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Direct, Dense, and Deformable: Template-Based
Non-Rigid 3D Reconstruction from RGB Video

Rui Yu, Chris Russell, Neill D. F. Campbell and Lourdes Agapito

Abstract—In this paper we tackle the problem of capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes
using a single RGB-only commodity video camera and a direct approach. While robust and even real-time solutions exist to this
problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex
multi-camera rigs, take advantage of the additional depth channel available in RGB-D cameras, or deal with specific shapes such as
faces or planar surfaces. In contrast, our method makes use of a single RGB video as input; it can capture the deformations of generic
shapes; and the depth estimation is dense, per-pixel and direct. We first compute a dense 3D template of the shape of the object,
using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. Our energy
optimization approach minimizes a robust photometric cost that simultaneously estimates the temporal correspondences and 3D
deformations with respect to the template mesh. In our experimental evaluation we show a range of qualitative results on novel
datasets; and perform a quantitative evaluation on a ground truth dataset.

Index Terms—Dense, Direct, Deformable, Monocular 3D Reconstruction, RGB Video
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1 INTRODUCTION

The recent emergence of low cost depth sensors, has brought easy
and fast acquisition of 3D geometry closer to reality. Systems such
as KinectFusion [23] allow users to scan the detailed 3D shape of
rigid scenes. The use of RGB-D sensors has also been extended
to markerless capture of non-rigid shapes [16], [18] even in real
time [21], [42]. At the same time, many multi-camera techniques
for marker-less high-end dynamic 3D shape acquisition have been
developed over the last decade [9], [38].

In contrast, the acquisition of dense 3D models of generic
deformable meshes from a monocular RGB-only video stream
is significantly harder. The ability to acquire time-varying dense
shapes from monocular RGB video would open the door to
easy, lightweight non-rigid capture and, perhaps more importantly,
from existing video footage or web-based video libraries such as
YouTube.

Substantial progress has been made in dense 3D reconstruction
of rigid shapes or static scenes purely from RGB video sequences
or image collections, which is now considered a highly mature
field. One of the distinguishing features of most dense methods
is that they are direct approaches in that they simultaneously
solve for the dense 2D correspondences and the 3D geometry
by minimizing a photometric cost. Multiview stereo systems exist
that can recover the dense 3D geometry of rigid meshes accurately
from a set of fully calibrated images [31]. Even real-time, live
dense 3D reconstruction of static scenes is now possible using a
single RGB camera and commodity hardware [22], [33] or even
a mobile phone [15], [36]. While spectacular progress has been
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Fig. 1: An automatically generated template is warped (top two
rows) in a physically plausible manner consistent with a video
sequence (bottom) generating rich dynamic 3D meshes, that cap-
ture emotive deformations of the mouth and eyes. Each column
corresponds to different views of the same frame.
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made in monocular dense 3D reconstruction of static scenes from
video [22], [33], [15], [36], direct 3D capture of dense non-rigid
shapes from a single video stream lies significantly behind.

Three main successful directions dominate the literature for
monocular 3D reconstruction of deformable surfaces. Model-
based methods [4] use blend-shape models learned from 3D
training data in an off-line training step. Non-rigid structure from
motion (NRSfM) approaches offer a model-free formulation for
generic shapes but require long term correspondences across a
video sequence [5], [8], [12], [25], [27], [37] and are typically
batch methods that process the entire sequence at once. Finally,
shape-from-template approaches [2], [24], [28], [30] offer an
attractive sequential frame-to-frame solution but they require a
known 3D reference template of the surface and point corre-
spondences between each new frame and the template as input.
In addition they have mostly been demonstrated only on simple
planar meshes of objects such as paper and cloth.

Two common limitations remain with most NRSfM and shape-
from-template formulations: (i) they are typically feature-based
which leads to sparse reconstructions or failure with low-textured
surfaces and (ii) estimation of 2D correspondences and 3D shape
inference are decoupled and not solved simultaneously in a direct
approach. So far the problem of jointly estimating dense point cor-
respondences and non-rigid 3D geometry from monocular video
has received very little attention. Garg et al. [12] demonstrated a
dense per-pixel NRSfM approach but it required dense 2D corre-
spondences to be pre-computed using a multi-frame optical flow
method. Pixel-based approaches to template-based reconstruction
have been proposed by Malti et al. [19] and Suwajanakorn et
al. [35] but they were only demonstrated on planar surfaces (cloth
or paper) [19] or worked exclusively for faces [35].

