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Abstract

The factorisation calculus of Jay and Given-Wilson, a fundamental model of pattern match-
ing, introduces the factorisation combinator, whose behaviour is conditional on the structure
of its arguments. This combinator is typeable with polymorphic types such as System F
types; this system does not have the property of type assignment decidability. We develop a
new type system for the factorisation calculus, the structural type system, which augments
Curry types with structural modifiers. These structural modifiers carry information sufficient
to type the factors of an application solely from the type of the application itself. With this,
we are able to develop a principal types algorithm, and show soundness and completeness
properties.

We apply our type system to the theory of typed self-interpretation. Jay and Palsberg
introduce an extension to the factorisation calculus which supports typed self-interpretation,
again without decidable type assignment. We modify their calculus in order to preserve the
properties of the principal types algorithm while retaining the self-interpreting terms. In this
way we show the existence of a self-recogniser and self-enactor for a statically-typed calculus
with decidable type inference.
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Introduction

The factorisation calculus of Barry Jay and Thomas Given-Wilson, first presented in 2011,
attempts to be the fundamental model of pattern matching. The calculus, a combinatory
calculus similar to combinatory logic, introduces the factorisation combinator F , whose re-
duction behaviour is different depending on whether its first argument is an operator or an
application. This enables F to identify and decompose the internal structure of a term, and
test for intensional equality, something not possible in combinatory logic.

Naturally, one may consider typing the factorisation calculus, extending it with a type
system to characterise the behaviour of terms. The Curry type system of combinatory
logic, simple but inexpressive, is not powerful enough to capture the two behaviours of the
factorisation combinator. Jay and Given-Wilson show that the polymorphic types of System
F are sufficient to type F . However, there is no known polymorphic type system that can type
F for which type assignment is decidable. This is a very desirable property of a type system,
both practically and theoretically; the ability to compute the type of a term algorithmically.

We attempt to develop a type system for the factorisation calculus for which type as-
signment is decidable. Our system, called the structural type system, is built on the idea of
extending simple Curry types with structural modifiers, information which allows recovering
the type of factors of an application solely from the type of the application itself (section
2.1). This idea is sufficient to characterise the behaviour of F when applied to a compound;
we require a second type to capture the behaviour in the atomic case. With this construction
we show a subject reduction result essential to any useful type system (section 2.2). Then,
we are able to devise an algorithm to compute the principal types for a term, based on type
unification. Crucially, our type system is a restrictive enough extension to the Curry system
for us to show soundness and completeness properties for this algorithm, hence proving type
assignment decidability (section 2.3).

Barry Jay, together with Jens Palsberg, went on to employ the expressive power of the
factorisation calculus to the field of typed self-interpretation. Self-interpreters for a language
or calculus are terms constructed in that calculus that are able to recognise or execute de-
scriptions of other terms. Jay and Palsberg extend the factorisation calculus with additional
combinators necessary to develop a self-recogniser and a self-enactor. A self-recogniser recov-
ers the original term from its description, and a self-enactor executes a description to produce
a description of the result. Their notion of describing terms behaves well with respect to
their type system, again based on System F types, which of course does not have property
of decidable type assignment. The authors leave open the problem of showing the possibility
of self-interpretation for a statically-typed language with decidable type assignment.

We extend our structural type system to a reduced version of this calculus in which typed
self-interpretation is still possible (chapter 3). Many of the properties of the type system
for the factorisation calculus carry through here, including decidable type assignment. Our
main contribution is in showing this result, and hence answering the problem left open
by Jay and Palsberg. We find our calculus unwieldy, however, and have not yet devised an
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implementation of sufficient efficiency to compute the principal types of the self-interpreters.
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Chapter 1

Background

1.1 Combinatory Logic

A term rewriting system [9] is a collection of function symbols that combine to yield terms,
together with reduction rules for these function symbols which model function application.
Combinatory logic (CL) is one such term rewriting system, originally introduced by H.B.
Curry as a variable-free model of computation [2]. The function symbols are S and K, and
terms are defined thusly.

Definition 1.1.1. Terms t1, t2 are given by

t1, t2 ::= S | K | (t1t2)

The term (t1t2) is read as the application of t1 to t2. Application is by convention left-
associative, so for convenience leftmost, outermost parentheses are omitted.

Definition 1.1.2. Let t1, t2, t3 be arbitrary terms. Then rewrite rules for the calculus are
given by the reduction rules for the combinators

K t1 t2 → t1

S t1 t2 t3 → t1t3(t2t3)

and by the inductive definition

M → N =⇒

{
MP → NP

PM → PN

A term is called reducible if it (or any subterm) matches the pattern on the left-hand side
of some rewrite rule, and it reduces to (the corresponding substitution of) the right-hand
side. For example, if t1 is an arbitrary term, SKKt1 → Kt1(Kt1) → t1. The reflexive,
transitive closure of reduction defines an equivalence relation on terms, called extensional
equivalence or behavioural equivalence. So the term SKK is behaviourly equivalent to the
identity function, which we denote with I.

A term is in normal form if it is not reducible. A term is normalising if some reduction
sequence yields a normal form, and strongly normalising if all do. In this way a strongly
normalising term corresponds to a terminating program.
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Fundamentally, combinatory logic is equivalent in expressiveness to lambda calculus (LC)
[3]. Therefore, combinatory logic is Turing complete: it is able to represent any Turing-
computable function on the natural numbers.

1.2 The Curry Type Assignment System

Type systems define a notion of ‘typeability’ such that typeable terms are in some sense
well-defined. The Curry type assignment system [2, 3] was introduced by H.B. Curry for this
purpose, in the context of lambda calculus. LC terms are built from abstraction and appli-
cation, where intuitively abstraction builds functions and application applies abstractions to
arguments. Therefore a well-defined application t1t2 should require t1 to be an abstraction.
Type systems for LC, in particular Curry types, enforce this by distinguishing well-defined
terms in the type system.

The Curry type system applies equivalently to combinatory logic, and it is this context
that we will be concerned with.

Definition 1.2.1 (Curry Types). Types A,B are constructed from type variables φ and the
arrow constructor → by the following grammar

A,B ::= φ | A→ B

The arrow constructor is right-associative, so we omit rightmost, outermost brackets.

Definition 1.2.2. Let A,B,C be arbitrary types. Assignable types to a term are defined
by the following inference rules

(K): ` K : A→ B → A

(S): ` S : (A→ B → C)→ (A→ B)→ A→ C

(→ E): `M : A→ B ` N : A
`MN : B

Certainly the set of (Curry-) typeable terms is a strict subset of the set of all CL terms; the
term SII(SII), for example, cannot be typed. In fact a (Curry-) typeable term is strongly
normalising [9], so we say the type system itself is strongly normalising. Hence, the Curry
type system is restrictive enough to only type ‘terminating programs’. More expressive type
systems, such as the polymorphic System F (section 1.4), type a larger class of terms while
retaining this property.

An interesting property of this system is decidable type inference [8]; there exists a
terminating algorithm to decide whether a term is typeable and, if so, to return its most
general type. Such an algorithm is based on unification, that is, deciding if two types can be
made equal by means of type substitution. Robinson [8] showed that type unification returns
the most general unifier, upon which the principal type inference algorithm hinges.

