Approximation Semantics and Expressive Predicate
Assignment for Object-Oriented Programming
(Extended Abstract)

R.N.S. Rowe and S.J. van Bakel
{r.rowe,s.vanbakel}@imperial.ac.uk

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

Abstract. We consider a semantics for a class-based object-oriemsted!as
based uporapproximation since in the context ofCc such a semantics enjoys
a strong correspondence withtersection type assignment systeme also de-
fine such a system for our calculus and show that sinisndand complete We
establish the link with between type (we use the terminologylicatehere) as-
signment and the approximation semantics by showing aroajppation result,
which leads to a sufficient condition for head-normalisaémd termination.

We show the expressivity of our predicate system by definimgracoding of
Combinatory Logic (and so alse) into our calculus. We show that this encoding
preserves predicate-ability and also that our system ctaarses the normalising
and strongly normalising terms for this encoding, demartistg that the great
analytic capabilities of these predicates can be appliexbto

1 Introduction

Semantics is a well established area of research for botttifural and imperative
languages; for the functional programming language sieasitics is mainlydeno-
tational, based on Scott’s domain theory [25], whereas for impezdtimguages it is
mainly operational[24]. In this paper, we present the first results of our redear the
direction of denotational, type-based semantics for dijeented o) calculi, which
we aim to extend towards semantics-based systems of atistexpretation.

Over the years many expressive type systems have been dafidddvestigated.
Amongst those, thimtersection type disciplin@TD) [14, 15, 11, 2] stands out as a sys-
tem that is closed undg-equality and gives rise to a filter model; it is defined as an
extension of Curry’s basic type system for the Lambda Cak@lc) [10], by allow-
ing term-variables to have many, potentially non-unifiatylees. This generalisation
leads to a very expressive system: for example, terminétemormalisation) of terms
can be characterised by assignable types. Furthermoegeséation type-based models
and approximation results show that intersection typesriesthe full semantical be-
haviour of typeable terms. Intersection type systems hiseeleeen employed success-
fully in analyses for dead code elimination [17], stricteesmalysis [20], and control-
flow analysis [9], proving them a versatile framework forgeaing about programs.
Inspired by this expressive power, investigations havertgdace of the suitability of

intersection type assignment for other computational rsoder example, van Bakel
and Fernandez have studied [6, 7] intersection types indheegt of Term Rewriting
Systems{RsS) and van Bakel studied them in the context of sequent cgikpli

Also theobject-orientedprogramming paradigm has been the subject of extensive
theoretical study over the last two decades.languages come in two broad flavours:
the object(or prototype) based, and tlbassbased. A number of formal models has
been developed[13, 12,21, 18, 1, 19]; for examplegthalculus [1] and Featherweight
Java (FJ) [19] give elementary models for object based aas$ddasedo respectively.

In an attempt to bring intersection types to the contexbof in [5] van Bakel and
de’Liguoro presented a system for tgealculus; it sees assignable types agxecu-
tion predicate or applicability predicaterather than as a functional characterisation as
is the view in the context afc and, as a result, recursive calls are typed individually,
with different types. This is also the case in our system.

In the current paper we aim to define type-based semanticddss-basedo, so
introduce a notion of intersection type assignment for danguages (we will use the
terminologypredicateshere, to distinguish our notion of types from the traditioma:
tion of class types). In order to be able to concentrate oreisential difficulties, we
focus on Featherweight Java [19], a restriction of Java défiry removing all but the
most essential features of the full language; Featherwé@mla bears a similar relation
to Java as C does to languages such as ML and Haskell; in fact, we will sihéavbe
Turing complete. We will show that the expected propertiea system based on in-
tersection predicates€. soundnesandcompletenegsold, opening up the possibility
to define a predicate-based semanticsfoin future work, we will look at adding the
normal programming features, and investigate which of thamroperties we show in
this paper are still achievable.

