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MOTIVATION

- We are interested in the relationship between the
Factorisation Calculus and more familiar models of
computation (viz. the A-calculus)

- Factorisation Calculus is:

- A combinatory rewrite system

- A basis for a general theory of pattern matching

- A model of intensional computations
- cf. A-calculus is an extensional theory of functions
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THE FACTORISATION CALCULUS

- Introduced by Jay and Given-Wilson (2011)
- A combinatory calculus comprising two operators: S and F
- We identify two ‘special’ sets of terms:

- Atomic terms: unapplied operators, i.e. {S, F}
- Compound terms: partially applied operators, e.g. S(FF)S

- Sis the familiar combinator from Combinatory Logic:
SXYZ = XZ(Y2)

- The F operator distinguishes atomic terms from compounds,
also factorising the latter:

FXMN —M if X atomic
FIPQMN— NPQ if PQ compound
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THE FACTORISATION CALCULUS: IMPORTANT PROPERTIES

- It is combinatorially complete, since FF represents K:

FFXY = X

- The internal structure of terms can be analysed, so:

- Intensionally distinct terms can be distinguished
- The equality predicate on normal forms is representable

- Compare with Combinatory Logic (and so A-calculus):

- Equality of arbitrary normal forms not representable
- Factorisation of combinators is not representable

- eg thereis no CL term T such that T(SKX) —* X for any X
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CHARACTERISING EXPRESSIVENESS: STRUCTURE COMPLETENESS

- Consider using arbitrary linear normal terms as patterns for
matching, e.g.
{SM(FNS)/Sx(FyS)} =[x+ M,y — N]
{SMN/Fxy} = fail
- A case G(P) = M (for pattern P and term M) defines a symbolic
function G on combinators:

G(U) = a(M) if{U/P} =0c
W)= some default term if {U/P} = fail

- A combinatory calculus is structure complete if every case G is
represented by some term G, i.e. GU =g G(U) for all U

Theorem: Factorisation Calculus is structure complete
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HOW TO INTERPRET THE CHARACTERISATION?

- Jay and Given-Wilson use structural completeness as a way to
characterise the expressive power of Factorisation Calculus

- Factorisation Calculus is structurally complete; CL isn't
- Conclusion: Factorisation Calculus is more expressive

- There are symbolic functions representable in Factorisation
Calculus but not in CL

- e.g. Factorisation, equality of normal forms

- So, does the Factorisation Calculus compute more things?

- The standard way to answer this is by showing the (non-)
existence of an encoding
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OVERVIEW OF OUR ENCODING

Factorisation
Calculus

A-calculus

- We use a construction due to Berrarducci and Bohm which
encodes certain types of term rewriting system in A-calculus

- We show how to implement Factorisation Calculus as a
suitable rewrite system

- The encoding is faithful
- l.e. preserves both reduction and termination
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THE BERRARDUCCI-BOHM REPRESENTATION RESULT

- A rewrite system R over a signature X is canonical if:

- Y =YW Xrwith every rewrite rule of the form:

flc(ay ooy Xn)y Vs ooy Ym) — t (ceXcandfe Xy)
- That is, ¥ comprises constructors X and programs Xr

- Berrarducci and Bohm (1992) showed that every such R has a
representation ¢x in A-calculus, i.e.

t =r t' = or(t) =x or(t)

- Moreover, for closed terms, ¢r preserves strong normalisation
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A CANONICAL REWRITE SYSTEM FOR FACTORISATION

- Application is a constructor-driven program:
app (So, X) = $1(x) app (Fo, X) = F1 (x)
app (S1(x), ¥) = S2(x, ) app (F1(x),y) = F2(x, y)
app (Sz (X, ¥), z) — app (app (x, 2), app (v, 2))
app (F2 (x, y), z) — factorise (x, y, 2)

- Factorisation is a program too:

factorise (So, y, 2) — v

factorise (S1(q), v, ) — app (app (2, So), 9)
factorise (S (p, 9), y, 2) — app (app (z, app (So, P)), q)
+ symmetric rules for Fo, Fq, F,
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FAITHFULLY ENCODING FACTORISATION CALCULUS

- The translation into our rewrite system SFe is straightforward:

[Sle=So [Fle=Fo  [MN]e =app([M]e, [Ne)

- We have shown that [-]e also preserves reduction and strong
normalisation

- Thus [-]x = ¢sre © [-]e Is a faithful encoding of Factorisation
Calculus in A-calculus
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SOME OBSERVATIONS

- Our encoding is compositional:

[MN]x = ¢sro(app ([Mle, [N]e)) = dske(@pp) IM]x [N]

- It is not a homomorphism ... however:
- It looks like an instance of an applicative morphism (Longley)

- The ‘classical’ interpretation is that our encoding constitutes
an equivalence

- We need to look further to understand the notion of
expressiveness captured by structural completeness
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FELLEISEN'S FRAMEWORK FOR COMPARING EXPRESSIVENESS

- Felleisen (1991) defined a formal expressiveness criterion
based on the concept of eliminability in logic
- A'logic £ is more expressive than logic £’ if:
1. L is a conservative extension of £’

2. L contains a non-eliminable symbol
- By analogy, language L is more expressive than language L' if:

1. itis a superset of L/
2. it contains some construct which cannot be translated to L’
using a macro

- Consider SKF-calculus as a more expressive superset of CL,
since F is not representable using S and K (i.e. as a macro)
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BOKER & DERSHOWITZ'S ABSTRACT FRAMEWORK (2009)

- Take computational models to be pairs: a (semantic) domain
and a set of functions (the extensionality)

- A larger extensionality = more expressive

- Maps between domains induce simulations (i.e. encodings)

- But some maps allow for simulations of strictly larger
extensionalities!

- Different restrictions on the mappings between domains yield
notions of (in)equivalence of varying strength

- Our encoding shows a weak form of equivalence

- Existing results would seem to imply inequivalence at a
stronger level
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CONCLUSIONS & FUTURE WORK

- Factorisation Calculus is a recent fundamental model of
computation with expressive intensional properties

- We have demonstrated the existence of a faithful encoding of
the Factorisation Calculus in the A-calculus

- Our results point towards a nuanced relationship between the
two paradigms which requires further investigation

- We believe that research into the denotational semantics of
Factorisation Calculus is a logical next step
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