In this paper we adopt a template-based direct approach to
deformable shape reconstruction from monocular sequences. Our
contribution is an end-to-end system that builds a dense template
from an initial rigid subsequence and subsequently estimates the
deformations of the mesh with respect to the 3D template by
minimizing a robust photometric cost. Unlike previous template-
based direct methods [19], [35] we demonstrate our approach
on a variety of generic complex non-planar meshes. While our
algorithm is not real-time, it is sequential and relatively fast,
typically requiring 3 seconds per frame on a standard desktop
machine to optimize a mesh with approximately 25,000 vertices.
Ours is the only template-based approach that satisfies all the
properties listed in Table 1.

2 RELATED WORK

Very few methods attempt dense and direct reconstruction of non-
rigid shapes from monocular sequences. There are three areas of
research that have inspired and influenced our work: non-rigid
structure from motion, shape-from-template and RGB-D based
non-rigid capture. We now describe the most related approaches
from each of these fields.

Although clearly inspired by the advances in non-rigid struc-
ture from motion methods [8], [25], [37], which can typically
reconstruct non-rigid surfaces of generic shapes from monocular
video while learning a low rank model that explains the deforma-
tions, our approach departs from them significantly. In particular,
NRSfM formulations are batch and require (usually a small number
of) point correspondences to be given as input. In contrast, the
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Template-free 7 7 7 X X X 7

Direct X X X 7 X X X
RGB-only 7 X X X 7 7 X
Monocular 7 X X X X 7 X

Perspective camera X X 7 7 X X X
Frame-to-frame X X X 7 X X X
Generic shapes X 7 7 X X X X

Closed mesh with
self-occlusion handling X 7 7 7 X X X

TABLE 1: Comparison of our approach with other dense com-
petitors for reconstructing deformable shapes. Ours is the only
template-based dense approach that only uses monocular RGB
data; is frame-to-frame; direct; and suitable for reconstructing
generic shapes.

distinguishing features of our approach are that it is direct, dense,
and frame-to-frame.

The most related NRSfM method to ours is the dense monocular
non-rigid reconstruction algorithm by Garg et al. [12]. Although
their algorithm reconstructs dense per-pixel models, noticeably, it
is a batch process that requires multi-frame optic flow over the en-
tire sequence as an input. No attempt was made to solve the dense
correspondence and reconstruction problems simultaneously. As
such, if the flow generation fails, a good reconstruction is not
possible.

Our method also shares strong similarities with work in
the area of shape from template [2], [28], [24], [30]. Many
approaches have been proposed mostly taking advantage of the
constraints imposed by isometric or conformal deformations [2],
[20], [29]. While most template approaches are feature-based and
only reconstruct based on a small number of points, Malti et
al. [19] departs by proposing a direct pixel-based variational
framework that exploits visibility constraints. However, their
method was only demonstrated on flat isometric surfaces. The
recent work of Suwajanakorn et al. [35] reconstructs RGB-only
videos of faces of celebrities. Similarly to our method, they
formulate template-based non-rigid reconstruction as a frame-to-
frame energy minimization that optimizes a direct photometric
cost. However, their method is limited to reconstructing human
faces as their template reconstruction approach is specifically
tailored to them. In contrast, our template reconstruction step
uses a dense volumetric multiview stereo formulation that is
generic and can be used for any type of shape. In addition, our
energy makes use of robust norms for the data and regularization
terms; explores more sophisticated smoothness priors, such as
local rigidity (as-rigid-as-possible [32]); and imposes temporal
smoothness. Also related is the monocular face capture system of
Garrido et al. [13]. While their work also minimizes a photometric
cost and the deformations with respect to a template model, theirs
is a sophisticated blend-shape model specifically built to capture
the deformations of human faces.