1.3 Factorisation Calculi

Factorisation calculi, in particular SF -calculus, recently introduced by Jay and Given-Wilson
[5], are a family of combinatory calculi proposed as the fundamental model of pattern match-
ing. Combinatory logic, and equivalently lambda calculus, are able to identify extensional
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(behavioural) equivalence, but not intensional (structural) equivalence [5]. For example,
there is no term in CL to differentiate SKK and SKS, as both behave as the identity.
Perhaps surprisingly, such an equivalence function is Turing-computable.

Structure is built in combinatory logic through application, and the factorisation calculi
introduce a combinator F whose behaviour exposes this structure. Put another way, reduc-
tion of F is conditional on the structure of its first argument, differentiating between atomic
terms and applications. In such a way, Jay and Given-Wilson are able to develop a term in
SF -calculus to decide equality of arbitrary normal forms.

SF -calculus is the fundamental factorisation calculus, and of primary interest to us. We
present its construction here.

Definition 1.3.1. Terms t1, t2 in SF -calculus are given by

t1, t2 ::= S | F | (t1t2)

As usual, leftmost, outermost parentheses are omitted.

Definition 1.3.2. A factorable or matchable form is a term that is a partial application.
Therefore, ifM andN are arbitrary terms, the factorable forms are S, SM, SMN,F, FM,FMN .

Definition 1.3.3. The terms S, F are variously called atomic terms or operators. A com-
pound is a factorable application.

It is necessary to restrict the behaviour of F to factorable forms in order to preserve
confluence [5]. Reduction is then given by

Definition 1.3.4. Let O,M,N,X, Y, Z, P be arbitrary terms. Single-step reduction (→) of
terms is given by the following rewrite rules

SXY Z → XZ(Y Z)

FOMN →M if O atomic

F (PQ)MN → NPQ if PQ compound

and by the inductive definition

M → N =⇒

{
MP → NP

PM → PN

Reduction is defined as the reflexive, transitive closure of single-step reduction, denoted→∗,
or → when no distinction is necessary.

SF -calculus subsumes the expressiveness of combinatory logic, as K is behaviourly equiv-
alent to FF (and FS). The main result is the development of a term to decide equality of
normal forms (recall such a term does not exist in CL). There exists a term which compares
two atoms of the calculus for equality (eqatom [5]), and F is able to distinguish atoms from
compounds, so together these allow the recursive comparison of the structure of two terms.
In fact, SF -calculus can be extended with additional combinators (such as the constructor
C of SFC-calculus [5]) while preserving this property.
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1.4 System F Types for SF -Calculus

Consider extending the Curry type system to SF -calculus. This requires a principal type
for the factorisation combinator. In fact, no such principal type exists with Curry types.
Fundamentally, this is because the type of an application does not determine the type of its
factors; there is not enough information to construct a type for F . It is possible, however, to
type the factorisation combinator with a more expressive type system. Jay and Given-Wilson
present such a type using System F types.

System F [9] is a reformulation of Curry types to introduce universal quantification over
type variables. This yields a tremendous increase in expressibility. Types are extended to
allow universal quantification over type variables, and the inference rules are extended to
allow introduction and elimination of these quantifiers. This is sufficient to type F with type
scheme [3]

F : T → U → (∀Z.(Z → T )→ Z → U)→ U

The quantifier is necessary to represent the unknown type of the right-hand factor in the
compound.

Unlike the Curry type system, System F does not have the property of decidable type
inference [11]. In some sense, it is too expressive for this property to be retained. While it is
true that some fragments of System F preserve decidability (for example, the type system of
ML), the nested quantifier of the above type means none of these restrictions are sufficient.
It is this property, decidability of type inference, that we wish to preserve in developing a
type system for SF -calculus.

1.5 Self-Interpretation

A self-interpreter for a programming language is an interpreter constructed in the same
language that it is interpreting. Interpreters accept, as input, descriptions of a program,
which are constructed using a quote function [7], mapping programs to their description.
Interpreter behaviour, conditional on this input, fits broadly into one of two categories. A
recogniser recovers the original program from the quotation, and an enactor executes the
program description.

Self-interpreters are available for many programming languages [4] and for more funda-
mental models of computation, such as the lambda calculus. In the lambda calculus, self-
recognisers and self-enactors are themselves lambda terms. Self-interpretation in this context
has been extensively studied; Mogensen, for example, presents a self-enactor which executes
its argument in linear time [6]. Likewise, Berarducci and Böhm construct self-interpreters
as solutions to systems of equations in LC [1], solutions which surprisingly do not involve a
fixed-point combinator and have a normal form.

1.6 Typed Self-Interpretation

Most of the literature on self-interpretation, [1, 6] included, concerns untyped systems. Typed
self-interpretation is self-interpretation for statically-typed languages. This concept was first
discussed by Rendel et al. [7], who present a self-recogniser for a typed lambda calculus.
Additionally, they identify several desirable properties of a system exhibiting typed self-
interpretation. For example, representation ensures the process of quotation respects typing
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and furthermore that the quotation of distinct types have distinct types. Adequacy specifies
that every term of a quotation type is, in fact, a quotation.

Rendel et al. leave open the problem of specifying a self-enactor for a statically-typed
language.

1.7 Factorisation Calculi and Self-Interpretation

The factorisation combinator of SF -calculus (section 1.3) models the fundamental behaviour
of pattern matching. This behaviour is exploited by Jay and Palsberg with application to
typed self-interpretation [4]. They present an extension to SF -calculus, called the blocking
factorisation calculus, which admits a self-recogniser unquote and self-enactor enact. These
terms are typeable with a System F-like type system, an extension to that considered for
the factorisation calculi (section 1.4). Of course, such a type system does not yield decidable
type assignment.

We are concerned with modifying the blocking factorisation calculus to support a type
system with decidable type assignment. As such, we present an overview of the construction
of the self-recogniser and self-enactor of Jay and Palsberg, which we will appeal to many
times in the discussion of our work.

Definition 1.7.1. Terms t1, t2 in the blocking factorisation calculus are defined by

t1, t2 ::= S | F | K | B | Y | E | x | t1t2

The S and F combinators of SF -calculus are joined by the fixed-point combinator Y , a
quotation constructor B, an operator equality tester E, the usual K combinator (for typing
simplicity) and variables, denoted with lowercase characters.

Definition 1.7.2. The reduction rule for E is

EMNs t→

{
s if M = N are equal operators

t otherwise, if M,N factorable

The fixed-point combinator Y behaves as usual

Y t→ t (Y t)

Similarly, S, F and K follow their usual reduction rules; B is a constructor, and therefore
has no reduction behaviour.

Before continuing, we recap the syntactic sugar used in the construction of the self-
interpreters.

• the identity operator, I

• λ abstraction, written λx.t for some variable x and term t

• ‘let’ and ‘let rec’ bindings, written let x = s in t and let rec f = t

• extensions, a pattern matching construct, written p → s | t, where p, s are arbitrary
terms and t is an abstraction
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These constructs are de-sugared in the following way into the blocking factorisation cal-
culus. I abbreviates SKK. let x = s in t de-sugars to (λx.t) s, and let rec f = t to
Y (λf.t). Abstractions are rewritten as combinators in the calculus by the standard conver-
sion of lambda terms into combinatory logic:

λx.x = I

λx.t = Kt if x not free in t

λx.tx = t if x not free in t

λx. (ru) = S (λx.r) (λx.u) otherwise

Extensions are de-sugared as follows:

x→ s | r = λx.s

O → s | r = λx.E O x s (r x)

p q → s | r = λx.F x (r x) (λy. (p→ (q → s | r′ y) | r′) y)

where r′ = λy.λz.r (y z)

Extensions model pattern matching. They are applied to terms; if this argument matches
the pattern on the left-hand side of the arrow then the result is the (appropriate substitution
of) the pattern on the right-hand side. If no match is possible, the term is applied to the
right-hand side of the extension constructor (|). In the first case above, x is a variable, and
will match any term, resulting in s (note, x may be free in s, and so will be substituted
accordingly). Operator matching is straightforward using the operator equality combinator
E. When matching applications, first the left-hand side, then the right-hand side is checked
for match equality, and the appropriate action is taken depending on the outcome.

