number

!47×!58 + ((!18 + !37)×!57)
,-.

/

294

!58 + !13×!42
*+, +-. + !1 -(!3×!32 -!60)

789

("17 + "58 − "0 "5 - "3 + "1 + "4×("59 + "42) 501

!17 + !58
!58 + !16

+ sin !0!5 + !1 + !3 + !1 + !3

94

!58 + !17-!3 − !58 + !17*!0 + (!4× !52 !8) 89

TABLE VI. TOP 5 EVOLVED RESULTS EXPERIMENT 1.2

Best Solution Run Number

!22 + !37 + !57 − !6 + !52- !37 + !57 -(!31×!4)!45 179

!52 + !37 + !58 × !57 + !46 + !57×!47 -!49-

580

("4×"58 + "52 + "37 + "57)×"46- 859

!47 + !1 + !37 + !57 + !1 + !37
!8 + !60 488

("57 + "48)×("47 + "37)+ + "59 + "4 + "1 417

VI. ANALYSIS
Because the evolved solutions for both experiments are

human-readable, it is possible to analyze how CGP uses the
input features to produce its output. Fig. 2 shows a tally of
input features used for both experiments over all runs. It is
clear that many features are rarely used for any solution:
typically, those corresponding to Saturday and Sunday
(perhaps because i0 Holiday duplicates their information).
Also, humidity features are less commonly used. The most
commonly used features are those relating to movement,
presence, the front door, and the working days of the week.

While these findings are unsurprising, the results also show
a remarkable degree of variation. Fig. 2 shows that some
sensors are clearly more useful than others when distinguishing
between members of staff (Experiment 1.1) and any person
(Experiment 1.2). For example, movement in the Kitchen is a
useful way to estimate the number of staff, but not anyone else.
Movement in Ground Floor Office 1 (used by the Operations
Manager) is useful to estimate the number of people in general,
but not the number of staff.

Examining the top five evolved solutions more closely
(Tables V and VI) it is possible to see the variation of inputs
used by each solution. Tables VII and VIII show the features
used as inputs by the top five evolved solutions for each
experiment. Each uses a different combination of inputs. In
Experiment 1.1 only a single feature is used by all the top five
solutions: i58 the Front Door. Indeed, the simplest solution
found initially by CGP is simply the square root of i58, i.e., the
number of unique staff in the building is very roughly equal to
the square root of the number of times the front door opens and
closes. This concept is refined, but still visible in all five of the
top solutions for Experiment 1.1.

In contrast, for Experiment 1.2, the only common input
feature for all five top solutions is i57 Third Floor Office 2
Movement Count, a room used by support staff, and the front
door is no longer an important feature.

The fact that the top five solutions for each experiment tend
to use different features to generate the results is an extremely
important result, for it enables the creation of an ensemble-
based approach that may be tolerant to faults.

VII. FAULT-TOLERANT ENSEMBLE-BASED DATA FUSION
Based on the analysis above we created a fault tolerant data

fusion system. The system is an ensemble learning approach,
making use of the best five (out of 1000) evolved solutions as
described above. Based on the availability of sensor data, and
the use of the sensors, the best ranked solution is applied to
new data for the given day, see Algorithm 1.

 6

0

100

200

300

400

500

600

700

800

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i1
0

i1
1

i1
2

i1
3

i1
4

i1
5

i1
6

i1
7

i1
8

i1
9

i2
0

i2
1

i2
2

i2
3

i2
4

i2
5

i2
6

i2
7

i2
8

i2
9

i3
0

i3
1

i3
2

i3
3

i3
4

i3
5

i3
7

i3
7

i3
8

i3
9

i4
0

i4
1

i4
2

i4
3

i4
4

i4
5

i4
6

i4
7

i4
8

i4
9

i5
0

i5
1

i5
2

i5
3

i5
4

i5
5

i5
6

i5
7

i5
8

i5
9

i6
0

Experiment	1 Experiment	2

Fig. 2. Usage (y-axis) of different sensors (x-axis) over 1000 evolved solutions for both experiments. In Experiment 1.1 the commonly used inputs (used for
more than 1 in 5 solutions) are: i0, i4, i17, i42, i47, i52, i57, i59, i60. In Experiment 1.2, the commonly used inputs (used for more than 1 in 5 solutions) are: i1,
i22, i37, i42, i47, i52, i57, i58, i60.

