

Abstract— A wireless pervasive computing environment needs

to dynamically adapt its functionality and behaviour to changes
in the resources and services available to a user at any point in
time. For a mobile user this means that as the user changes
location, the pervasive environment should take account of any
changes to the services that are available. Thus initially when the
user requests a service the most appropriate service must be
provided, but as the user moves around, the service provided
could change. To handle this, a wireless pervasive system needs to
provide dynamic service composition (and re-composition) based
on the user’s personal preferences and current context. The
Daidalos project is developing a platform to support pervasive
services, which provides dynamic personalized service
composition. This paper describes the problems and the role of
personalization in the approaches adopted in Daidalos to deal
with dynamic service composition and re-composition. The basic
ideas have been prototyped and demonstrated, and are currently
being integrated and extended.

Index Terms— service composition, personalization, pervasive,
dynamic adaptation.

I. INTRODUCTION
REVIOUS work in the areas of distributed computing and
mobile computing has led naturally to the notion of
pervasive computing [1]. In particular, the proliferation of

heterogeneous communication networks and devices is
enabling people to interact with one another through a
growing number of devices at different locations [2]. This
together with the growth in sensing technology (and the
availability of low-cost sensors) and the advances in
networked devices provide the impetus for developing
pervasive computing environments where the user can take

Manuscript received July 28, 2005. This work was supported in part by the

European Union under the FP6 programme (Daidalos project) which the
authors gratefully acknowledge.

M. H. Williams is with the School of Mathematical and Computer
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK (phone: +44 131
4513430; fax: +44 131 4513327; e-mail: mhw@ macs.hw,ac.uk).

Y. Yang, N. Taylor, S. McBurney and E. Papadopoulou are with the
School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK (e-mail: ceeyy1, nkt, ceesmm,
ceeep1@macs.hw.ac.uk).

F. Mahon and M. Crotty are with the Telecommunications Software &
Systems Group, Waterford Institute of Technology, Waterford, Ireland (email:
fmahon, mcrotty@tssg.org).

advantage of these developments while being protected from
the complexity underlying them. Pervasive computing needs
to be minimally intrusive and yet dynamically adapt its
functionality and behaviour to changes in the environment,
taking account of user preferences and current context [3], [4].

Thus there has been considerable interest in the issue of
adaptation and how this might be achieved in a pervasive
computing environment for the benefit of mobile users. One
important aspect of this is the automatic composition of
services at runtime. This process is a major component of a
number of pervasive environments, e.g. GAIA [5], AURA [6],
PCOM [7], etc. Similar ideas are also being explored in other
areas such as multimedia [8] and the web services community
[9].

Personalization is another important feature that goes hand
in hand with adaptability. In the case of a wireless pervasive
computing system, the system needs to adapt its functionality
and behaviour in accordance with the context of the user [10].
As the context of a user changes, a pervasive system should
react to the changing context, and adapt its behaviour when
necessary. Personalization is key to this adaptation, and the
system needs to keep track of a user’s personal preferences
and their dependence on context, and to adapt its behaviour to
meet the needs of the user with minimal user intervention

This close link between adaptation and personalization in
pervasive computing systems is recognized in Daidalos, an
integrated research project funded under the European Sixth
Framework Programme with 45 partners. Daidalos [11] stands
for “Designing Advanced Interfaces for the Delivery and
Administration of Location independent Optimized personal
Services”. Its goals are:

• to develop and demonstrate an open architecture
(based on IPv6) that will combine diverse
complementary network technologies in a seamless
way, and

• to develop a pervasive computing environment on top
of this to provide pervasive services.

This paper focuses on the dynamic composition and re-
composition of services for the mobile user in a wireless
pervasive computing environment, and describes the approach
being used in the Daidalos project. This approach takes
account of the initial composition of services and resources to
meet a user request as well as subsequent re-composition as
the context of the user changes. The following section
describes the problem of composition and re-composition, and

Personalized Dynamic Composition of Services
and Resources in a Wireless Pervasive

Computing Environment
M. Howard Williams, Yuping Yang, Nick Taylor, Sarah McBurney, Elizabeth Papadopoulou, Fiona

Mahon and Micheal Crotty

P

outlines part of a scenario being used by Daidalos to illustrate
the functionality involved. Section III describes very briefly
the architecture adopted in Daidalos. Section IV gives a brief
account of the strategy adopted for personalized selection and
composition of services. Section V discusses some of the
issues of re-composition while section VI provides details of
the approach used to respond rapidly to changing QoS.
Section VII summarizes and concludes.