Example 1.7.3. Let t be a matchable form. Then

(Bx→ x | r) t→

{
t′ if t is of the form Bt′ for some t′

rt otherwise

This pattern matching construct is very powerful, and results directly from the expres-
siveness of F . Using this, the self-recogniser and self-enactor are constructed with relative
simplicity.

Quotation in the language is achieved by the following function:

quote (x) = x

quote (O) = BO

quote (MN) = quote (M) quote (N)

This method cannot be expressed as a term in the language using extensions, as it maps an
arbitrary term (not just a matchable form) to a quoted term. Note, however, that quoted
terms are always in normal form, and therefore are matchable [4]. This justifies the following
use of extensions in specifying a self-recogniser.
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let rec unquote =

B x→ x

|x y → (unquotex) (unquote y)

|x→ x

We omit the specification of the self-enactor here; our enactor (section 3.4) is a small
modification to that of Jay and Palsberg.

The blocking factorisation calculus uses System F types, extended from their use in
typing the original presentation of the factorisation calculus (section 1.4). Y,K are typed as
usual; B has principal type scheme A → A, the identity type. In particular, the type of a
term is the same as its quotation. This means that this system does not satisfy the adequacy
property of Rendel et al. (section 1.6), because any unquoted term has a quotation type. One
suggested refinement would be to introduce an ‘Expr’ type constructor in order to distinguish
the quotation types; the type scheme for B would then be A→ ExprA [4].

The combinator E, the operator equality tester, does not have a principal System F
type. Jay and Palsberg present a family of principal types for E, one for each operator
O 6= E. Certainly, EE is not typeable. This limitation is not too restrictive; the self-enactor
is constructed so as not to explicitly mention testing for E, and is therefore typeable.

Finally, unquote and enact are themselves typeable, and, as would be expected, have
identity types [4].
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Chapter 2

Structural Types for the Factorisation
Calculus

2.1 The Structural Type System

Our aim is to develop a type system for SF -calculus with decidable type inference. The
System F-based type system originally presented (section 1.4) does not have this property.
This is a consequence of the undecidability of inference in unrestricted System F, and the
need for the principal type for F to have a nested quantifier, making any known restriction
to recover decidability inapplicable. Intuitively, our approach is to extend the Curry type
system (section 1.2) to be able to capture the behaviour of the factorisation combinator.
Such an extension must be sufficiently minimal to preserve type inference decidability.

The requirement for the System F types for F to quantify the second argument is funda-
mentally because the type of an application does not determine the type of its factors. The
quantification then serves to cover all possible types for the argument (right-hand term) of
the compound. We eliminate this requirement by developing a type system which retains
the types of the factors explicitly in the type for an application. We do this by extending
Curry types with structural modifiers.

A structural modifier to a type indicates that a term of this type reduces to an application,
the argument of which has type specified by the structural modifier. This is denoted in the
following way. If A,B are types, then [A]B is a type, where [A] is the structural modifier. If
a term t has type [A]B, then t is an application t1t2, t2 has type A, and t1 has type A→ B
(following the (→ E) inference rule of Curry types). t is treated as though it has type B, but
with additional information. Note the type specified by the structural modifier is sufficient
to infer the types for both factors of the application.

Of course, structural modifiers may be compounded to form structural sequences, rep-
resenting a term constructed using multiple applications. Arguments to arrow types may
therefore have types prepended with arbitrary structural sequences. The arrow type does
not care how its argument is constructed, only that it has the correct functional behaviour,
so we need to be able to infer the type of an application independent of the structural mod-
ifiers of the argument. This is achieved using structural variables, denoted Ψ, which are
able, through substitution, to represent any structural sequence, potentially including other
structural variables.

Definition 2.1.1. Types, ranged over by A,B, and structural sequences, ranged over by Θ,
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are defined by the following grammar

A,B ::= Θτ

τ ::= φ | (A→ B)

Θ ::= ε | [A]Θ |Ψ

Let T denote the set of all types, and Tθ the set of all structural sequences. Let Tτ be the
set of terms in the grammar ranged over by τ above.

ε denotes the empty structural sequence. As usual, the arrow constructor is right-
associative, so we omit rightmost, outermost parentheses, where possible. By definition,
modifiers are read left-to-right, so informally a term t of type [B][A]C behaves as an appli-
cation t1t2t3, where t1, t2, t3 have types A→ B → C,A,B respectively.

We have restricted the form of structural sequences such that they may contain at most
one structural variable, at the end of the sequence. In brief, this restriction is necessary to
remove ambiguity in type inference, and is explained in more detail in section 2.3.

We require a notion of type substitution, both in order to define the inference rules for
our type system, as well as to reason about unification in the context of type inference.
A type variable substitution is the natural extension of a type variable substitution in the
Curry type system to our grammar, ensuring that the substitution acts recursively on any
structural modifiers. A structural variable substitution is the mechanism through which
structural variables can represent arbitrary structural sequences.

Definition 2.1.2. Let φ be a type variable, A ∈ Tτ . A type variable substitution S = (φ 7→
A) : (T → T ) ∪ (Tθ → Tθ) is a map satisfying

S(Θτ) = (SΘ)(Sτ)

Sφ′ =

{
A if φ′ = φ

φ′ otherwise

S(B → C) = (SB)→ (SC)

Sε = ε

S([B]Θ) = [SB](SΘ)

SΨ = Ψ

Let Ψ be a structural variable, Θ ∈ Tθ. A structural variable substitution S = (Ψ 7→ Θ) :
(T → T ) ∪ (Tθ → Tθ) is a map satisfying

S(Θτ) = (SΘ)(Sτ)

Sφ = φ

S(B → C) = (SB)→ (SC)

Sε = ε

S([B]Θ′) = [SB](SΘ′)

SΨ′ =

{
Θ if Ψ′ = Ψ

Ψ′ otherwise
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A substitution is the composition of type and structural variable substitutions. B ∈ T is
a substitution instance of A ∈ T if there exists a substitution S such that B = SA.

Note that substitutions cannot alter the form of a type, beyond structural variable sub-
stitution. For example, any substitution instance of a type with a leading structural modifier
will have a leading structural modifier. More generally, substitutions respect the grammar
of types and of structural sequences; they are homomorphisms.

We will always omit the empty structural sequence (ε) when presenting types. It is
important for the reader not to become confused by this. For example, the types φ1 and
[φ2]φ3 are not unifiable as there is no substitution mapping the empty structural sequence
(prepending φ1) to a structural modifier. In this type system, the most general type is Ψφ,
which though substitution can be mapped to any type. We will often denote this most
general type with Γ. The most general function type is Ψ3(Ψ1φ1 → Ψ2φ2) = Ψ3(Γ1 → Γ2).

