
GV11 Geometry of Images. Coursework 2018

1 Introduction

This coursework asks you to implement linear and non-linear diffusion processes by solving
partial differential equations (PDES) numerically. In this way you can construct both linear and
non-linear scalespaces. It is recommended that you use Matlab for the implementation.

2 Numerical Implementation of Diffusion

2.1 1D linear diffusion

The 1D Linear diffusion equation is
∂f

∂t
=
∂2f

∂x2

To implement this you need to

1. choose a number of point N at which to solve the problem

2. Implement the N ×N matrix A representing the Laplacian

3. solve an iterative scheme

Explicit scheme: fk+1 = fk + ∆tAfk

Implicit scheme: (I −∆tA) fk+1 = fk

where ∆t is a chosen time step.

Choose a suitable array of values to initialise the first step f0 (for example, take one line from
a typical test image). By storing each iteration you can display the function f(k∆t) for any
integer k which should represent the diffusion of f to time t = k∆t.

Use your implementation to carry out the following tests

• Test both the explicit and implicit scheme and find the largest ∆t so that the explicit
scheme is stable.

• Test the theory that says that fk is also given by the convolution of f0 with a Gaussian
filter of standard deviation σ =

√
2k∆t.

2.2 2D linear diffusion

The 2D Linear diffusion equation is

∂f

∂t
=
∂2f

∂x2
+
∂2f

∂y2

You should implement this to produce a diffusion scheme for a N × N image. This involves
reshaping f into a N2× 1 vector and implementing the N2×N2 matrix A. This matrix is much

too large to be held in a dense “full” form. You must use the sparse representation sparse for
A. The entries of A should be -4 on the diagonal, 1 on the neighbours to the diagonal, and 1 on
a set of entries at a spacing of N from the main diagonal.

. . . 1 . . .︸︷︷︸
N

1 − 4 1 . . .︸︷︷︸
N

1 . . .

This is called ’tridiagonal with fringes’. You may find the Matlab function spdiags helpful.

It’s easy to solve the diffusion equation using Explicit scheme, but the Implicit scheme needs
the inversion of a huge matrix, which, even if sparse, is computationally challenging. The semi-
implicit scheme, involves splitting A into Ax with entries

. . . 1 − 2 1 . . .

and Ay with entries
. . . 1 . . .︸︷︷︸

N

− 2 . . .︸︷︷︸
N

1 . . .

Then the semi-implicit scheme is(
I − ∆t

2
Ax

)
fk+1/2 =

(
I +

∆t

2
Ay

)
fk(

I − ∆t

2
Ay

)
fk+1 =

(
I +

∆t

2
Ax

)
fk+1/2

In between these two steps, if fk+1/2 is reshaped so that the pixels are accessed in column order,
then both equations can be solved with tridiagonal solvers. This means that Ay on the second
step is identical to Ax on the first step. A simple direct solver is perfectly efficient:

IAx = speye(N*N) - deltaT/2 * spdiags(dd,-1:1,N*N,N*N);

f = IAx\b;

where dd is a N2 × 3 matrix with each row being [1 − 2 1] and b represents the righthand side(
I + ∆t

2 Ay
)
fk.

Use your implementation to carry out the following tests

• Calculate a series of images f0 . . . fn. These should appear as successive blurring over
time.

• Choose a local maximum in f0 and track its position over time in the succeeding images.
If the time step ∆t is not large, the spatial position of the maximum should change only
slowly over time. If the particular maximum is annihalated, then choose another and track
the position of that.

2.3 2D Anisotropic diffusion

The 2D anisotropic diffusion equation is

∂f

∂t
=

∂

∂x
γ
∂f

∂x
+

∂

∂y
γ
∂f

∂y

where γ is a diffusivity function. Implement this scheme using the Perona-Malik function

γ =
1

1 +
(

|∇f |
T

)2 (1)

where T is a threshold such that γ becomes small for large edges and almost 1 for small edges.

The easiest way to implement this is to create explicit 1st-order derivative operators Dx and Dy

and then create

gam = spdiags(reshape(gamma,[],1),0:0,N*N,N*N)

PM = - (Dx’ *gam *Dx + Dy’* gam*Dy);

where gamma is the image calculated in eq.(1).

If you examine the matrix PM you will find that it has the same structure as the Laplacian you
used in part 2.2 but with different values, e.g. at rows j − 1→ j + 1 you will see something like

. . . aj−1 0 0 . . . bj−1 −(aj−1 + bj−1 + cj−1 + dj−1) cj−1 0 0 . . . dj−1 0 0 . . .

. . . 0 aj 0 . . . 0 bj −(aj + bj + cj + dj) cj 0 . . . 0 dj 0 . . .

. . . 0 0 aj+1 . . . 0 0 bj+1 −(aj+1 + bj+1 + bj + cj+1 + dj+1) cj+1 . . . 0 0 dj+1 . . .

The values of each {aj , bj , cj , dj} are between 0 and 1 for all j, and they represent the “diffusiv-
ities” between the jth pixel and its neighbours to the left, right, above and below. Notice that
each row adds up to zero.

Repeat the tests you performed for the question in section 2.2. Comment on the differences.

3 Report

You should write a short report, probably no more than 6-8 pages, in which you describe the
steps you took and the design choices you made. Indicate any problems encountered and how you
solved them. Compare and contrast the different solutions you obtained. Code, if you consider
it relevant, can be attached as an appendix (i.e. not included in the 6-8 page report).