II. SERVICE AND RESOURCE SELECTION AND COMPOSITION
The basic problem that is being addressed here is that of

selection and composition of a set of services and resources to
best meet the user’s needs and preferences. In Daidalos the
focus is on a limited set of services, networks and devices that
might be available in any particular context to meet a specific
user request at any particular time. The types of requests
being dealt with relate mainly to telecommunication services.
Thus we are concerned with choices made between (at most)
tens of options rather than hundreds or thousands of possible
options, which might occur in the case of choosing between
web services to meet a specific request for information.

The particular request may be made directly by the user or
indirectly on the user’s behalf. For example, a user may want
to send a message to another user, watch a video screen or
initiate a third party service. Alternatively, an application may
want to do something on behalf of a user. For example,
consider a patient with diabetes who is wearing a blood sugar
monitor. If the blood sugar level goes out of bounds (too low
or too high), the system may want to send a message to the
user/her parents/her doctor/any other appropriate person in the
vicinity.

When the request is made in a pervasive environment, the
system needs to determine what services and resources are
available to meet the request. Occasionally a simple service
discovery process may suffice; however, in general this will
not be the case. The proliferation of devices, networks and
services referred to earlier is more likely to lead to a variety of
different options in terms of services and resources that can be
used to meet the request.

At this point one needs to take into account the user’s
context and preferences, as well as the attributes of the
services and resources. Quality of Service (QoS) is important
in this regard (as recognized in systems such as Q-CAD [12],
which perform the selection to optimize QoS) although other
factors such as cost and preferred service supplier also need to
be taken into account in making this decision. Equally
important is the context of the user (at home, at work, driving
a car, etc.) as this will affect the user’s preferences and
priorities.

Having made the selection of services and resources
needed to meet the user’s request, these are composed to
create a single composite service which can then be executed.
However, in a pervasive environment the problem does not
end here.

As mentioned previously, an important aspect of a
pervasive computing environment is its ability to adapt as the

context of the user changes. Most important and obvious in
this regard is the location of the user – a pervasive
environment needs to be able to support mobile users. For
example, suppose that a user is traveling in a car. As he/she
moves, the QoS of the network being used may drop. Another
network may become available with better QoS. In a
pervasive environment one would expect the system to adapt
and change the underlying network without consulting the
user, However, this is not quite as simple as it sounds as once
again the context and user preferences need to be taken into
account, and the network switched without any significant
interruption.

Within Daidalos we have built up a number of scenarios to
guide the development of our pervasive environment. The
following is a very brief excerpt from one of these, which
illustrates the nature of the problem that is being addressed:
“Bart is a chauffeur working for company X. One morning he
is sitting at home watching a newscast on his PC when a call
comes in from his boss. The system puts the newscast on hold
and connects the call to his mobile phone. His boss asks Bart
to go to the airport urgently to collect a client. While still
talking to his boss, Bart goes to his car. When he enters the
car, his call is transferred automatically and seamlessly to the
car phone. Bart drives off. When the call is finished, the
system transfers the suspended newscast to the car and
continues where it left off, only in audio mode since Bart is
driving. When Bart approaches the airport, the system
automatically connects to the flight information system to get
information on the client’s flight arrival time and relays this to
Bart…”

III. ARCHITECTURE OF DAIDALOS
This section provides a very brief description of the

architecture adopted in the Daidalos project to handle the
integration of heterogeneous networks and the provision of a
pervasive environment.

The architecture is based on two platforms. At the lower
level one has the Service Provisioning Platform (SPP), which
is responsible for the low-level functionality needed to
integrate heterogeneous networks and to provide a range of
multimedia and support services. At the upper level one has
the Pervasive System Platform (PSP), which is responsible for
providing the pervasive environment and support for pervasive
services. This paper is concerned with the PSP.

The PSP is composed of six main software components,
namely:

(1) Pervasive Service Management (PSM). This component
is invoked whenever a service is requested directly by a user
or indirectly on the user’s behalf. It is also called whenever
conditions change that significantly affect the services that are
running. Its function is to discover the services that will best
fulfill the user’s needs, select those that best fit the user’s
preferences and compose them into a single composed service
that will best meet what the user requires.