We now introduce the inference rules for the type system. As usual, the inference rules
typing the combinators S and F will assign to these terms some substitution instance of
a principal type. The rule is less clear in the case of typing an application, however. It
seems natural for this rule to be the way in which structural modifiers are introduced into
application types. One such possibility is

(→ E)attempt:
`M : Θ(A→ B) ` N : A

`MN : [A]ΘB

In this way structural sequences are constructed through repeated application of (→
E)attempt. This inference rule does not yield a type system with certain ‘nice’ properties.
Specifically, it does not satisfy the subject reduction property (section 2.2). This is illustrated
in the following example.

Example 2.1.3. Consider the combinator K (an abbreviation of FF ). In this scheme we
would expect ` K : φ1 → φ2 → φ1. Consider terms t1, t2 with ` t1 : φ1, ` t2 : φ2. Then
by (repeated) application of (→ E)attempt, ` Kt1t2 : [φ2][φ1]φ1. However, Kt1t2 → t1, so,
typing cannot respect reduction, since to do so would require ` t1 : [φ2][φ1]φ1. This does not
necessarily hold.

Our approach, therefore, is to embed all structural information in the types of the combi-
nators themselves. The inference rule for application is then very similar to that of Curry’s
system. It is illustrative to consider the principal type for a less complicated combinator,
before presenting the cases for S and F.

Example 2.1.4. Consider K again. In the Curry type system, ` K : φ1 → φ2 → φ1. Let
` x : Ψ1φ1. Using structural types, we require the type for Kx to encode the type for x.
Therefore ` K : [Ψ1φ1](Ψ2φ2 → Ψ1φ1). Notice, if ` y : Ψ2φ2, ` Kxy : Ψ1φ1 (assuming an
inference rule for application similar to that of Curry’s system). So K would have principal
type Γ1 → [Γ1](Γ2 → Γ1) (Γi = Ψiφi), which respects the combinator’s reduction behaviour.

Using this approach we can straightforwardly obtain the principal type for S. However,
given the two different behaviours of F, conditional on the structure of the first argument,
the implication is that there is no single principal type. This is because the additional
structural information required by the type when the first argument is a compound leads to
an overspecification of the type when the first argument is atomic. We therefore present two
principal types for F, representing the two reduction rules.
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Definition 2.1.5. Define the principle types of the combinators to be

S : TS = TX → [TX ](TY → [TY ][TX ](Γ1 → Γ3)), where

TX = Ψ4(Γ1 → Ψ5(Γ2 → Γ3))

TY = Ψ6(Γ1 → Γ2)

Γi = Ψiφi

F : TFatom = (Γ1 → Γ2)→ [Γ1 → Γ2](Γ3 → [Γ3][Γ1 → Γ2](Γ4 → Γ3)), where

Γi = Ψiφi

F : TFcomp = TPQ → [TPQ](Γ4 → [Γ4][TPQ](TN → Γ3)), where

TN = Ψ5(TP → [TP ]Ψ5(Γ1 → Γ3))

TP = Ψ2(Γ1 → TPQ)

TPQ = [Γ1]Γ2

Γi = Ψiφi

Before further discussion, we present the inference rules for the type system. Because
they are not responsible for building structural information into types, their behaviours are
largely unchanged from the equivalent Curry type inference rules.

Definition 2.1.6. Let S denote any substitution. The inference rules for the type system
are

(S): ` S : STS
(Fatom): ` F : STFatom

(Fcomp): ` F : STFcomp

(→ E):
`M : Θ(A→ B) ` N : A

`MN : B

The two types for F hint at an intersection type system [10], but we do not require the
additional expressiveness of such a system in general, so we do not explore the connection
further here. The design of the principal types reflects the need to distinguish atomic terms
and factorable forms solely by their types. We formalise this notion in several lemmas.

Lemma 2.1.7 (Soundness of Substitution). Let S be a substitution. If ` M : A then
`M : SA.

Proof. By induction on the structure of a derivation.

1. (S), (Fatom), (Fcomp): Assume A has been derived from one of the inference rules
for either S or F . This rule is the only inference rule in the derivation structure.
Therefore A = S ′T∗, a substitution instance of some T∗. For any substitution S,
SA = S(S ′T∗) = (S ◦ S ′)T∗. As the composition of two substitutions is itself a
substitution, M : SA is derivable by the inference rule concerning T∗.
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2. (→ E): Assume A has been derived through the (→ E) inference rule, so M = PQ,
an application. There exists sub-derivations such that ` P : Θ(B → A), ` Q : B, for
some type B and structural sequence Θ. Consider a substitution S. The claim holds
inductively for the sub-derivations, so ` P : S(Θ(B → A)), ` Q : SB. By the definition
of substitution, ` P : (SΘ)((SB)→ (SA)). Therefore, by (→ E), ` PQ : SA.

Lemma 2.1.8. If a compound is typeable then its type has a leading structural modifier.
Symbolically, if PQ is a compound and ` PQ : A then A = [B]Θτ for some B,Θ, τ .

Proof. By definition 1.3.3, a compound is the application of a combinator F or S to either a
term, or the composition of two terms. By definition 2.1.6, this leading combinator is typed
with a substitution instance of TS,TFatom or TFcomp . The application of (→ E) one or two
times to these principle types yields a type with a leading structural modifier, a form which
is preserved by substitution (lemma 2.1.7).

Lemma 2.1.9. Let t be a matchable form, and suppose Ft is typeable. Then the leading F
is typed with a substitution instance of exactly one of the principal types for the factorisation
combinator. So TFatom, TFcomp are in some sense mutually exclusive.

Proof. As Ft is typeable, F must be typed with at least one of the inference rules (TFatom),
(TFcomp). We need to show that it cannot be both. The argument to F is either an operator or
a compound. In the latter case, by lemma 2.1.8, this first argument has a leading structural
modifier. In the former case, through inspecting the principal types for S and F , and knowing
that substitution instances of these types cannot introduce leading structural modifiers, the
first argument does not have a leading structural modifier. Each principal type for F matches
exactly one of these cases, so the corresponding inference rules apply with mutual exclusivity.

We end this section by presenting a straightforward result on the expressiveness of the
structural type system compared with the Curry type system.

Definition 2.1.10. The functional form of a structural type is the underlying Curry type
obtained by removing all structural sequences that occur in the type.

Example 2.1.11. Recall the combinator K is an abbreviation for FS. By application of
(→ E) to the principal types for F and S, clearly

` FS : [TS] (Γ3 → [Γ3] [TS] (Γ4 → Γ3))

This has functional form equivalent to the principal Curry type for K in SK-calculus, φ1 →
φ2 → φ1.

Remark 2.1.12. Our notion of type variable substitution (definition 2.1.2) is consistent with
the notion of substitution of Curry types. Technically, the processes of converting between
SF - and SK-terms, and applying type variable substitutions in either of these type systems,
commute.

In general, we may consider a typeable SK-term and ask whether it is typeable with
structural types (after K is de-sugared to FS). The following lemma says such a term is
always typeable with the same functional form as the Curry type.
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Lemma 2.1.13. Let t be an SK-term, and t′ the corresponding SF -term. Suppose ` t : A
in the Curry type system, so A is a Curry type. Then there exists a structural type A′ with
functional form A such that ` t′ : A′ in the structural type system.

Proof. By induction on the structure of an SK-term.