We also define a notion @fpproximantfor F3programs as a finite, rooted segment
— that cannot be reduced — of a [head] normal form; we go ondw sinapproxima-
tion resultwhich states that, for every predicate assignable to a temuii system, an
approximant of that term exists which can be assigned the gaadicate. Interpreting
aterm by its set of approximants givesapproximation semantiand the approxima-
tion result then relates the approximation and the preelibased semantics. This has,
as far as we are aware, not previously been shown for a model.dfhe approximation
result allows for a predicate-based analysis of termimatio

As is also the case farc andTRS, in our system this result is shown using a no-
tion of computability; since the notion of reduction we cioles isweak as in [7] to
show the approximation result we need to consider a notiordiiction on predicate
derivations. We illustrate the expressive power of our dale by showing that it is
Turing complete through an embedding of Combinatory Logand thereby also the
embedding of.c. We also recall the notion of Curry type assignment, for \Wwhie
can easily show a principal predicate property and showdigate preservation result:
types assignable fo-terms in Curry’s system of simple type assignment corredfio
predicates in our system that can be assigned to the inteddréerms. This is easily
extended to the strict intersection type assignment sy&tenc [2]; this then implies
that the collection of predicate-abte expressions correspond to theerms that are
typeable using intersection typé®. all semantically meaningful terms.

In [8] we presented a similar system which here has been Hietplin particular,
we have removed thield updateeature (which can be modelled using method élls
which gives a more straightforward presentation of systedhpaoofs. We have decou-
pled our intersection predicate system from the existingstype system, which shows
that the approximation result does not depend on the classstystem in any way.

For lack of space, proofs are omitted from this paper; wer tbfeinterested reader
tohttp://www.doc.ic.ac.uk/~rnr07 for a version of this paper with detailed proofs.

2 The CalculusFJ®

In this section, we will define our variant of Featherweigatal It defineslasses
which represent abstractions encapsulating both datee¢sto field§ and the opera-
tions to be performed on that data (encodednashods Sharing of behaviour is ac-
complished through thmheritanceof fields and methods from parent classes. Com-
putation is mediated binstanceof these classes (calleject3, which interact with
one another byalling (or invoking methods and accessing each other’s (or their own)
fields. We have removed cast expressions since, as the s8] themselves point
out, the presence aowncastss unsound; for this reason we call our calculgg’. We
also leave the constructor method as implicit.

Before defining the calculus itself, we introduce notatiomepresent and manipu-
late sequencesf entities which we will use in this paper.

Definition 1 (Sequence Notation). We usen (n € IN) to represent the list,1..,n. A
sequencey,...,an is denoted bya,; the subscript can be omitted when the exact num-
ber of elements in the sequence is not relevant. We aréea; whenever there exists
somei € {1,...,n} such that = a. The empty sequence is denotedebgnd concate-
nation on sequences lay a'.

We use familiar meta-variables in our formulation to rangeralass names (C and
D), field names {), method nameaf) and variablesx). We distinguish the class name
Object (which denotes the root of the class inheritance hieranstafliprograms) and
the variablethis (which is used to refer to the receiver object in method bs)die

Definition 2 (F3® Syntax). FJ* programsP consist of class tablec7 , comprising the
class declarationsand arexpressior to be run (corresponding to the body of tha n
method in a real Java program). They are defined by:

e = X|new C(&)|e.f]|em(d)

fd = Cf;

md == D m(Cy X1, ..., Ch Xn) { return e; }

cd = class C extends C' { fd md } (C#0bject)
cT = cod

P = (c7,e)

1 We can simulate field update by adding to every class C, fdr #eld f; belonging to the class,
a method Cupdate_fij(x) { return new C(this.fq,...,X,...,this.fq); }.
2 In the sense that typeable expressions can get stuck aneinti

From this point, all the concepts defined are program deperfdarametric on the
class table); however, since a program is essentially a éxditly, it will be left as an
implicit parameter in the definitions that follow. This isrd®in the interests of readabil-
ity, and is a standard simplification in the literatueeg.[19]). Here, we also point out
that we only consider programs which conform to some semsill-formedness cri-
teria: no cycles in the inheritance hierarchy, and fieldsraathods in any given branch
of the inheritance hierarchy are uniquely named. An exoeps made to allow the
redeclaration of methods, providing that only thedyof the method differs from the
previous declaration (in the parlance of class-basedhis is callednethod override

Definition 3 (Lookup Functions). The following lookup functions are defined to ex-
tract the names of fields and bodies of methods belongingibitderited by) a class.