Context
Manager

Rule
Manager

Personalized
Selection

Personalization
Core Services

Preference Manager

3rd Party Services

SPP
QoS IF

Parameter
Configuration

Multimedia
Call Control IF

 Composite
Service

Specification

Composable
Services

Functional
Selection

Service
Actuator

Service
Composer

D
is

co
ve

re
d

Se
rv

ic
es

DES Services

P-IIS IF

Adaptation of
Composition Process

QoS
Translation

Figure 1. Personalization subsystem architecture

 (2) Personalization (P). This component is responsible for
managing the user’s preferences and using them to provide the
user with a personalized experience of the services. It is
responsible for the selection of most appropriate services for
the PSM, for tailoring these to the user’s preferences and for
part of the composition process. In addition to this it is
responsible for various other functions such as personalized
redirection of communications and the learning of new user
preferences (or refinement of existing ones).

(3) Context Management (CM). This handles all the context
information relating to users as well as to other objects (such
as devices). It keeps track of simple attributes such as the
location of a user or the status of a device as well as more
complex ones such as the set of rules expressing the
preferences of a user.

(4) Rule Manager (RM). Some of the control of the PSP is
expressed in the form of rules. These range from system-
defined rules that are user independent and determine what
action to take in particular circumstances, to user-defined rules
that represent the specific actions required by an individual
user. The RM is responsible for managing these rules - storing
them, selecting them and executing them.

(5) Event Manager (EM). Whenever something significant
happens, an event occurs. Whether this be generated by the
user (e.g. a user request for a service) or caused by a change in
context, the result is that an event is generated. This

component monitors events and informs other components
when a relevant event has occurred.

(6) Security and Privacy Manager (SPM). This component
is responsible for maintaining the security and privacy for the
user in the PSP. It does this through the use of virtual
identifiers and controls access to personal preferences and
context information on this basis.

This paper is concerned primarily with Personalization and
its use in the PSM. The architecture of the Personalization
subsystem relevant to this is shown in Figure 1.

IV. PERSONALIZED SERVICE SELECTION AND COMPOSITION
From the architecture described in the previous section,

when a request for a service is received this is passed to the
PSM to deal with. The PSM can be regarded as consisting of
two main parts:

(a) Service and Resource Discovery is responsible for
finding possible services and resources that can be used to
satisfy the user’s request.

(b) Service Selection and Composition selects the most
appropriate of these and assembles them to create a composite
service that will satisfy the user’s request.

The request is first processed by the Service and Resource
Discovery component, which does not attempt to apply any
filtering based on user preferences but merely searches for all
possible services and resources that can be used. This follows

a conventional service discovery approach. The result returned
by this component is a list of services and resources. This is
passed to the Service Selection and Composition component.
Here three important processes are carried out.

A. Personalized Service Selection
The first step carried out by the Personalization subsystem is

to rank the candidate services found by the Service Discovery
Service and select the one which best satisfies the constraints
in the current context. To make this choice a rich set of
metadata must be employed.

The main criteria used are the user preferences. The user
may have specific requirements on the cost, speed, QoS,
location, mobility, etc. of a service. Moreover, these
requirements will frequently depend on the context of the user.
For example, if the user is at work, he/she may prefer the
service with the highest QoS or services provided by a
particular supplier or even a specific service. On the other
hand if the user is at home, he/she might prefer the cheapest
service subject to a minimum level of QoS.

In addition to user preferences there are also a number of
system default criteria. These are used to guide the selection of
services in such a way as to improve performance of the
composite service. An example might be to choose component
services that are located near each other to reduce the
overhead incurred in transferring data and in communication
among component services.

In the future the set of criteria will also include system
inferred criteria, derived from monitoring the user’s
behaviour.

The result of this is an ordered list in which the individual
components satisfy the user’s preferences although we cannot
guarantee that the composite service produced from these will
do so too. For example, individual components may satisfy
QoS (or cost) constraints but the composite service produced
from them may not. Thus once the component services have
been identified, the personalized selection process needs to
apply a “global” selection mechanism to the resulting
composite services. This is done by accumulating vectors of
all the execution paths, and constructing a matrix, which is
used as the basis for selecting an optimal execution path from
multiple candidate ones.

B Service Parameter Configuration
Once an appropriate set of services has been selected, the

Personalization component personalizes any service that
allows itself to be personalized through an interface for
personalization. For such a service the service parameters are
configured according to user preferences. These
personalizable parameters will vary with service.

The advantage of this is that it allows the way the service
presents information, interacts with the user or functions to be
personalized. For example, a restaurant finding service may
provide a list of restaurants to the user in different order,
layout, font and colour depending on the preferences the user
has concerning both restaurants and display.