1. S: Let ` S : A, so A is some substitution instance of the principal (Curry) type for S.
This substitution induces a type variable substitution of structural types, say, S. Now,
the corresponding SF -term is simply S, and ` S : TS. Note TS has functional form
equal to the principal Curry type for S. By the inference rule for S, ` S : STS, and,
as substitution preserves functional form, STS has the same functional form as A.

2. K: By example 2.1.11, the translation of K into SF -calculus has the same functional
form as the principal Curry type for K. This is preserved through substitution, as
argued in the case for S.

3. t1t2: Assume inductively the result holds for SK-terms t1 and t2. Suppose ` t1t2 : A.
Then, by the (Curry) inference rule (→ E), there exists a type B such that ` t1 : B →
A, ` t2 : B. By induction, there exists structural types such that ` t′1 : Θ(B′ → A′),
` t′2 : B′ in the structural type system. Furthermore Θ(B′ → A′) and B′ have functional
form equal to their Curry equivalents. By the (→ E) inference rule, ` t′1t′2 : A′, which
must have functional form equivalent to A.

2.2 Subject Reduction

Our first result for the structural type system is that of subject reduction. A subject reduction
property is a crucial property of a type system. Informally, the property states that reduction
respects typing; equivalently, the result of running a program has the same type as the
program itself. Our proof is similar in structure to the corresponding result for the Curry
type system.

Theorem 2.2.1. Suppose t1 → t2 and ` t1 : A. Then ` t2 : A.

Proof. By induction on the definition of reduction (definition 1.3.4).
There are three base cases, corresponding to the three rewrite rules. Let O,M,N,X, Y, Z

be arbitrary terms.

1. (SXY Z → XZ(Y Z)): Suppose ` SXY Z : A. Because we have typed an application
we must have deduced the type A using (→ E), so ` SXY : Θ1(B → A) and ` Z : B
for some type B and structural sequence Θ1. Similarly ` SXY is an application, so
again by (→ E) we have ` SX : Θ2(C → Θ1(B → A)) and ` Y : C. By the same
reasoning ` S : Θ3(D → Θ2(C → Θ1(B → A))) and ` X : D. Now the inference rule
(S) dictates that the type for S must be a substitution instance of the principle type
for S, TS, so there exists a type E and structural sequences Θ4,Θ5,Θ6 such that

D = Θ4(B → Θ5(E → A))

C = Θ5(B → E)
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Necessarily Θ1,Θ2,Θ3 are fixed; Θ1 = [C][D],Θ2 = [D],Θ3 = ε.

Using the types for X, Y and Z derived above we can type the contractum with A as
follows

(→ E)
` X : Θ4(B → Θ5(E → A)) ` Z : B

` XZ : Θ5(E → A)

` Y : Θ5(B → E) ` Z : B

` Y Z : E
(→ E)

` XZ(Y Z) : A
(→ E)

2. (FOMN →M): Suppose ` FOMN : A, with O atomic. Through repeated, backward
reasoning of (→ E) we obtain ` N : B,` M : C,` O : D and ` F : Θ3(D → Θ2(C →
Θ1(B → A))) for some types B,C,D and structural sequences Θ1,Θ2,Θ3. O is atomic,
so is exactly either S or F . Therefore, by definition 2.1.6, D must be a substitution
instance of one of TS,TFatom or TFcomp . Any substitution instance of these principle
types must be of the form T1 → T2, without any leading structural modifier. Therefore
we deduce that the leading combinator F must have a type derived from TFatom , because
the type of the first argument in TFatom matches the form T1 → T2. By lemma 2.1.9,
this F cannot have a type derived from TFcomp . Crucially, TFatom forces C to be equal
to the resultant type A.

FOMN reduces to M , therefore the contractum is typeable with A.

3. (F (PQ)MN → NPQ): Suppose ` F (PQ)MN : A, where PQ is a compound. As in
the atomic case we deduce ` N : B,` M : C,` PQ : D and ` F : Θ3(D → Θ2(C →
Θ1(B → A))) for some types B,C,D and structural sequences Θ1,Θ2,Θ3. The term
PQ is a compound, so, by lemma 2.1.8, D has a leading structural modifier.

The leading F can therefore be typed with TFcomp , which requires its first argument to
have a leading structural modifier. Hence this combinator cannot be typed with TFatom

by lemma 2.1.9. Consequently, by the inference rule (TFcomp),

D = [E]Θ4G

H = Θ4(E → D)

B = Θ5(H → [H]Θ5(E → A))

Also, ` Q : E, as the application PQ is typeable.

The contractum NPQ is typeable with A as follows

(→ E)
` N : Θ5(H → [H]Θ5(E → A)) ` P : H

` NP : [H]Θ5(E → A) ` Q : E

` NPQ : A
(→ E)

4. Inductively assume the claim holds for terms M and N , such that if M → N and
` M : A, then ` N : A. Let P be an arbitrary term and consider the two cases of the
inductive definition 1.3.4

(a) (M → N =⇒ PM → PN): Assume ` PM : B. Then, by (→ E), ` P : Θ(A→
B) for some A,Θ. By the induction hypothesis ` N : A, so, by (→ E), ` PN : B.
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(b) (M → N =⇒ MP → NP ): Assume ` MP : B. Then, by (→ E), A is really
Θ(C → B) for some C,Θ, and ` P : C. MP reduces to NP , and by the induction
hypothesis ` N : Θ(C → B), so, by (→ E), ` NP : B.

Corollary 2.2.2. Reduction (→∗) preserves typing.

With this fundamental result we are ready to introduce the type inference algorithm for
the type system.

2.3 Type Inference

In this section we present the type inference algorithm for the structural type system, and
prove soundness and completeness properties for it. This exactly shows that type assignment
is decidable. This is perhaps unsurprising considering that our type system is based on Curry
types, a very restrictive type system.

Type inference for Curry types yields the principal type for a term; the principal type is
the most general type with which the term can be typed, and all other typing possibilities
can be obtained from this through substitution. By virtue of there being two principal types
for F , type inference in our type system will yield a finite set of principal types (bounded in
size by the number of occurrences of the factorisation combinator in the term), the elements
of which are non-unifiable principal types. The inference algorithm hinges on an algorithm
to unify types, which we present also.

Type unification is a process which attempts to make equal two types through substi-
tution. If unification is successful, this substitution is returned. Unification for structural
types is the natural extension of unification for Curry types (originating from Robinson’s
work [8]) to structural types. In this instance, we require two algorithms, one to unify struc-
tural sequences and one to unify types themselves. Reflecting the grammar of types, these
algorithms are mutually-recursive.