1. The functions (C) returns the list of fields;, belonging to class C (including those
it inherits).

2. The functiomv b(C, m) returns a tupl€x, e), consisting of a sequence of the method
m's (as defined in the class C) formal parameters and its body.

As usualsubstitutionis at the basis of reduction in our calculus: when a method is
invoked on an object (theceive) the invocation is replaced by the body of the method
that is called, and each of the variables is replaced by &sponding argument.

Definition 4 (Reduction). 1. A term substitutiors = {x1+—e1,...,Xn—en} is de-
fined in the standard way, as a total function on expressioasdystematically
replaces all occurrences of the variabkedy their corresponding expressien
We writeeS for s(e).

2. The reduction relatiors is the smallest relation on expressions satisfying:
— new C(&,).fj — ej, for class name C witly (C) = f,andjen.
— new C(8).m(en) — €5, wheres = {this>new C(€), X1+>€1, ..., Xn—€n},
for class name C and methauwith 4/ b(C,m) = (Xg,e).
and the usual congruence rules for allowing reduction iregplkessions.
3. If e — ¢, thene is theredexande’ the contractum —* is the reflexive, transitive
closure of—.
This notion of reduction isonfluent

3 Approximation Semantics

In this section we define approximation semantider F. The notion ofapproximant
was first introduced in [27] forc. Essentially, an approximant is a partially evaluated
expression in which the locations of incomplete evaluatia where reductiommay
still take place) are explicitly marked by the elementthus, theyapproximatethe
result of computations. Intuitively, an approximant candeen as a ‘snapshot’ of a
computation, where we focus on that part of the resultingrznm which will no longer
changeice.the observableutpuy).

Definition 5 (Approximants). 1. The set obpproximantsJ* is defined by the fol-
lowing grammar:

a = X|Ll]|af|am(a) |new C(an) (n>0)
A = x| L|new C(Ap) (n>0) B
|A.f|A.m(A) (A# 1, A#new C(Ap))

Note that approximate normal forms approximate expressionhead) normal
form. In addition, if we were to extend the notion of reduntiso that field accesses
and method calls od. reduce tol, then we would find that the approximate normal
forms are exactly the normal forms with respect to this edéeireduction relation.

The notion of approximation is formalised as follows.

Definition 6 (Approximation Relation). Theapproximation relatioriC is the contex-
tual closure of the smallest preorder on approximantsfgatgs | C a, for all a.

The relationship between the approximation relation addcegon is:
Lemma7. If ACeande —*e, thenACe.

Notice that this property expresses that the observablaialr of a program can only
increase (in terms df) through reduction.

Definition 8 (Approximants). The set ofapproximant®f e is defined as1 (e) = {A |
Jde[e="e&ALCe]}.

Thus, an approximant (of some expression) is a approxin@taal form that ap-
proximates some (intermediate) stage of execution. THismof approximant allows
us to define what an approximation model is £df.

Definition 9 (F3* Semantics). An approximation modeior anFJ program is a struc-
ture (0 (A), [[-1), where the interpretation functioh |, mapping expressions to ele-
ments of the domair) (A), is defined byffel| = 4 (e).

As for models ofLc, our approximation semantics equates expressions whieh ha
the same reduction behaviour, as shown by the followingrérao

Theorem 10.e =" e’ = 4(e) = 4 (e).

4 Predicate Assignment

We will now define a notion of predicate assignment which is&band complete with
respect to the approximation semantics defined above iretheeghat every predicate
assignable to an expression is also assignable to an apmokof that expression, and
vice versa. Notice that, since in approximants redexesepkaced byl, this result
is not an immediate consequence of subject reduction; wesegl that it is the predi-
cate derivation itself which specifies the approximant iesjion. This relationship is
formalised in the next section.

The predicate assignment system defined below uses inferspredicates; it is in-
fluenced by the predicate system for thealculus as defined in [5], and can ultimately
be seen as based upon the strict intersection type systerg f@ee [2] for a survey).
Our predicates describe the capabilities of an expressiorather, the object to which
that expression evaluates) in terms of (1) the operaticaisnttay be performed on it
(i.e. accessing a field or invoking a method), and (2) décomeof performing those
operations. In this way, our predicates express detailedgrties about the contexts in
which expressions can be safely used.

