COMP0114 Inverse Problems in Imaging. Coursework 1

Introduction

This coursework covers material in the first three weeks of the module. It is divided into three parts which roughly will correspond to the material in each week; however you can carry out the assignment in the time that suits you, with all parts being handed in as a single submission. The assignments will be closely related to the support in the lab classes which you should attend to get help with completing them.

Tasks

Week 1: 9. January

1. Solving Underdetermined Problems (30\%)

As explained in lectures the linear equation $x_{1}+2 x_{2}=5$ is used to introduce the concept of minimum norm solutions of underdetermined problems:

$$
\operatorname{minimize} \quad \Phi=\sum_{i}\left|x_{i}\right|^{p}, \quad \text { subject to } \quad A x=b
$$

where in our case, $A=(12), b=5$.
a.) Write a function of two variables, x and p, where x is a vector of length 2 and p is a scalar; this function will compute the value of Φ as given above.
b.) Use library functions to compute solutions of the above optimization problem, for $p=$ $1,1.5,2,2.5,3,3.5,4$.
c.) Plot the solutions you have obtained as points on a 2 D graph together with the line representing the constraint equation $x_{1}+2 x_{2}=5$. The result should look like Figure 1 .
d.) Another solution method is to use the Moore-Penrose generalised inverse

$$
A^{\dagger}:=A^{\top}\left(A A^{\top}\right)^{-1}
$$

and then apply it to get $x_{\mathrm{MP}}=A^{\dagger} b$. Implement this solution and plot it on the same graph as in the previous question. What value of p does this correspond to and why?

Figure 1: Example for a line plot for Exercise 1

In parts 2 and 3 of the assignment we will implement discrete convolution of a 1D function by an explict matrix vector multiplcation, analyse its behaviour and compare to other methods for performing convolution.

Week 2: 16. January

2. Singular Value Decomposition (30\%)

In this part we analyse the matrix representation of convolution using Singular Value Decomposition (SVD).
a.) Set up a spatial grid on the interval $[-1,1]$ in n equally spaced steps of size δn. The grid represents the values $\left[x_{1}, \ldots x_{n}\right]$ with $x_{i}=-1+(i-1) \delta n$ for $i=1, \ldots, n$ and $\delta n=2 /(n-1)$. Make sure that $x_{1}=-1$ and $x_{n}=1$.
b.) Create a vector of values of the Gaussian function centred at $\mu=0$ with $\sigma=0.2$, given by

$$
G(x)=\frac{\delta n}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

You should evaluate this function at the grid points you create in part a).
c.) Create the convolution matrix of size $n \times n$ with entries

$$
\begin{equation*}
A_{i, j}=G\left(x_{i}-x_{j}\right)=\frac{\delta n}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

d.) Plot the matrix A as an image, where A is considered as a 2 D -array for the case $n=100$.
e.) Compute the SVD of matrix A using library functions. You should obtain three matrices U, W, V, where W is a diagonal matrix of same size as A containing the singular values. Verify that the equation $A=U W V^{\top}$ is satisfied.
f.) Compute the pseudoinverse A^{\dagger} of A by using the formula $A^{\dagger}=V W^{\dagger} U^{\top}$ as given in lectures. This requires you to create a method for constructing W^{\dagger}. For the case $n=10$, check that this has the property $W W^{\dagger}=W^{\dagger} W=I d_{n}$ where $I d_{n}$ is the $n \times n$ Identity matrix. Check also that $A A^{\dagger}=A^{\dagger} A=I d_{n}$.
g.) Repeat the last two steps for $n=20$. What do you observe? Choose $n=100$ again and plot the first 9 columns of V, the last 9 columns of V, and the singular values on a $\operatorname{logarithmic~scale,~i.e.~} \log (\operatorname{diag}(W))$.

Week 3: 23. January

3. Convolutions and Fourier transform (40\%)

In the following we want to examine the convolution of a 1D signal; we define a step function on the interval $[-1,1]$ by

$$
f(x)=\chi_{(-0.95,-0.6]}(x)+0.2 \chi_{(-0.6,-0.2]}(x)-0.5 \chi_{(-0.2,0.2]}(x)+0.7 \chi_{(0.4,0.6]}(x)-0.7 \chi_{(0.6,1]}(x),
$$

where the characteristic function of an interval $(a, b]$ is defined as

$$
\chi_{(a, b]}(x)= \begin{cases}1 & \text { for } a<x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Here's a plot of f in Figure 2.

Figure 2: The step function f
a.) Create a function for f as above and plot it on a grid on the interval $[-1,1]$. Choose a sufficiently large number of grid points n to resolve the jumps.
b.) Compute the matrix A as in part 2 for $\sigma=0.05,0.1,0.2$ and plot the singular values.
c.) Verify that the plot of the singular values follows (half) a Gaussian function and determine the variance of this Gaussian in each case.
d.) Perform the convolution of the function f with the the matrix A (by matrix multiplication) for all three choices of σ and plot the result.
e.) Since convolution is equivalent to multiplication in Fourier space, perform convolution by multiplication in Fourier space for the three choices of σ and plot the result (remember to take the inverse Fourier transform); comment on any differences that you observe.
f.) Repeat the convolution with the matrix A using periodic boundary conditions when assembling A.

Report

Write one report for all 3 parts. Explain your method and present your results and figures. Make sure that you provide an answer to all questions. The total length of the report would normally be between 6 -10 pages. Submit your report using Moodle. Code can be uploaded separately.