Before stating the algorithms it is useful to explain how their development dictated the
grammar of structural sequences (definition 2.1.1). We require that structural variables occur
at most once in a sequence, at the end. This limitation simplifies unification. Consider unify-
ing an unrestricted structural sequence of two structural variables Ψ1Ψ2, with the structural
sequence [A][B] (A,B arbitrary types). Unification is possible; there are three unification
possibilities:

Ψ1 7→ ε,Ψ2 7→ [A][B]

Ψ1 7→ [A],Ψ2 7→ [B]

Ψ1 7→ [A][B],Ψ2 7→ ε

There is no ‘correct’ choice here; any of the possibilities may cause unification failure
at a later stage of the algorithm. Of course, all possibilities could be tested, but this is
computationally expensive. It is sufficient to restrict the form of structural sequences as we
have done, which eliminates this problem, while retaining typeability of S and F .
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Definition 2.3.1 (Structural Type Unification). Unification of types is achieved through
the following algorithms. These algorithms yield substitutions. Here, a type variable φ
(equivalently, a structural variable Ψ) is ‘contained in’ a type A, denoted φ ∈ A, if it occurs
anywhere in the structure of A.

unify (Θ1A
′) (Θ2B

′)

= (unify SA′ SB′) ◦ S
where

S = unifySeq Θ1 Θ2

unify φ φ

= Id

unify φ B′

= (φ 7→ B′) if φ 6∈ B′

unify (A1 → A2) (B1 → B2)

= (unify SA2 SB2) ◦ S
where

S = unify A1 B1

unify A B

= unify B A

unifySeq ε ε

= Id

unifySeq [A]Θ1 [B]Θ2

= (unifySeq SΘ1 SΘ2) ◦ S
where

S = unify A B

unifySeq Ψ1 Ψ1

= Id

unifySeq Ψ Θ

= (Ψ 7→ Θ) if Ψ 6∈ Θ

unifySeq Θ1 Θ2

= unifySeq Θ2 Θ1

Failure in the unification algorithm is implicit. For example, unification will not succeed
between a structural modifier [A] and the empty structural sequence ε in unifySeq, or between
φ and φ→ φ in unify.

Unification has two key properties detailed in the following lemmas.

Lemma 2.3.2. If S = unifyAB is the successful unification of types A and B, then SA =
SB.

Proof. By straightforward induction on the structures of A and B.

Lemma 2.3.3. S = unifyAB is the most general unifier of A and B. Equivalently, for any
substitution S1 such that S1A = S1B, there exists a substitution S2 such that S1 = S2 ◦ S.

We do not present a proof of this here. We argue that this holds for reasons similar to
the equivalent result for Curry types (see, for example, [8]).

We are now in a position to present the principal types algorithm. As stated before, this
returns a set of principal types. The size of this set depends on the number of successful
unifications when typing applications, although it is bounded by 2n, where n is the number
of occurrences of F in the term.
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Definition 2.3.4 (Principal Types Algorithm).

PT : Term→ P (T )

PT(S)

= fresh {TS}
PT(F )

= fresh
{
TFatom , TFcomp

}
PT(MN)

= {SΓ1 | (A,B) ∈ S1 × S2, S = unifyA Ψ2(B → Γ1), fresh Ψ2, fresh Γ1,Γ1 = Ψ1φ1}
where

S1 = PT(M)

S2 = PT(N)

Type inference is decidable if this algorithm is both sound and complete. Soundness
ensures that the resulting types of the algorithm correctly type the term; completeness that
the algorithm will return the most general type of a typeable term.

Theorem 2.3.5 (Soundness of Type Inference). If T = PT M is the set of principal types
for a term M , then ∀A ∈ T `M : A.

Proof. By induction on the structure of the term M .

1. S: PT S = {TS}. Via the (S) inference rule, ` S : TS.

2. F : PT F =
{
TFatom , TFcomp

}
. Through application of the (Fatom) and (Fcomp) inference

rules F is certainly typeable with TFatom and TFcomp .

3. PQ: Assume inductively the proposition holds for terms P and Q. Let T = PT (PQ)
and A ∈ T . We require ` PQ : A. As A ∈ T there exists types B ∈ PT P , C ∈ PT Q
and Γ1 = Ψ1φ1 such that A is some substitution instance of Γ1. This substitution,
S, is the (successful) unification of B and Ψ2(C → Γ1) (for some Ψ2). So A = SΓ1.
Additionally, SB = S(Ψ2(C → Γ1)) = (SΨ2)(SC → SΓ1), by lemma 2.3.2.

Inductively, ` P : B, and therefore ` P : SB (by 2.1.7). Hence ` P : (SΨ2)(SC →
SΓ1). Similarly, ` Q : C and ` Q : SC. Finally, by the (→ E) inference rule,
` PQ : SΓ1.

Theorem 2.3.6 (Completeness of Type Inference). If `M : A then there exists B ∈ PTM
and substitution S such that A = SB.

Proof. By induction on the structure of the term M .

1. S: If ` S : A, then the corresponding derivation tree must consist of a single instance
of the (S) rule. Hence A is a substitution instance of the principal type for S, TS. By
definition TS ∈ PTS, so A is a substitution instance of a member of the set of principal
types for S.
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2. F : If ` F : A, then A must be derived from exactly one of (Fatom) and (Fcomp). There-
fore F is a substitution instance of either TFatom or TFcomp . These are the principal types
for F and are exactly the types returned by PTF , so in all cases A is a substitution
instance of some member of PTF .

3. PQ: Assume inductively terms P and Q satisfy the proposition. If ` PQ : A, then A
must be derived using (→ E). Therefore ` P : Θ(C → A) and ` Q : C for some type
C and structural sequence Θ. Furthermore, by induction, there exists types D,E and
substitutions S1, S2 such that D ∈ PTP , S1D = Θ(C → A), E ∈ PTQ and S2E = C.

Consider the result of unifying D with Ψ2(E → Γ1) (Ψ2,Γ1 = Ψ1φ1 fresh). This
result must be successful; these types are certainly unifiable with the substitution
S = (Ψ2 7→ Θ)◦(Γ1 7→ A)◦S2◦S1. Therefore, T = unify D Ψ2(E → Γ1) is well defined.
So Tφ ∈ PTPQ. Furthermore, as T is the most general such unifier, S = S ′ ◦ T for
some substitution S ′. Hence

Θ(C → A) = SD

= (S ′ ◦ T )D

= ((S ′ ◦ T )Ψ2)((S
′ ◦ T )E → (S ′ ◦ T )Γ1)

Consequently, A = (S ′ ◦ T )Γ1. As TΓ1 ∈ PTPQ, A is the substitution instance of an
element of the set of principal types.
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Chapter 3

Self-Interpretation for a Calculus with
Decidable Type Assignment

In this chapter we build on the work of Jay and Palsberg concerning typed self-interpretation
with factorisation calculi (section 1.7). Their calculus, the blocking factorisation calculus,
extends SF -calculus with a quote constructor B, a fixed-point combinator Y and the operator
equality test E. This setting is sufficient to develop a self-recogniser unquote and self-enactor
enact for quoted terms. Furthermore, the System F -like type system does not assign a
universal type to quotations; quoting a term preserves its type. In this way unquote and
enact are typed self-interpreters. Of course, the polymorphic type system does not have the
property of decidable type assignment.

Our contribution lies in modifying the blocking factorisation calculus in order to elim-
inate the need for the combinator E. By doing this, we are able to extend the structural
type systems from SF -calculus to this setting, preserving decidability of typeability. Slight
modification to the construction of unquote and enact yield self-interpreters for a typed
calculus with decidable type assignment.

We begin by introducing our modification to the blocking factorisation calculus. Note
that we use the syntactic sugar of Jay and Palsberg freely here (section 1.7).

3.1 Reduced Blocking Factorisation Calculus

Our modification to the calculus of Jay and Palsberg, the blocking factorisation calculus,
consists of eliminating the combinators E and K and removing variables from the language.
Eliminating K does not reduce the expressiveness of the calculus, as K is behaviourly equiv-
alent to FF or FS (section 1.3); it reduces the complexity of the type system at the expense
of larger terms for the recogniser and enactor. Similarly, variables are unnecessary to con-
struct the interpreters, so we remove them from the calculus for simplification. Note that our
syntactic sugar (section 1.7) uses variables; these variables are not present after de-sugaring
(since all terms are closed).