TABLE VII. USE OF INPUTS BY TOP 5 EVOLVED RESULTS FOR EXPERIMENT 1.1

Run Number i0 i1 i3 i4 i5 i8 i13 i16 i17 i18 i32 i37 i42 i47 i52 i57 i58 i59 i60

294 X X X X X

789 X X X X X X X X X

501 X X X X X X X X X

94 X X X X X X X

89 X X X X X X X

TABLE VIII. USE OF INPUTS BY TOP 5 EVOLVED RESULTS FOR EXPERIMENT 1.2

Run Number i1 i4 i6 i8 i22 i31 i37 i45 i46 i47 i48 i49 i52 i57 i58 i59 i60

179 X X X X X X X X

580 X X X X X X X

859 X X X X X X

488 X X X X X X

417 X X X X X X X

Algorithm 1: Ensemble-based Data Fusion using previously evolved CGP
rules.

1: For each day:
2: Get currently available sensor data.
3: Rank evolved solutions into order of number of
 required inputs that match non-zero sensor data.
4: If any top-ranked solutions have equal ranking then
5: Choose solution with highest fitness ranking
 from previous experiments.
6: Else
7: Choose top-ranking solution.
8: End If
7: Apply solution to data.
8: End for

VIII. EXPERIMENT 2
The second experiment investigates this fault tolerant

ensemble-based data fusion system (using the 5 best evolved
solutions for Experiment 1.1 and 1.2 described previously) by
testing on both datasets with further faults added.

A. Experiment 2.1
To test the fault tolerant data fusion system, Dataset A

described in the previous experiments was randomly corrupted
with 50 sensor readings set to zero, in order to simulate 50 day-
long failures spread over all the inputs, in addition to the
existing sensor failures. Algorithm 1 was then applied (using
the five best evolved results as shown in Table V).

B. Experiment 2.2
To test the fault tolerant data fusion system, Dataset B

described in the previous experiments was also randomly
corrupted with 50 sensor readings set to zero, in order to
simulate 50 day-long failures spread over all the inputs.
Algorithm 1 was then applied (using the five best evolved
results as shown in Table VI).

 7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Solution	294 Solution	789 Solution	501 Solution	94 Solution	89 Ensemble

Fig. 3. Ensemble-based Data Fusion using CGP rules for Experiment 2.1. Error (y-axis) of the 5 previously evolved solutions (number of predicted people too
few or too many) per day (x-axis) on Dataset A with 50 further random errors added. The line shows the result produced by the ensemble solution.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Solution	417 Solution	488 Solution	859 Solution	580 Solution	179 Ensemble

Fig. 4. Ensemble-based Data Fusion using CGP rules for Experiment 2.2. Error (y-axis) of the 5 previously evolved solutions (number of predicted people too
few or too many) per day (x-axis) on Dataset B with 50 further random errors added. Results for Solution 488 day 41, and Solution 179 days 31 and 47 are
cropped as the true values were very large. The line shows the result produced by the ensemble solution.

IX. RESULTS FOR EXPERIMENT 2

A. Results for Experiment 2.1
Table IX (left) shows the average error for the five

solutions for Experiment 2.1 and the result of the fault-tolerant
ensemble learning system. Fig. 3 shows the results for each
day. Performance is slightly degraded by the additional loss of
sensor information, with some solutions at worst predicting 4
members of staff too many or too few in the building. The
ensemble result is extremely good, on average only 0.3 wrong
(less than half the average error of the best evolved solution
alone) and at worst predicting 2 members of staff too many or
too few.

B. Results for Experiment 2.2
Table IX (right) shows the average error for the five

solutions for Experiment 2.2 and the result of the fault-tolerant
ensemble learning system. Fig. 4 shows the results for each
day. The additional loss of sensor information significantly
affected performance in some cases, with solutions 488 and
179 failing completely for some days, predicting an infinite
number of people in the building. Nevertheless, the ensemble
result remains extremely good, with the average error less than
half the error of the best solution alone, and at worst predicting
2 people too many or too few in the building.

TABLE IX. AVERAGE ERROR PER DAY FOR TOP 5 SOLUTIONS IN
EXPERIMENTS 2.1 AND 2.2

Experiment 2.1 Experiment 2.2
Soln Mean Error Soln Mean Error

294 0.688888917 179 ∞

789 0.766368133 580 1.068208933

501 0.766046983 859 1.183191533

94 0.713926983 488 ∞

89 0.836625633 417 1.033114467

Ensemble 0.301135333 Ensemble 0.49976155

X. CONCLUSIONS
Smart Grids require good information from energy users. In

this work, we applied Cartesian Genetic Programming to the
problem of understanding and predicting energy usage within a
real London office building, by fusing data gathered from
smart sensors. In the building, power usage is directly
proportional to the number of people present. CGP was used to
perform data fusion on the data collected from smart sensors
embedded in the building in order to predict the number of
people over a two-month period. This was a challenging task,
as the sensors were unreliable, resulting in incomplete data. It

 8

was also challenging because in addition to normal staff, the
building underwent renovation for 2 weeks of the test period,
resulting the presence of additional personnel who would not
normally be present. Despite these difficult real-world issues,
CGP was able to learn human-readable rules that provided low
error rates (occupancy prediction no more than 2 people
wrong) for both staff and for all people who visited the office.
One of the key benefits of CGP was that it provided a large
variety of solutions, each using a different subset of sensor
inputs to produce the same result. This enabled the creation of
an ensemble learning fault-tolerant data fusion system which
applies the appropriate evolved rules based on which subset of
sensors are currently operational. Experiments showed that this
fault-tolerant system showed good performance even when 50
further faults were simulated over the 61 days, outperforming
all evolved rules alone.