More intuitively, our predicates capture the notionalfservational equivalence
two expressions with the same (non-empty) set of assigmabticates will be obser-
vationally indistinguishable. Our predicates thus cdnstisemantic predicateso for
this reason (and also to distinguish them from the alreadbtieg Java class types) we
do not call them types.

Definition 11 (Predicates). The set ofpredicateqranged over by, Y)) and its subset
of strict predicates (ranged over lmy are defined by the following grammar (whee
ranges ovepredicate variablesand as for syntax C ranges over class names):

QU = wlo|eny
o = ¢|C|(f:o) | (M:(P,...,0n) > 0O) (n>0)

It is possible to group information stated for an expressiamcollection of predicates
into intersectionsfrom which any specific one can be selected as demanded by the
context in which the expression appears. In particular,négrsection may combine
different (even non-unifiable) analyses of g@mefield or method.

Our predicates argtrict in the sense of [2] since they must describe the outcome of
performing an operation in terms of a(nothsingleoperation rather than an intersec-
tion. We include a predicate constant for each class, whieltan use to type objects
when a more detailed analysis of the object’s fields and nusti®not possibfe The
predicate constanb is atop (maximal) predicate, assignable to all expressions.

Definition 12 (Subpredicate Relation). The subpredicate relatioq is the smallest
preorder satisfying the following conditions:

¢ < w forallog oy < @
PP & oLy = oIyny ey <y

We write ~ for the equivalence relation generatedd¥yextended by

o~0 = (f:o)
Vien@d~@]&o~ad = (M(@,...,¢) — 0)

(f:0')
(m:(@y,....¢,) —0d)
We consider predicates modulg in particular, all predicates in an intersection are

differentandwdoes not appear in an intersection. Itis easy to showtfsassociative,
S0 we writegiN...Na, (Wheren > 2) to denote a general intersection.

~
~

3 This may be because the object does not contain any fields thod® (as is the case for
Ob ject) or more generally because no fields or methods can be safelgad.

() Nke:(f:o0) MNkEeioy ... Nkeion

VAR) ' v v %) (FLD):(—————~= (JOIN): >2
() Mxoe+-x:0 (FLo) Mkef:o () MEe:oiN...N0oR (2
NEe:(m:(gy) »0) Mkey:qr...Mken:gn
() : NFew (INvK) ——
: MEem(en):o
MkEeg: ... Mkten: .
(NEWO) : s — o (7 (C)=Tn)
MtEnew C(en):C
MEer:@ ... MEen:@n .
NEWF) : F(C)=Toicn @ <o,
() Mt new C(en):(fi:0) © 'en @ 0.6 #0)
this:y, X1:@1, ..., Xn: Fep:0 MEnew C(€):
(NEWM) : { v nnj e LIJ(Mb(Qm):(WI,eb))

M F new C(8):(m:(gn) — o)
Fig. 1. Predicate Assignment feu®

Definition 13 (Predicate Environments). 1. A predicate statemeris of the form
e:(, wheree is called thesubjectof the statement.
2. An environmenfl is a set of predicate statements with (distinct) variabsesud-
jects;M,x:ostands fol1 U { x:¢} wherex does not appear if.
3. If M, is a sequence of environments, th@Al, is the environment defined as fol-
lows:X:@.N...N@n € Ny, if and only if {x:@1,...,x:@n} is the non-empty set of
all statements in the union of the environments that keagthe subject.

We will now define our notion of intersection predicate aseignt, which is a slight
variant of the system defined in [8]:

Definition 14 (Predicate Assignment). Predicate assignment faff is defined by the
natural deduction system given in Fig. 1. The rules in fagrafe on the larger set of
approximants, but for clarity we abuse notation slightld ase the meta-variabéefor
expressions rather thanNote that there is no special rule for typirg meaning that
the only predicate which may be assigned to (a subterm aontgil is w.