We delay the discussion of why we need to eliminate the operator equality tester E from
the language until we introduce our structural type system in this context (section 3.3).
Suffice to say, this is crucial to preserving the property of type assignment decidability in the
type system. With this omission we present the definition of the modified calculus, which
we refer to as the reduced blocking factorisation calculus or SFBY -calculus.
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Definition 3.1.1. An operator O is given by

O ::= S |F |Y |B

S, F are the combinators of SF -calculus. Y is a fixed-point combinator, and B is the
block or quote constructor.

Definition 3.1.2. Terms t1, t2 are defined by

t1, t2 ::= O | t1t2

Our notions of matchable forms (definition 1.3.2) and operators and compounds (defini-
tion 1.3.3) carry over from SF -calculus.

Definition 3.1.3. The reduction rules for the language are those of the SF -calculus (defi-
nition 1.3.4), extended with the reduction rule for the fixed-point combinator

Y t→ t (Y t)

In particular, B has no reduction rule; it is a constructor.

K abbreviates to FS; I to SKK = S(FS)(FS).

3.2 Structural Types for SFBY -Calculus

We extend our structural type system for the factorisation calculus to the blocking factori-
sation calculus. The grammar of types is unchanged (definition 2.1.1), as is our notion of
substitution.

Definition 3.2.1. The principal types for the operators are as before (definition 2.1.5),
extended with

Y : TY = Ψ2(Γ1 → Γ1)→ Γ1

B : TB = Γ1 → Γ1

Definition 3.2.2. The inference rules for the type system extend those of SF -calculus
(definition 2.1.6) with the following. Let S denote any substitution.

(Y ): ` Y : STY
(B): ` B : STB

In introducing the fixed-point combinator we lose a property of the type system. In SF -
calculus, we could distinguish between operators and compounds by inspecting their types;
a term is typeable with type of the form (A → B) (arrow type with no leading structural
modifier) only if it is (β-equivalent to) an operator. This property does not hold for terms in
SFBY -calculus. For example, ` Y I : φ→ φ is a term with an arrow type without a leading
structural modifier, and is not equivalent to any operator.
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Notice also the type for B is the identity type, the same as that of Jay and Palsberg
(section 1.7). We have not introduced an Expr type constructor into the grammar of types
in order to distinguish quotations in the type system. As noted in [4, 7], this construction
is desirable assuming it satisfies the properties of representation and adequacy (section 1.6).
Unfortunately, it is not possible for adequacy to hold using the same construction of quota-
tions as in the blocking factorisation calculus. This is because we would require a term such
as B (Y I) not to be typeable (it is not a quotation), but all terms BO to be typeable. How-
ever there is no way to distinguish operators with the type system here. Therefore we omit
a distinct family of quotation types from the type system; our notion of quotation preserves
the type of the term being quoted, as in the type system of section 1.7.

All of our fundamental results about structural types for SF -calculus extend to this
setting. Most importantly, subject reduction carries over here. The proof follows that of the
result for SF -calculus (theorem 2.2.1); the result clearly holds for the additional base case
of Y (recalling B has no reduction rules).

The principal types algorithm extends naturally, too; the principal types for the new
operators are simply fresh instances of their principal types. Soundness and completeness
of type inference follow; the proofs are simple extensions of theorems 2.3.5 and 2.3.6 to deal
with the new base cases.

3.3 Operator Equality in SFBY -calculus

The original formulation of the blocking factorisation calculus requires a combinator E which
tests for equality of operators. It is of course necessary to be able to distinguish operators
in the calculus for the purpose of interpretation. Indeed, with the factorisation combinator
able to decompose compounds (and all quotations are compounds), these two combinators
encapsulate the fundamental behaviour of interpretation. E, however, cannot have a princi-
pal type (or set of principal types), either with System F types [4] or with our structural type
system. This is unsurprising; type systems identify behaviour of terms and cannot in general
distinguish individual terms. Without a principal type for E type inference for arbitrary
terms is not possible.

We have developed a term in SFBY -calculus which behaves identically to E. In this
way we do not need to introduce it as a combinator and avoid the associated difficulties
with typing, and yet are able to construct unquote and enact of the blocking factorisation
calculus. Terms for testing operator equality in simpler calculi, such as SF - and SFB-calculi,
are well documented in the original presentation of the factorisation calculus [5]. This forms
the basis of our work here.

Definition 3.3.1. Define the terms

is(B or Y) = λx.F (x(FK)IK)(KI)(K(KK))

is(B not Y) = λx.F (x(KS))(KI)(K(KK))

is(F not S) = λx.x(KI)(K(KI))K

is(B or Y) is identically ‘is(C)’ of SFC-calculus [5], which maps B (the constructor
C in this context) to K and S, F to KI. is(F not S) is ‘is(F)’ of SF -calculus, and maps
F to K, S to KI. We leave it to the reader to verify is(B or Y) Y → K, is(B not Y)

B → K and is(B not Y) Y → KI.
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These definitions are sufficient to construct terms which distinguish the operators of
our calculus; for each operator O, is(O) maps O to K and all other operators to KI.
In the following we use the if-then-else and not constructs whose first arguments are
the truth values K and KI. if (B) then (P ) else (Q) de-sugars to BPQ and not (B) to
if (B) then (KI) else (K).

Definition 3.3.2.

is(B) = λx.if (is(B or Y)x) then (is(B not Y)x) else (KI)

is(Y) = λx.if (is(B or Y)x) then (not (is(B not Y)x)) else (KI)

is(F) = λx.if (is(B or Y)x) then (KI) else (is(F not S)x)

is(S) = λx.if (is(B or Y)x) then (KI) else (not (is(F not S)x))

Finally, we can construct a term eqatom which decides equality of operators in SFBY -
calculus.

Definition 3.3.3.

eqatom = λxy.if (is(S)x) then (is(S) y) else

if (is(F)x) then (is(F) y) else

if (is(B)x) then (is(B) y) else

(is(Y) y)

We can now build a term behaviourly equivalent to the E combinator of the blocking
factorisation calculus (definition 1.7.2).

Definition 3.3.4. Define the operator equality term E for our calculus as

E = λxyst.Fx (Fy (if (eqatom x y) then (s) else (t)) (K (Kt))) (K (Kt))

The intended behaviour of E is to reduce to s when x and y are equal operators, and to
t when x and y are any other matchable forms. The factorisation behaviour of F is used to
test whether x and y are operators. If so, eqatom is used to test their equality, otherwise, t
is returned. This is exactly the behaviour of the E combinator of Jay and Palsberg.

Lemma 3.3.5. E is behaviourly equivalent to the E operator of the blocking factorisation
calculus, i.e.

