
GOMP0114 Inverse Problems in Imaging. Coursework 2

Introduction
This coursework is designed to allow you to learn about inversion, regularisation and optimisation
of relatively large-scale problems.

In directory

http://www.cs.ucl.ac.uk/staff/S.Arridge/teaching/optimisation/CW2/

you will find a number of standard test images.

In the following we give a guideline, which tasks you should be able to finish in the lab session
of each week.

Tasks

——————————————————————————————————————

Week 1: 30th January

——————————————————————————————————————

1. Convolution and deconvolution

We want to perform convolution, such that

g = Aftrue + n

where A denotes two-dimensional convolution with a Gaussian with standard deviation σ and n
denotes additional noise of standard deviation θ. Make σ and θ variables of the process.

a.) Read a (grayscale) image of your choice and convert it to a float, normalise it such that
the values are in [0, 1] and display the image.

b.) Set up a convolution mapping: Convolution can be done explicitly by setting up a matrix
A as we have done in the last coursework for 1D. This takes far too much memory in 2D.
Instead write a function that takes in an image f and outputs the blurred image Af .

c.) Deconvolve using normal equations, i.e. find fα as the solution to

(ATA+ αI)fα = ATg.

You can solve the above problem using a Krylov solver such as preconditioned conjugate
gradients (PCG) or GMRES. Since the explicit matrix representation of A is infeasibly
large, pass the solver instead a function that computes (ATA+ αI)f :

z = ATA(f, α)
which performs the two step process

y = A(f)
z = AT(y) + αf

d.) Rather than using the normal equations, numerical analysis suggests that it is preferable
to solve the augmented equations(

A√
αI

)
f =

(
g
0

)
,

http://www.cs.ucl.ac.uk/staff/S.Arridge/teaching/optimisation/CW2/


which can be done by a least squares solver (lsqr). Compare the performance to the one
you used in c.), in terms of number of iterations required to achieve convergence.

——————————————————————————————————————

Week 2: 6th February

——————————————————————————————————————

2. Choose a regularisation parameter α

Use the following two methods to choose an optimal value for α for the solution in task 1:

i.) Discrepency Principle

ii.) L-Curve

See lectures for details. Comment on the difference in value obtained and the results using these
two values.

3. Using a regularisation term based on the spatial derivative

In Question 1, we solve the regularised least square problem

fα = argmin
f

||Af − g||22 + α||f ||22,

where ||f ||2 is chosen to be the regulariser. In this Question, we are going to use a new regulariser
||Df ||2 to penalise the gradient instead. So the new problem will be

fα = argmin
f

||Af − g||22 + α||Df ||22.

a.) You need to construct the gradient operator

D =

(
∇x

∇y

)
,

which can either be done as an explicit sparse matrix, or you can implement it as a function
like the forward convolution.

b.) Solve the gradient regularised problem with both solvers from exercise 1, that means repeat
1c.) and 1d.) with the new term.

For the Krylov solver, remember to derive the needed normal equation first. In both cases,
remember to include the transpose DT properly.

c.) Chose a value for α, explain your choice.



——————————————————————————————————————

Week 3: 13th February

——————————————————————————————————————

4. Construct an anisotropic derivative filter

Rather than using the isotropic regulariser on the gradient, we can add weights and use an
anisotropic regulariser ||√γDf ||22. With the anisotropic derivative filter, we turn to solve

fα = argmin
f

||Af − g||22 + α||√γDf ||22

Here γ is termed the diffusivity. You should make γ a diagonal matrix with values between 0
and 1. Places where γ = 0 will not be smoothed by the regularisation term. You would ideally
set γ based on the values of the edges in ftrue, but since this is not known (it is what you are
trying to find!) you should use the edges in the data. Note that after defining γ it is fixed for
the optimisation procedure; in part 5) we will consider varying it during optimisation.

An example diffusivity is the Perona-Malik function

γ(f) = exp(−|Df |/T ) = exp(−
√

(∇xf)2 + (∇yf)2/T )

for some threshold T based on the maximum expected edge values in the image; this can be
estimated from the norm of the image gradient. Note that

√
· here is an element-wise operation

on the diagonal matrix γ, so to calculate
√
γD we use

√
γD :=

( √
γ∇x√
γ∇y

)
.

Note : The quantities γ, |Df | , ∇xf , ∇yf are all defined at each pixel. It may help to display
them as images to aid your understanding of their meaning. The square operation on vectors∇xf
and ∇yf are also element-wise, as well as the square root operation and exponential operation.

5. Iterative deblurring

Repeat the deblurring process of Task 4 iteratively :

i.) Take an initial blurred image f0; Set i = 0

ii.) Compute the diffusivity γ(fi).

iii.) Compute a solution fi+1 by following the process in Task 4.

iv.) Increase i = i+ 1; Repeat from ii.)

Choose how to decide on the number of such iterations to use, i.e. when to terminate the loop.

Report
Write one report for all parts. Explain your method and present your results and figures. Make
sure that you provide an answer to all questions. The total length of the report would normally
be between 6-10 pages. Submit your report as a PDF file using Moodle. Code can be uploaded
separately.