The rules of our predicate assignment system are fairlygétif@rward general-
isations of the rules of the strict intersection type assignt system forc to 00:
e.g. (FLb) and (iINnvk) are analagous t¢—E); (NewF) and (NewM) are a form of
(—1); and (oBJ) can be seen as a univergal)-like rule for objectsonly. The only
non-standard rule from the point of view of similar work ferm rewriting and tra-
ditional nominaloo type systems ignewM), which derives a predicate for an object
that presents an analysis of a method. It makes sense howheerviewed as an ab-
straction introduction rule. Like the corresponding typing rule (—1), the analysis
involves typing the body of the abstractidre(the method body), and the assumptions
(i.e.requirements) on the formal parameters are encoded in theed@redicate (to be
checked on invocation). However, a method body may also metk@rements on the
receiver through the use of the variableis. In our system we check that these hatd
the same timas typing the method body (so-calledrly self typing. This checking of
requirements on the object itself is where the expressivepof our system resides.
If a method calls itself recursively, this recursive callshbe checked, but — crucially

— carries aifferentpredicate if a valid derivation is to be found. Thus only nebte
calls which terminate at a certain poing(which can be assigned, and thus ignored)
will be permitted by the system.

As is standard for intersection type assignment systenrssymiem exhibits both
subject reductioand subject expansion; the proof is standard.

Theorem 15 (Subject reduction and expansion).Let e — ¢’; thenl + e': @ if and
onlyif Mke:q@.

5 Linking Predicates with Semantics: the Approximation Resilt

We will now describe the relationship between the predisgdem and the approx-
imation semantics, which is expressed througtapproximation theorenthis states
that for every predicate-able approximant of an expressi@same predicate can be
assigned to the expression itself, and vice-vdisae: < A € a(e) [MFA:q. As
for other systems [3, 7], this result is a direct consequeffitiee strong normalisability
of derivation reduction: the structure of the normal formaafiven derivation exactly
corresponds to the structure of the approximant. As we skmvpthis implies that
predicate-ability provides a sufficient condition for theéd) normalisation afxpres-
sions i.e. a terminationanalysis forF#; it also immediately puts into evidence that
predicate assignment is undecidable.

Since reduction on expressionswgak we need to consider derivation reduction,
as in [7]. For lack of space, we will skip the details of thiduetion; suffice to say that
it is essentially a form of cut-elimination on predicateidations, defined through the
following two basic ‘cut’ rules:

[L J -
MEer:@ ... Mkeni@y

—D MEe:o

Mt new C(en):(fi:0)
MEnew C(en).fi:0
\ Dp / \ Dself /
thisiP, X @1, ..., Xn:Gh Fep:d Tk new C&):Y
MEnew C(&):(m: (@) — o) T] Us]

MEer:@r ... MEen:@n D
MFEnew C(8’).m(ey) 0 =D MFey:0

wheredy® is the derivation obtained fromp, by replacing all sub-derivations of the
form (VAR) :: IM,x:@ | x:0 by (a sub-derivation 6§ »;, and sub-derivations of the
form (VAR) :: M, this:Y F this:o by (a sub-derivation ofpseir. Similarly, ey is the
expression obtained froeg by replacing each variable by the expressios;, and the
variablethis by new C(e’). This reduction creates exactly the derivation for a cantra
tum as suggested by the proof of the subject reduction, a)pkcit in all its details,
which gives the expressive power to show the approximagsalt.

4 Note that could be an intersection, containioy

Notice that sub-derivations of the forfw) :: I F e:w do not reduce (althoughk
might) - they are already in normal form with respect to datiin reduction. This is
crucial for the strong normalisation result, since it dgges the reduction of a deriva-
tion from the possibly infinite reduction sequence of theregpion which it assigns a
predicate to.

This notion of derivation reduction is not ongound(i.e. produces valid deriva-
tions) but, most importantly, we have that it correspondgthuction on expressions.

Theorem 16 (Soundness of Derivation Reduction).If » :MFe:@andd —5 D',
theno’ is a well-defined derivation, in that there exists sanmsich thatp :: M Fe': @,
ande — e'.

