
COMP0114 Inverse Problems in Imaging. MiniProject

Part B : Advanced Topics

Choose one topic from the following list

Advanced Topic 1: Inpainting in Sinogram Space
You have seen from lectures and from part A of this assignment that the CT reconstuction
problem becomes severely ill-posed when limited data is acquired, both for the regularly un-
dersampled and for the limited angle problem. Another way to intepret this is to treat the
sinogram as an image with missing data, and use techniques from InPainting to fill in the miss-
ing projections. After this correction to the data, the inverse problem can be solved by filtered
back-projection in the normal way.

As defined in lectures, one way to solve in-painting is to use a diffusion process :

∂g

∂t
= −αL(g)g, g ∈ Ω

subject to g = gobs on ∂Ω

where Ω, Ω are the regions of the sinogram with measured data and missing data respectively,
and ∂Ω is the boundary between the two. gobs is the measured data, and g is the full sinogram
image.

Things to try

• Create sinogram data for both cases i) full angle with undersampled projections, ii) limited
angles. Create a full size sinogram by adding zeros in the columns corresponding to missing
measurements.

• Use inpainting based on an istotropic Laplacian L = −∇2 to fill in the missing data;
the result is gcorrected. Apply filtered backprojection to gcorrected to reconstruct the image
f recon = R−1gcorrected.

• After reconstruction, investigate whether the reconstructed image can be further improved
using denoising in the image domain.



• Use an anisotropic regulariser such as smoothed TV for the data correction step and
compare your results.

Software

No extra software is required beyond what you have used in part A. You can make use of the
example in-painting code (in Matlab) from lectures as a starting point.

Background Literature

Image and Sinogram Inpainting

• A general reference on image inpainting: Shen, Jianhong, and Tony F. Chan. ”Mathemat-
ical models for local nontexture inpaintings”, SIAM Journal on Applied Mathematics 62
(3), (2002): 1019-1043.

• A specific reference about inpainting in sinogram space: Robert Tovey, Martin Benning,
Christoph Brune, Marinus J Lagerwerf, Sean M Collins, Rowan K Leary, Paul A Midgley
and Carola-Bibiane Schönlieb, ”Directional sinogram inpainting for limited angle tomog-
raphy”, Inverse Problems (2019).



Advanced Topic 2: Low photon count and Poisson noise model
Although the Radon transform and its inverse are correct for integral transform data, actual
measured data are of course given for a discrete number of detectors and have random variations
due to measurement noise. In part A, you used least squares minimisation, corresponding to
normally distributed data. However, when the number of photons is low, a better model for
emissions measurements is Poisson statistics.

This leads to the negative log Poisson likelihood (NLPL), which is the same as the Kullback-
Leibler generalised distance, for the data term.

Things to try

• Generate data by using a Poisson pseudo-random number generator based on the Radon
Transform, i.e. gobs ∼ Poisson(Af).1

You will need to think about the magnitude of the image f (and/or the system model A)
to get reasonable values for the mean data gtrue = Af true (try different values to simulate
different levels of noise).

• Weighted least squares reconstruction using Gaussian approximation to Poisson noise, i.e.
σ =

√
gtrue. Include an appropriate regularisation as in part A. As in practice you won’t

know gtrue, try to use the “plug-in” method where you use the data itself as variance (i.e.

σ =
√
gobs as in eq. 10.12 from lectures). Take care to avoid dividing by zero if there are

zero photons detected. Handle any zeroes in the measured data.

• Implement one-step late MLEM using (eq. 10.23 from lectures). Use both small and large
values of the regularisation parameter α. Notice if the algorithm fails when α is too high,
e.g. by producing negative values in the reconstruction or by diverging.

• Try to use another optimisation method from numerical libraries and compare the perfor-
mance with one-step late MLEM.

In all the above tasks, you should be considering only a 2D problem. The matrix A could be
explicitly constructed, or the solution could be done with matrix-free methods.

Software You can use the same software as you used for Part A. Both Matlab and Python have
built in optimisation packages that you can use for the final task.

Background Literature

• Original description of one-step late MLEM: P.J. Green, ”Bayesian reconstructions from
emission tomography data using a modified EM algorithm”, IEEE transactions on medical
imaging, 9(1), 84-93, 1990

• The original BFGS-B paper: Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. ”A Limited
Memory Algorithm for Bound Constrained Optimization”. SIAM J. Sci. Comput. 16 (5):
1190–1208, (1995)

1Here A is the discrete version of the Radon Transform R



Advanced Topic 3: Learning Based Reconstruction
This project is about learned image reconstruction and generalisation capabilities.
Note: depending on your hardware the training times for the networks can be long (in the
order of multiple hours), so you need to reserve enough time for the project.

Learned image reconstruction with model information can be separated into the two general
classes:

i.) Initial reconstruction and learned post-processing

ii.) Learned model-based iterative reconstructions

Both approaches have proven to be powerful in practice, but have shown a different behaviour
in terms of generalisation capabilities. In this project we want to examine these generalisation
capabilities with a simple experiment: Train a network for each approach with a training set
created from random ellipses and test reconstruction quality for the Shepp-Logan phantom.

Given a phantom from the training set f true and corresponding noisy measurement data g =
Rf + δg. To create an initial reconstruction, apply filtered backprojection f0 = R−1g.

Figure 1: A possible training set: (Left) the true phantom, (Right) filtered-backprojection from
noisy data

We now aim to train a convolutional neural network (CNN) Gθ that corrects the initial recon-
struction by filtered backprojection. The training is performed in a supervised manner, that
means we aim to find an optimal set of parameters such that a loss function is minimized:

loss(θ; g) = ‖Gθ(f0)− ftrue‖p,

for a suitable choice of p.

Things to try

To keep training times reasonsable (especially if no GPU is available), it is advised to restrict
the image resolution to 64x64. For the model based approach you can use matrix multiplication
for forward and adjoint (see Part A, task 2), this way the gradient for the backpropagation can
be easily calculated internally (by automatic differentiation).



• We need a training set; for that write a function that creates a phantoms of random
ellipses, for instance between 5 and 20 ellipses that can overlap (remember to normalise all
phantoms to [0,1]) (see Figure X).

• Train a post-processing network architectures for approach i.). Here we can use a simple
image-to-image ResNet architecture. This architecture consists of a repeated residual block
that consists of 2 convolutional layers and an additive residual connection. The residual
block is then repeated for a set amount, e.g. between n = 5, . . . , 10. (This could be
considered as n iterations)

• Train a model-based network: Treat each residual block as an iteration that outputs one
updated reconstruction, then you need to compute the gradient of the data fit AT(Af − g)
before each residual block of your ResNet2. By concatenating current reconstruction and
gradient you can use this as input to each residual block. This way you obtain a simple n
iterations model-based network.

• Finally, test the reconstruction results for the Shepp-Logan phantom.

Software This is strongly recommended to solve with Python. You can use your favourite
package for the deep learning environment, such as TensorFlow or PyTorch.

Background Literature

• Training a network for post-processing: Jin, Kyong Hwan, Michael T. McCann, Emmanuel
Froustey, and Michael Unser. ”Deep convolutional neural network for inverse problems in
imaging”. IEEE Transactions on Image Processing, 26, no. 9 (2017): 4509-4522

• Model-based iterative networks: Adler, Jonas, and Ozan Öktem.”Solving ill-posed inverse
problems using iterative deep neural networks”. Inverse Problems 33, no. 12 (2017):
124007.

• The network architecture ResNet: He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. ”Deep residual learning for image recognition”. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770-778. 2016.

2Here A is the discrete version of the Radon Transform R