Our work has been largely inspired by recent advances in
non-rigid tracking using depth cameras [21], [42]. Zollhofer et
al.’s [42] is the most related approach since their setup is directly
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comparable to ours — a multi-scale template is built first from
a rigid sub-sequence, followed by dense non-rigid monocular
tracking. However, while their method uses both the depth and
the RGB channels, ours only uses RGB images as input and
can be seen as its RGB-only equivalent. More recently, Dynam-
icFusion [21] takes only the depth point cloud from a Kinect
as input and estimates a warp back into a canonical reference
scene, where a model is progressively denoised and completed.
While [42] makes use of image data to help with frame-to-frame
alignment [21] makes no use of any image data. However, since
DynamicFusion system uses a fixed reference frame where the
volumetric model is incrementally updated, it cannot deal with
fast motion, major shape deformation or topology changes. To
overcome these limitations, Dou et al. [10] proposed a new multi-
view real time performance capture system for challenging scenes.
By periodically resetting the reference frame to adapt to shape
changes over time and robustly fusing data and reference volumes
based on correspondence estimation and alignment error, their new
Fusion4D system can robustly handle large frame-to-frame motion
and topology changes.

While our work is related to and certainly inspired by these
depth-based formulations, the underlying estimation problems are
fundamentally different. The availability of a depth image for each
frame turns the problem of 3D estimation of non-rigid geometry
into one of denoising or fusion, while our monocular RGB-
only reconstruction problem must infer the 3D deformations of
a template purely from 2D image motion data.

Table 1 summarizes our main contributions and the differences
with respect to the six most closely related approaches, namely the
dense NRSfM approach of Garg et al. [12], the direct template-
based monocular reconstruction approach of Malti et al. [19],
the total face reconstruction system of Suwajanakorn et al. [35],
real-time RGB-D non-rigid reconstruction system of Zollhofer et
al. [42], DynamicFusion system of Newcombe et al. [21] and the
multi-view Fusion4D system of Dou et al. [10].

In summary, ours is the only RGB-only, template-based,
monocular, dense and direct approach to non-rigid reconstruction
that is sequential and suitable for generic shapes and closed
meshes.

3 PROBLEM FORMULATION

We consider a perspective RGB camera with known internal
calibration observing a non-rigid mesh deforming over time. The
goal of our algorithm is to estimate, at each time-step t, the
current 3D coordinates of the N vertices of the dense non-rigid
mesh St = [. . . sti . . . ], i = 1..N , as well as the overall rigid
rotation and translation (Rt, tt) that align the deformed shape
and a reference 3D template.

The only inputs to our algorithm are the current RGB image
It(x, y) observed at time t and a template shape S̃ = [. . . ŝi . . . ],
i = 1..N , which is acquired automatically in a preliminary tem-
plate acquisition step using the multi-view stereo dense volumetric
approach of [6]. Typically the user acquires a short rigid sequence
to capture the 3D coordinates of the template mesh which is then
subsampled to create a multi-resolution hierarchy of coarse-to-
fine templates. This template acquisition step is described in more
details in section 4. The template is then converted to a triangular
mesh, consisting of N vertices and M edges.

Once the template has been acquired, our system turns to
perform frame-to-frame non-rigid alignment of the 3D shape

given only the current frame as input. Although optimization is
initialized using the shape from the previous frame St−1, once the
template has been generated, the optimization objective does not
depend on any other frames. As such, unlike most approaches to
non-rigid structure from motion [8], [12], [25], [37], it scales to the
streaming of long sequences, with the complexity of optimization
guaranteed to grow linearly to the number of frames.

4 STEP 1: TEMPLATE SHAPE ACQUISITION

The first stage in our process is to obtain a rigid template mesh of
the shape. We denote the whole shape as a 3 × N matrix Ŝ, and
ŝi as the ith vertex on the mesh. We require a set of M images
(we used M ∼ 30) of the shape under a rigid transformation.
These are obtained by subsampling a set of frames from a short
video where either the object is static and the camera moves
or the camera is static and the object is moved under a rigid
transformation. Figure 2 provides an example of the output of this
process. As shown in the figure, this step takes sampled images as
input and generates a set of colored coarse-to-fine meshes.