REFERENCES

[1] X. Fang, S. Misra, G. Xue, and D. Yang, "Smart grid—The new and
improved power grid: A survey," IEEE Communications Surveys &
Tutorials, vol. 14, pp. 944-980, 2012.

[2] H. Bae, J. Yoon, Y. Lee, J. Lee, T. Kim, J. Yu, and S. Cho, "User-
friendly demand side management for smart grid networks," in 2014
International Conference on Information Networking (ICOIN), 2014,
pp. 481-485.

[3] T. Hargreaves, M. Nye, and J. Burgess, "Making energy visible: A
qualitative field study of how householders interact with feedback from
smart energy monitors," Energy Policy, vol. 38, pp. 6111-6119, 2010.

[4] J. K. Gruber, M. Prodanovic, and R. Alonso, "Estimation and analysis of
building energy demand and supply costs," Energy Procedia, vol. 83,
pp. 216-225, 2015.

[5] V. C. Gungor, B. Lu, and G. P. Hancke, "Opportunities and challenges
of wireless sensor networks in smart grid," IEEE Transactions on
Industrial Electronics, vol. 57, pp. 3557-3564, 2010.

[6] R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy,
"Computational intelligence in wireless sensor networks: A survey,"
IEEE Communications Surveys & Tutorials, vol. 13, pp. 68-96, 2011.

[7] D. L. Hall and J. Llinas, "An introduction to multisensor data fusion,"
Proceedings of the IEEE, vol. 85, pp. 6-23, 1997.

[8] J. Dong, D. Zhuang, Y. Huang, and J. Fu, "Advances in multi-sensor
data fusion: Algorithms and applications," Sensors, vol. 9, pp. 7771-
7784, 2009.

[9] A. R. Pinto, C. Montez, G. Araújo, F. Vasques, and P. Portugal, "An
approach to implement data fusion techniques in wireless sensor
networks using genetic machine learning algorithms," Information
fusion, vol. 15, pp. 90-101, 2014.

[10] S. Chernbumroong, S. Cang, and H. Yu, "Genetic algorithm-based
classifiers fusion for multisensor activity recognition of elderly people,"
IEEE Journal of Biomedical and Health Informatics, vol. 19, pp. 282-
289, 2015.

[11] A. Yousefi Zowj, J. C. Bongard, and C. Skalka, "A genetic
programming approach to cost-sensitive control in resource constrained
sensor systems," in Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, 2015, pp. 1295-1302.

[12] Y. Yoon and Y.-H. Kim, "An efficient genetic algorithm for maximum
coverage deployment in wireless sensor networks," IEEE Transactions
on Cybernetics, vol. 43, pp. 1473-1483, 2013.

[13] B. Kaya, C. Oysu, H. M. Ertunc, and H. Ocak, "A support vector
machine-based online tool condition monitoring for milling using sensor
fusion and a genetic algorithm," Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture,
vol. 226, pp. 1808-1818, 2012.

[14] Q. Wu, N. S. Rao, J. Barhen, S. Iyenger, V. K. Vaishnavi, H. Qi, and K.
Chakrabarty, "On computing mobile agent routes for data fusion in
distributed sensor networks," IEEE Transactions on Knowledge and
Data Engineering, vol. 16, pp. 740-753, 2004.

[15] R. Rajagopalan, C. K. Mohan, P. Varshney, and K. Mehrotra, "Multi-
objective mobile agent routing in wireless sensor networks," in The
2005 IEEE Congress on Evolutionary Computation, 2005, pp. 1730-
1737.

[16] P. Boilot, E. Hines, M. Gongora, and R. Folland, "Electronic noses
inter-comparison, data fusion and sensor selection in discrimination of
standard fruit solutions," Sensors and Actuators B: Chemical, vol. 88,
pp. 80-88, 2003.

[17] J. F. Miller and P. Thomson, "Cartesian genetic programming," in
European Conference on Genetic Programming, 2000, pp. 121-132.

[18] T. G. Dietterich, "Approximate statistical tests for comparing supervised
classification learning algorithms," Neural Computation, vol. 10, pp.
1895-1923, 1998.