EMN s t→

{
s if M = N are equal operators

t otherwise, if M,N factorable

3.4 unquote and enact in SFBY -calculus

Given the E constructed in section 3.3, we are able to present a self-recogniser and self-
enactor for our calculus using the construction of Jay and Palsberg (section 1.7). E is
necessary when de-sugaring extensions (see [4]). The construction is in fact slightly simpler
owing to the reduced number of terms and the lack of variables in the reduced blocking
factorisation calculus.
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Definition 3.4.1. Quotation is achieved by the following function

quote (O) = BO

quote (PQ) = quote (P ) quote (Q)

Definition 3.4.2. The self-recogniser unquote for the reduced blocking factorisation calculus
is given by the term

let rec unquote =

B x→ x

|λx.F xS (λyz.unquote (y) unquote (z))

Recalling the structure of a quotation, the first pattern in the definition of unquote

extracts an operator from its quoted form. The second half of the pattern, an abstraction,
will receive the quotation of an application, which is itself an application. The abstraction
simply decomposes this application and computes unquote on the factors recursively. The
choice of S as the second argument to F is arbitrary as it is never used; the first argument
is always a compound so the atomic reduction rule for F is never applicable.

The behaviour of unquote is characterised by the following lemma [4]

Lemma 3.4.3. For all terms t, unquote (quote (t))→ t.

The self-enactor is exactly that for the blocking factorisation calculus, with the cases for
K and E removed. A detailed discussion of its operation of can be found in [4].

Definition 3.4.4. The self-enactor enact for the calculus is given by the term

let rec enact =

let unblock = B x→ x | x→ x in

let evalop = x→ unblock (enact x) in

let enact1 =

B Y x1 → enact (x1 (BY x1))

|B S x1 x2 x3 → enact (S x1 x2 x3)

|B F x1 x2 x3 → enact (F (evalop x1)x2 x3)

|x1 → x1

in

x1 x2 → enact1 (enact x1 x2)

|x1 → x1

The behaviour of this enactor is also characterised by Jay and Palsberg [4]

Lemma 3.4.5. For all terms t, u such that t→ u, enact (quote (t))→ quote (u).

Hence, the above constitutes a self-recogniser and self-enactor for SFBY -calculus. Given
that the structural type system for this calculus preserves type assignment decidability (sec-
tion 3.2), these are self-interpreters for a statically-typed language with decidable type as-
signment!
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3.5 Typing unquote and enact

The next logical step is to try and type unquote and enact in the type system. Using
System F types, Jay and Palsberg could very easily derive additional inference rules to type
their syntactic constructs (abstraction, extensions etc.). These types are then preserved by
the process of de-sugaring the constructs. The situation is not so straightforward using
structural types, however. For example, it is not possible to derive a general typing rule
for abstractions. Such a rule would behave as follows; note Γ denotes a typing context for
assigning types for variables.

(→ I)attempt:
Γ, x : A `M : B

Γ ` λx.M : Θ(A→ B)

But what is Θ? Actually, it is not possible to know the form of Θ; it depends on the
structure of M , but this cannot be captured by a local typing rule. In some sense there is
not enough information to rebuild the structural sequence of the functional type. This is not
surprising, but it does mean that there is no way of analytically deriving the types for the
sugared forms. In other words, there is no way of reasoning about the types for unquote

and enact in their concise forms; the de-sugared terms, however, are built from hundreds of
SFBY -combinators and are too large to type by hand.

The obvious alternative, therefore, is to leverage type inference in our type system in
order to compute the types of unquote and enact for us. At the time of writing we have not
been able to compute the types for the self-interpreters. We have not even computed the type
for E! Our implementation cross-compiles the sugared terms into pure SFBY -terms, and
then computes the principal types using straightforward implementations of the principal
types and unification algorithms. We have found inference (with our implementation) to
be computationally-intensive, surprisingly so. This is, in part, due to the growth of the set
of principal types for a term, which grows exponentially, in the worst case, in the number
of occurrences of F . Even our term E is build from several hundred SFBY -combinators,
so practically is not yet typeable. Therefore, while this system shows there exists self-
interpreters for a statically-typed calculus with decidable type assignment, actually typing
terms is computationally expensive, which limits any practical use.

3.6 Implementation

As stated above, as we are unable to derive inference rules for our syntactic constructs, our
implementation first cross-compiles a sugared term into a pure SFBY -term, and then at-
tempts to type this term using the principal types algorithm. The cross-compiler, or parser,
is generated using Happy, a parser generator for Haskell. The type inference implementa-
tion, also written in Haskell, represents substitutions as associative arrays, mapping type or
structural variables to types in the grammar. Multiple, mutually-recursive methods are then
required to apply substitutions to types, as dictated by the grammar of types. It is then
straightforward to implement the unification and type inference algorithms of section 2.3.

With further thought, and an investigation into more efficient techniques for type infer-
ence implementation, it is likely better performance could be achieved beyond that which
the current program exhibits. So far we have only been able to type the ‘is(O)’ constructs
(definition 3.3.2), whose principal types are as expected. Determining a principal type for
eqatom (definition 3.3.3) has proved to be too computationally demanding.
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Evaluation

Our structural type system is a natural extension to Curry types in order to type the fac-
torisation combinator. Certainly, it is neither as simple in definition nor as powerful in
expressiveness as polymorphic type systems; the expressiveness is, informally, just enough
to type F. The grammar of types is complicated by the need for deterministic unification of
structural sequences, and this complicates the principal types for the combinators, making
them unwieldy. However, the theory of the type system is straightforward enough, and has
the key property of decidable type assignment we desire.

The practical limitations of the type system become clear when we extend it to the
reduced blocking factorisation calculus. By following the approach of Jay and Palsberg it is
entirely necessary to eliminate the E combinator, as it has no principal type, either in the
structural type system or a polymorphic type systems such as System F. We successfully
show E ’s behaviour can be captured with an SFBY -term, although the corresponding term is
built from several-hundred operators, bloating the de-sugared terms for unquote and enact.
Really, our system shows that constructing self-interpreters for a statically-typed language
with decidable type assignment is possible, although the construction is not yet practically
useful. It is unclear how to efficiently type the interpreters (or even efficiently type SF -
terms).

By using the same construction of quotations as Jay and Palsberg, we are unable to
develop a system satisfying the adequacy property of Rendel et al., and as such do not
introduce a desirable expression type constructor to distinguish quoted terms. This is a
consequence of the construction, and not a consequence of any type system, however.
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Conclusions and Future Work

The process of developing the type system, and its application to self-interpretation, has
raised several interesting questions beyond the scope of the work here. It would be very
insightful to characterise the expressiveness of the structural type system; equivalently, to
investigate its corresponding logic. We know that this expressiveness is at least as great as
the Curry type system, and strictly less than a polymorphic type system such as System F; a
precise characterisation, however, would require techniques far different from any used here.

Simply working with the factorisation calculi yields questions not answered in the original
presentation. For example, is SF -calculus with System F types strongly normalising? Is SF -
calculus with the structural type system strongly normalising? We believe both these cases
to be almost certainly true.

Certainly, aspects of our approach may be refined upon or explored further. Our restric-
tion to the grammar of structural sequences is necessary to ensure deterministic unification of
structural variables, but is it possible to be less restrictive, to have a more general grammar,
while still preserving soundness and completeness results for the principal types algorithm?
With respect to our work on self-interpretation, is it possible to implement the principal
types algorithm for SFBY -calculus efficiently? Regardless, our type system does not work
well with the syntactic sugar used to construct unquote and enact; does there exist a type
system for the blocking factorisation calculus with decidable type assignment, where type
inference is practically simple?

Finally, it is necessary to verify formally the most general unifier result for our type
inference algorithm. While we would be surprised if this result didn’t hold, it does underpin
the completeness result for the type inference algorithm, which is a necessary result for our
work on self-interpretation.
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