The process of the template acquisition is an application of
an existing multi-view stereo (MVS) technique [6]; consequently
we provide only an overview of the process with appropriate
references to the methods used.
Extrinsic Calibration The collection of frames from the video
were calibrated automatically using an implementation (Visu-
alSFM [41]) of standard rigid structure-from-motion (SfM). This
was observed to be robust to some incompatible motion in the
background. If there is too much background clutter in the
image then an automatic segmentation of the foreground can be
attempted using a fixation condition (that the center of the image
fixates on the object of interest) [7].
Depth-Map Extraction Once we have a calibrated set of frames,
we extract a depth-map using the stereo method of [6]. For
each (reference) image, we take the two closest viewpoints as
neighboring images and extract the best K = 9 normalized cross-
correlation (NCC) scores matching with 13 × 13 pixel windows.
These are then filtered to provide a single depth estimate (or
unknown label) using the default filtering parameters as specified
in [6].
Mesh Estimation The last stage is to extract the template
mesh by combining all the individual depth-maps in a single
global optimization. As suggested in [6], we combine the depth-
maps to recover a single watertight mesh S̃ using the volumetric
fusion technique of [40] combined with the probabilistic visibility
approach of [14].
Template Hierarchy The output of the fusion stage is a watertight
mesh S̃. From this we build a multi-scale representation of the
mesh as shown in Figure 2 (right). This is achieved by iteratively
down-sampling and refining the template mesh using the isotropic
surface remeshing method (and implementation) of Fuhrmann et
al. [11]. Finally, a color Îi is associated to each vertex i; this is
the median color over all the frames in the rigid subsequence in
which the projected vertex is visible.

To avoid aliasing when coloring the low resolution meshes,
we blur each of the input images with a length-scale given by the
median mesh edge length projected into the corresponding camera
view. Figure 3 shows a triangulated example of the multi-scale
colored mesh representation.
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Fig. 2: Template acquisition step. Left: A volumetric representation is generated from stereo depth maps taken over a rigid subsequence.
This is then transformed into a colored mesh. Right: The three scales of the template used to robustly estimate deformations.

Fig. 3: An example of our multi-scale template meshes generated
by iterative mesh down-sampling and refinement. Top: From left
to right the meshes contain approximately 5, 10, and 25 thousand
vertices respectively. Bottom: The highest levels of the templates
for the dog and ball sequences.

5 STEP 2: NON-RIGID MODEL TRACKING

5.1 Our Energy

Our objective is made of a balanced combination of five terms:
(i) a photometric error which captures the expected color of each
visible vertex in the template; (ii) a total variation term on the
gradient of the 3D displacements with respect to the template (iii)
as rigid as possible local regularization – this term allows the mesh
to rotate locally without imposing a penalty; (iv) a rotation total
variation term on the gradient of the local 3D rotations of each
vertex with respect to the template and (v) a temporal smoothness
term that penalizes strong frame-to-frame deformations.

The per-frame objective takes the form:

E(S, {Ai},R, t) = Edata(S,R, t) + λrEreg(S, {Ai})
+ λaEarap(S) + λrrEreg rot{Ai}
+ λtEtemp(S).

(1)

where λr , λa , λrr and λt denote the relative weights between
the terms. These terms are all required. The first term guar-
antees that the deformations of the template follow the image;
the second term encourages locally smooth deformations while
allowing sharp discontinuities which are needed to transition from
parts of the object that deform strongly to those that do not; the
third term approximates elastic deformation and encourages the
deformation to be locally rigid; while the fourth term encourages
large articulation changes in the template shape. Finally, temporal
smoothness is needed to avoid flickering.

For simplicity’s sake, we drop temporal super-scripts where
appropriate as much of the formulation does not depend on any
other frames. We now define each of the terms of the energy in
detail.