The representation chosen for such parameters involves
both identifying the parameter and passing across a value
(which may be a complex structure). To handle this, an
ontology (based possibly on DAML-S) will be adopted in the
future although currently a simplified parameter list is used.
The parameter value itself can be wrapped as a common
object which effectively hides the concrete details and
facilitates the definition of the interfaces.

Besides taking account of the user’s preferences,
interaction between the services selected also needs to be
taken into account in the parameters. For example, if a photo
service is connected to a large screen, it may display multiple
images simultaneously; otherwise, it will display them one at a
time. In this case, the photo service needs to be parameterized
to take account of the size of the display. In other words, the
context of a service may need to be taken into account when
parameterizing a service.

Personalized service parameterization can be static or
dynamic depending on when the values of the parameters are
set. Static parameterization refers to the situation when the
personalizable parameters of a service are configured before
the service is executed. On the other hand, if any of these
parameters change during the course of execution (due to
change in context or in user preferences) this is dynamic
parameterization - e.g., the resolution of an image may be
decreased if it is transferred from a user’s PC to his mobile
phone.

C Adaptation of Composition Process
 After the parameters of the individual services have been

set, the component services are assembled into a single
composite service. Here personalization plays a further role in
that sometimes the composition process itself may be affected
by user requirements. This may occur in one or more of the
following ways:

(1) The user may wish to constrain when and where a task
can be executed.

(2) Under certain circumstances a particular component
service may be added to or removed from a composite service.

(3) The logical order in which component services are
placed needs to be changed to suit user preferences.

An example of the latter is that a user may not want to
book airline tickets until the accommodation at the destination
is booked.

 In order to handle this, the script corresponding to a
composite service that allows itself to be adapted, needs to
provide an interface with its process description. Based on the
user preferences, the Personalization component acts upon the
description of the composition process and adapts it
appropriately.

V. DYNAMIC RE-COMPOSITION
As noted previously, one of the fundamental assumptions

in the Daidalos pervasive environment is that it will handle
user mobility. Thus as the user moves around, his/her context
will change and this can affect the composed service. The

simplest example of this is the device that is used by the user.
In the example given in section II, Bart is talking to his boss
on his mobile phone. When he gets into his car, the call is
transferred to the car phone. Similarly, the newscast that was
suspended on Bart’s home PC, is continued in audio mode on
the car PC. And so on. Although it is not always necessary to
re-compose the whole service (see section VI), the situation
often does require this.

Besides the devices used, the service itself may need to
change. In particular, as the user moves around, different
networks may become available (or the existing networks may
no longer be available), and this may result in network-
dependent services needing to be changed. This extends not
only to different networks but also to different network types
(e.g. WLAN, DVB-T, TD-CDMA). Alternatively, better or
cheaper services may become available.

The pervasive system monitors any changes that might
give rise to a change in the composed service, and when such
an event occurs, the system re-composes the service in a
manner that is transparent to the user. Such a change may be
the availability of a service or it may be that the preferences
themselves have changed, since these are context-dependent
and any change in the user’s context may result in a change in
the preferred service

VI. OPTIMIZING QOS
When the context of a user or device changes, it may be

necessary to re-compose the services selected to meet a user
request. However, this is a time consuming process and in
some cases could be problematic to the user.

An obvious example of this is when the QoS changes.
Suppose that the user is mobile and is engaged in conversation
with another user on his mobile phone. Suppose further that
the performance of the network gradually degrades until it
becomes necessary to consider an alternative network. Instead
of resorting to re-composing the whole service it is more
useful if the system could simply replace the network by an
alternative choice without affecting anything else. To achieve
this Daidalos needs to provide a lightweight mechanism to
enable rapid response to changes in QoS due to the underlying
network.

Once again the role of Personalization in this process is to
ensure that a user’s preferences are taken into account. For this
purpose it determines the user’s preferences relating to the
choice of network and stores a copy of them in the underlying
layer (SPP) via the Intelligent Interface Selection (IIS). This
copy is updated by Personalization whenever the associated
user preferences are changed. In the case that multiple
networks are available, the IIS selects one according to the
user preferences stored locally taking into account factors such
as the price, QoS, provider, etc. of the network. The way in
which this operates is as follows:

• The first time the user logs on to a device, a set of
default network preferences will be used for
establishing network connections.