5.1.1 Photometric Data Term Edata

The data term Edata encourages a shape such that projection of
the vertices into the current image has similar appearance to the
template shape. In other words, minimization of this photometric
cost encourages brightness constancy with respect to the colors
Î = {Îi} of the mesh, built by back-projecting the images used
to build the reference template Ŝ= {ŝi} onto the vertices of the
template. As we directly reconstruct closed meshes where much of
the object is self-occluded, we first make an initial pass where we
estimate the visibility of each vertex in the mesh. For additional
robustness, we use a Huber loss.

Edata(S,R, t) =
∑
i∈V
|̂Ii − I(π(R(si) + t))|ε (2)

where Îi is the color of vertex ŝi on the template mesh, I is the
current image frame, V is the set of estimated visible vertices in
the frame1, {ŝi}N1 are the 3D vertices of the template, {si}N1 are
the 3D vertices of the shape in the current frame, π(·) is again
the projection from 3D points to image coordinates, known from
camera calibration, and | · |ε denotes the Huber loss, which takes
the form

|x|ε =
{
x2/(2ε) if x2 ≤ ε
|x| − ε/2 otherwise.

(3)

1. This is generated by realigning the deformed mesh of the previous frame
to minimize photometric error (see section 5.2.1), and z-buffering.
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Fig. 4: Input image, dense sift feature image, color mesh and sift feature mesh of 5 different sequences.

5.1.2 Spatial Regularization Term Ereg

The regularization term Ereg is a pairwise term that encourages
spatially smooth deformations of the shape S with respect to the
template Ŝ.

Ereg(S) =
N∑
i=1

∑
j∈Ni

‖(si − sj)− (ŝi − ŝj)‖ε (4)

HereNi is the neighborhood of i, and ‖·‖ε is the vector analog of
the Huber loss formed by summing the standard Huber loss over
all dimensions.

5.1.3 As Rigid as Possible Deformation Term Earap

This cost was first proposed in [32] to allow deformable tracking
of an initial mesh against a depth map. It takes the form

Earap(S, {Ai}) =
N∑
i=1

∑
j∈Ni

‖(si − sj)−Ai(ŝi − ŝj)‖22 (5)

where the variables Ai are per-point local rotations. Essentially
this cost allows for local rotations to take place in the mesh without

penalty so long as the relative locations between points in the
neighborhood of i remain constant. It can be interpreted as a prior
that allows for elastic style deformations of meshes. This cost has
been widely used in non-rigid motion modelling [42], [21], [10].

5.1.4 Spatial Rotation Regularization Term Ereg rot

As Ereg penalizes the gradient of 3D displacements, in the case
of large articulation motion, this cost will be relatively large
due to the fact that the gradient of 3D displacements will be
approximately constant in the whole articulated region. Therefore
this term will penalize strong articulated motions. To allow large
articulations, we introduce a new regularization term Ereg rot on
local rotations in addition to the 3D displacements.

Ereg rot({Ai}) =
N∑
i=1

∑
j∈Ni

‖(Ai −Aj)− (Âi − Âj)‖ε (6)

where Ai is the local arap rotation of vertex i. UnlikeEreg,Ereg rot

will be small in the articulated region, only taking nonzero values
around the joints, and therefore encouraging large articulated
motion.
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Fig. 5: Direct deformable reconstruction from our algorithm on face1 sequence.

5.1.5 Temporal Smoothness Etemp

The temporal regularization encourages smooth deformations
from frame to frame and can be formulated as

Etemp(S, t) = ‖S − St−1‖2F + ‖t− tt−1‖22 (7)

where St−1 and tt−1 are the shape and the translation in the
previous frame and ‖ · ‖F denotes the Frobenius norm of a
matrix. The need for this term is most apparent when viewing
a video of the reconstruction. Although a small amount of tem-
poral regularization only alters the shape a little, it substantially
reduces frame-to-frame flickering, while the temporal smoothness
in the translation prevents explaining deformations as perspective
effects.

5.2 Energy Optimization
For reasons of robustness and efficiency, optimization is performed
in a two step form over rotations and translations, and shape
separately, and using a 3-layer spatial pyramid.

5.2.1 Initialization
We optimize this objective in a two step form: first the rotations
and translation are estimated using the shape from the previous
frame.

E(R, t) =
N∑
i=1

|̂Ii − I(π(R(st−1i ) + t))|ε (8)

Then, holding the global rotation and translation constant, st is
estimated. R, t, and St (at the coarsest level of the pyramid)
are initialized using the solution taken from the previous frame,

and optimization is performed using the conjugate gradient based
solver from Ceres [1].

5.2.2 Coarse-to-fine optimization and Deformation Graph
Both the rotation and translation cost 8, and the shape cost 1 are
optimized over a set of 3-level coarse-to-fine images and shape
templates, with each layer of the pyramid being two times larger
than the coarser layer directly above it. As we move down the
pyramid from coarse to fine, the 3D vertices are propagated to the
next level of the hierarchy using a prolongation step as described
in Sumner et al. [34]. The weights are pre-computed when the
template mesh is created.

wk(i) = exp(−‖ŝi − ŝk‖22/2σ2) (9)

where ŝi is the 3D position of vertex i on the finest level template
mesh, while ŝk is the position of vertex k on the coarse mesh. σ
is given by the largest distance between all the K nearest nodes
in the coarse mesh and vertex i, and the weights wk(i) are then
normalized to sum up to 1.

Based on the coarse level mesh {sk}, local rotations {Ak}
and weights wk(i), we estimate the location of the vertices on the
fine level mesh with:

si =
K∑
k=1

wk(i)(Ak(ŝi − ŝk) + sk) (10)

Prolongation is also applied to the arap rotations {Ai} by estimat-
ing the best local rotations between the fine template mesh and the
current mesh.

In our energy formulation 1, the number of variables of the
optimization problem is 6N + 6, where N is the total number
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of vertices in the mesh. In our experiments, we use a 3-level
mesh pyramid with 5k, 10k and 25k vertices, which gives rise to
30k, 60k and 150k variables respectively. To compute the mesh
deformations more efficiently, we could use upper level mesh
vertices (not necessarily the one directly above) as deformation
nodes and compute the vertex position si of the fine level mesh
via prolongation 10. Notice that in this case, K is the number
of neighbouring deformation nodes of vertex i, wk(i) is the
interpolation weight of node k on vertex i. Assuming there are
M deformation nodes, the number of variables of the energy will
be 6M+6 and therefore the algorithm will be much more efficient
when M is much smaller than N .

These deformation nodes could be introduced in both data
term and other regularization terms. Furthermore, we could use
different deformation nodes for the data term and regularization
terms. To induce long range regularization over the deformation
nodes, we could use a hierarchical deformation graph.

6 ROBUST DATA TERM

The photometric data term Edata from section 5.1 is based on
the brightness constancy assumption, i.e. the corresponding point
in the image should have similar colour and brightness as the
template mesh vertex. In our scenario, this assumption will be
violated when there are either illumination changes or shading
effects caused by strong local mesh deformations. As shown in
Figure 9, there is significant intensity change around the eye and
mouth region when the face deforms over the whole sequence and
intensity based tracking fails to capture the mesh deformation. In
this section, we introduce two new data terms to robustly deal with
appearance changes in the tracking.

6.1 SIFT Data Term

Feature descriptors, such as SIFT [17], SURF [3] and ORB [26],
have been shown to be robust to large illumination and viewpoint
changes. In order to overcome the shortcomings of intensity based
tracking, we propose to use the SIFT feature descriptor image for
tracking instead of the RGB values.

Specifically, we compute dense SIFT feature images offline
using the VLFeat library [39]. Due to memory limitations, we
perform PCA (Principal Component Analysis) on the 128 dimen-
sional SIFT features and only keep the first 3 principal dimensions.
We compute feature images for the rigid and non-rigid parts of the
sequences. The rigid frames are used for template building while
the non-rigid one for online tracking. In the template creation
stage, instead of attaching RGB colours to mesh vertex, we attach
3-channel SIFT features.

Figure 4 shows the input image, dense SIFT feature image,
colour mesh and SIFT feature template mesh for face1, face2,
dog, pig and ball sequences.