• During the bootstrapping process, Personalization
passes to the SPP the last saved network preferences

which are used for the initial network configurations.
Once the CM is able to retrieve user network
preferences from the remote server, a local copy of
user preferences should always reside on the terminal
until the user finishes using the device.

• Personalization has a mirror of user preferences, in
the case that network connection is temporarily not
available and the local CM cannot obtain user
preferences from the remote server. Personalization
will send IIS the locally stored preferences, based on
which IIS will set up network connections.

• Personalization updates the IIS with new preference
information whenever the user changes his/her
network preferences.

When multiple networks (e.g., WLAN, DVB-T, TD-

CDMA) are available, the personalization information stored
in the network layer will be used as the basis for choosing one
which best matches the user’s preferences. The change of
personalization information may lead to network handover.

VII. CONCLUSION
This paper describes the role of personalization in the

approach used within Daidalos to handle the dynamic
composition and re-composition of services and resources in a
wireless pervasive environment to meet the needs of the
mobile user with minimum user intervention. The basic
approach has been implemented and demonstrated in
December 2004. A fully integrated system is currently being
prepared for demonstration in December 2005. A simple
scenario has been described to give a flavour of the
functionality of the system. This and a number of other
simple scenarios will be demonstrated at this time.

ACKNOWLEDGMENT
The authors thank all our colleagues in the Daidalos project

developing the pervasive system. Apart from funding the
Daidalos project, the European Commission has no
responsibility for the content of this paper. The information in
this document is provided as is and no guarantee or warranty
is given that it is fit for any particular purpose. The user
thereof uses the information at his sole risk and liability.

REFERENCES
[1] M. Satyanarayanan, “Pervasive computing: vision and challenges,”

IEEE PCM, 8(4), 2001, pp. 10-17.
[2] M. Weiser, “The computer for the 21st century,” Scientific American,

vol. 265(3), pp. 94-104, 1991.
[3] J. Sun, “Mobile ad hoc networking: an essential technology for

pervasive computing,” in Proc. Int Conf on Info-tech & Info-net,
Beijing, China, 2001, pp. 316-321.

[4] A. Zaslavsky, “Adaptability and interfaces: key to efficient pervasive
computing,” in NSF Workshop on Context-Aware Mobile Database
Management, Providence, Rhode Island, 2002, pp. 24-25.

[5] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell and K.
Nahrstedt, “A Middleware Infrastructure for Active Spaces,” IEEE
Pervasive Computing, 1(4), 2002, pp. 74-83.

[6] D. Garlan, D. Siewiorek, A. Smailagic and P. Steenkiste, “Project Aura:
Towards Distraction-Free Pervasive Computing,” IEEE Pervasive
Computing, 1(2), 2002, pp. 22-31.

[7] M. Handte, C. Becker, and K. Rothermel, “Peer-based Automatic
Configuration of Pervasive Applications,” in Proc. IEEE Int. Conf on
Pervasive Services 2005 (ICPS’05), Santorini, July 2005, pp. 249-260.

[8] X. Gu, K. Nahrstedt, R. Chang and C. Ward, “QoS-Assured Service
Composition in Managed Service Overlay Networks,” Proc. 23rd IEEE
Int Conf. on Distributed Computing Systems, 2003, pp. 194-204.

[9] B. Raman and R.H. Katz, “An Architecture for Highly Available Wide-
Area Service Composition,” Computer Communication Journal, 26(15),
2003, pp. 1727-1740.

[10] M. H. Williams, I. Roussaki, M. Strimpakou, Y. Yang, L. MacKinnon,
R. Dewar, N. Milyaev, C. Pils, and M. Anagnostou, “Context Awareness
and Personalisation in the Daidalos Pervasive Environment,” in Proc.
IEEE Int. Conf. on Pervasive Services 2005 (ICPS ‘05), Santorini, July
2005, pp. 98-107.

[11] B. Farshchian, J. Zoric, L. Mehrmann, A. Cawsey, H. Williams, P.
Robertson, and C. Hauser, “Developing Pervasive Services for Future
Telecommunication Networks,” in Proc. WWW/Internet 2004, Madrid,
Spain, October 2004, pp. 977-982.

[12] L. Capra, S. Zachariadis, and C. Mascolo, “Q-CAD: QoS and Context
Aware Discovery Framework for Mobile Systems,” Proc. IEEE Int.
Conf. on Pervasive Services 2005 (ICPS’05), Santorini, July 2005, pp.
453-456.