6.2 NCC Data Term

Normalized Cross-Correlation(NCC) is a widely used distance
measure in template matching due to its simplicity and robustness
to lighting changes. It is a distance metric between two image
patches. Specifically, for two patches Ip and Iq, the NCC score is
defined as follows:

NCC(Ip, Iq) =
Ip − Ip

‖Ip − Ip‖
· Iq − Iq

‖Iq − Iq‖
(11)

where Ip and Ip are the mean values of patch Ip and Iq
respectively. NCC measures the similarity of intensities in two
neighbourhood regions, and is invariant to the change in average
value or intensity range in the regions.

As an alternative to the intensity based photometric data term
Edata, we compute the NCC score between local template mesh
region and corresponding 2D projections on the input image.

7 FRAME-TO-FRAME DATA TERM

The formulation we introduced in section 5.1 is a frame-to-model
tracking method, where the data term is based on the matching
between a fixed template and an input frame. However, using
a fixed template could fail to handle appearance changes, for
example, sudden changes in the environment lighting or shading
changes due to local deformations, which might be critical as our
goal is to track mesh deformation accurately. In order to adapt to
possible changes in the intensity over time, we compute the data
term based on the difference between the intensities of projections
on the previous frame and the current frame. In other words, we
update the colours of template mesh vertices for each frame:

Îi = It−1(π(Rt−1(st−1i ) + tt−1)) (12)

Similarly, we could compute frame-to-frame data terms using
NCC and SIFT features by updating the intensities or features
based on the projections of tracking results from the previous
frame.

8 EXPERIMENTAL RESULTS

In this section we show qualitative results of our method on
a variety of non-planar 3D meshes; a qualitative comparison
between the results with different combinations of regularization
terms and a quantitative evaluation on the face2 sequence from
Valgaerts et al. [38]. Our results can be best viewed in the video.2

Qualitative results on non-planar meshes We show results on
some new sequences acquired with a handheld camera. Example
sequences include a face (Figure 5) , two soft toys – a pig (Figure
6) and a dog (Figure 7), and a ball being squeezed by a hand
(Figure 8). These sequences show a wide range of deformations
of a varying set of shapes, with different degrees of elasticity. The
reconstructions and deformations generated are convincing.
Qualitative results of using different regularization terms To
justify the effectiveness of each regularization term, we compared
with different combinations of regularizers. Figure 11 and Figure
12 show the tracking results with and without the arap term
Earap, spatial rotation regularization Ereg rot term and temporal
smoothness term Etemp.

As shown in the left of figure 11, using only the spatial
regularization term Ereg does not allow large deformations from
the template and cannot capture the large articulation movement
when the dog turns sideways its head. While the arap term Earap

allows large deformations, it offers too much freedom that the
left ear gets curly when the dog rotates its head, as shown in
the middle. With the right combination of all three regularization
terms (Ereg, Earap and Ereg rot) we show that the energy is able
to capture large deformation while not too flexible to induce
unnecessary deformations.

Figure 12 illustrates the effectiveness of the temporal smooth-
ness term. Due to the ambiguity in the depth direction, it can be

2. Please see http://visual.cs.ucl.ac.uk/pubs/ddd/ for video.

http://visual.cs.ucl.ac.uk/pubs/ddd/
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Fig. 6: Direct deformable reconstruction from our algorithm on the pig sequence. Notice that our method is able to capture the motion
of the right hand, the deformation of the head and the large articulation between the body and legs.

Fig. 7: Direct deformable reconstruction from our algorithm on the dog sequence. It can be seen that despite the large deformation
created by the person’s hand, our method successfully tracks the motion of the dog’s head and the deformation of the neck.
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Fig. 8: Direct deformable reconstruction from our algorithm on the ball sequence. Our method is able to track the motion of the ball as
well as the deformation induced by hand pressing.

seen that when there is no temporal smoothness term, the mesh
tends to move forwards and backwards(as shown in the side view
images on the left) without changing the 2D projections much. As
shown in the overlaid image in the left, although the 2D projection
of the mesh fits well to the input image, it is clear from the side
view that the 3D mesh has moved substantially along the depth
direction. In contrast, as shown in the right figure, when adding
temporal smoothness, i.e. penalising the movement in the depth
direction, the mesh tends to stay in place and does not jump
forwards and backwards.

Quantitative evaluation with the face sequence from Valgaerts
et al. [38] We evaluate our results quantitatively by taking
the publicly available accurate stereo reconstruction results from
Valgaerts et al. [38] as ground truth 3D shape.

Figure 9 shows the comparison between ground truth and
tracking results as well as the corresponding error heatmaps
for intensity, NCC and SIFT feature data terms. Intensity based
tracking has high errors as well as more artefacts around the mouth
and eyes regions. While NCC generates smoother tracking results
than using SIFT, it fails to capture the deformation of the mouth
and the details of the deformations. Table 2 shows the average
3D tracking errors using different data terms compared with the
stereo ground truth. It is clear that using more robust data terms,
such as NCC or SIFT, can improve the tracking performance.
The tracking error decreases from 2.38mm to 2.31mm(NCC) and
2.22mm(SIFT).

Figure 10 shows the comparison between frame-to-frame
tracking with intensity, NCC and SIFT data terms. Compared
to frame-to-model tracking (Figure 9), frame-to-frame gives

Intensity NCC SIFT
Model based tracking error(mm) 2.38 2.31 2.22

Frame to frame tracking error(mm) 2.84 2.76 2.53

TABLE 2: Average tracking errors using intensity, NCC and
SIFT features evaluated on the face2 sequence. All the errors
are computed with respect to stereo reconstruction results from
Valgaerts et al. [38] as ground truth. In all cases, frame-to-frame
tracking gives higher error due to accumulated errors.

smoother results. However, due to accumulated errors, its per-
formance is worse compared to frame-to-model tracking results.
Table 2 shows a comparison of 3D tracking errors. We can see that
in all three cases, the frame-to-frame tracking error is higher than
frame-to-model tracking.

9 CONCLUSION

We have presented a novel approach to template driven capture
of dense detailed non-rigid deformations from video sequences.
Our method solves simultaneously the 2D dense registration
problem and the 3D shape inference using RGB-video and a pre-
acquired template as only input. An additional advantage is that
our approach is sequential in nature and can therefore be applied
to arbitrarily long sequences. Unlike many other template based
methods, our approach can deform complex generic meshes and
is not restricted to planar surfaces. We have shown results on real
world novel video sequences captured with a hand-held camera
which demonstrate the validity of our approach; we compare
against an existing method that requires multi-frame optical flow
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Fig. 9: Comparison results between intensity, NCC and SIFT feature based tracking with frame-to-model data term. Left figure shows the
reconstruction results compared with ground truth mesh, right figure shows the error heatmap. For the error heatmap, blue corresponds
to low error while red means high error.

with comparable results; and perform a quantitative evaluation
against other template-based approaches on a ground truth dataset
where our approach halves the 3D error of competing approaches.
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Fig. 11: Comparison results using different combinations of regularization terms, including spatial regularization Ereg, arap Earap and
rotation regularization Ereg rot. From left to right, we show the results of using Ereg, Ereg+Earap and Earap+Earap+Ereg rot respectively.
In comparison, the spatial regularization term Ereg alone does not allow large deformations from the template and cannot capture the
large articulation movement when the dog turns its head sideways. While the arap term Earap allows large deformations, it provides
too much freedom. Notice that the dog’s ear bends upwards incorrectly. With the right combination of all three regularization terms,
we show that the energy is able to capture large deformations while not allowing too much flexibility so as to induce unnecessary
deformations.

overlaid image front view side view overlaid image front view side view

without Etemp with Etemp

Fig. 12: Comparison results of with and without temporal smoothness regularization term Etemp. Left: tracking results without using
Etemp, including input image overlaid with mesh projections, front view and side view of mesh normals. Right: corresponding tracking
results with Etemp. Due to the ambiguity in the depth direction, it can be seen that when there is no temporal smoothness term, the mesh
tends to move forwards and backwards (as shown in the side view images of in the left) without changing the 2D projections much. In
contrast, in the right we fix this problem by adding temporal smoothness term, in particular by penalising the movement in the depth
direction.
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