The key step in showing the approximation result is provimat this notion of
derivation reduction is terminatinge. strongly normalisingln other words, all deriva-
tions have anormal formwith respect to—5 . Our proof uses the well-known technique
of computability[26]; the formal definition of theComg®) predicate is, as standard,
defined inductively over the structure of predicates:

Definition 17 (Computability). The set ofcomputablederivations is defined as the
smallest set satisfying the following conditions (wh&emg®) denotes thap is a
member of the set of computable derivations):

. Comp(w) = MNFe:w).
.ComfD :Mke:p)<sSN(D::MEe:d).
. Comg2 ::Mke:C)esSN(D iMke:C).
. ComfD ::MFe:(f:0)) < Coml(D,FLD) ::Mte.f:0).
. Comd® ::Mke:(m:(g) —0) &
VD, [Vien [Compo;:MNiteiq)] =
Comg (D', D},...,D},INVK) :: ' Fem(en) :0)]
wheren’ = o[’ < MN] andD| = o;[N’ < M] for eachi € nwith N’ =M -M,,
and D[’ < M] denotes a derivation of exactly the same shape as which the
environmenfl is replaced witl1’ in each statement of the derivation.

6. Comg(D1,...,Dn,J0IN) i M e:01N...N0y) < Vi en [ComdDi)].

g b~ W N P

As can be expected, we show that computable derivationgrareyy normalising, and
that all valid derivations are computable.

Theorem18. 1. Comfg® ::Mke:@) = SN(D :Mke:Q) .
2.0 :MkFe:@ = ComgD ::MEe:@)

Then the key step to the approximation theorem follows tiyec
Theorem 19 (Strong Normalisation). If © :: M +e:@thensN(D).

Finally, the following two properties of approximants arrégicate assignment lead
to the approximation result itself.

Lemma 20. 1. If » ::MFa:@andaC a then there exists a derivatian’ :: - a': @.

2. If p :MEe:@and o is in normal form with respect te+o, then there existé
ando’ suchthatA Ceand»’ =M A:@.

The first of these two properties simply states the soundoiegsedicate assignment
with respect to the approximation relation. The secondestiore interesting, since it
expresses the relationship between the structure of aadi@rivand the approximant.
The derivationp” is constructed fronp by replacing sub-derivations of the forfw) ::
MEe:wby (w) :: ME L:w(thus covering any redexes appearing)nSince? is in
normal form, there are also no redexes that carry a noratywedicate, ensuring that
the expression in the conclusionof is a (normal) approximant. The ‘only if’ part of
the approximation result itself then follows easily frone thact that—5 corresponds
to reduction of expressions, gois also arapproximanof e. The ‘if’ part follows from
the first property above and subject expansion.

Theorem 21 (Approximation). M F e:@iff there existsA € 4 (e) such thaflt A:@.

In other intersection type systems [3, 7], the approxinmti@orem underpins char-
acterisation results for various forms of termination.d.tkeLc (and in contrast to the
system in [7] forTRS) our predicate system givedidl characterisatiorof normalisabil-
ity. So predicate-ability gives a guarantee of terminasimte our normal approximate
forms of Definition 5 correspond in structure to expressiar(ead) normal form.

Definition 22 ((Head-)Normal Forms). 1. The set of expressions mead-normal
form (ranged over by) is defined by:

H = X|new C(&)|H.f |[HM(&) (H#new C(¥))
2. The set of expressionsitormal form(ranged over by) is defined by:
N = X|new C(N)|N.f [NNm(N) (N=#new C(N))

Notice that the difference between these two notions siteénsecond and fourth
alternative, where head-normal forms allow arbitrary esgions to be used.

Lemma 23. 1. IfA# L andA C e, thene is a head-normal form.
2. If AC e andA does not contain_, thene is a normal form.

Thus any predicate, or, more accurately, any predicateatenm other than those of
the form(w) :: M+ e: w (which correspond to the approximan} specifies the structure
of a (head) normal form via the normal form of its derivation.

Definition 24. 1. A derivation isstrong if it contains no instances of the ru{e).
2. If the only instances of th@w) rule in a derivation are those typing the arguments
to method invocations, then we say itissafe.
3. For a predicate environmet if for all x:¢ € N either@= w or @ does not contain
w at all, then we sayl is w-safe.

From the approximation result, the following normalisébiguarantees are easily
achieved.

Theorem 25 (Normalisation). 1. M+ e:oif and only ife has a head-normal form.
2. D .M+ e:o with w-safep andll only if e has a normal form.
3. » 1M e:owith D strong if and only ife is strongly normalisable.

Notice that we currently do not have an ‘if and only if’ resfdt Theorem 25(2),
whereas terms with normal fornten be completely characterised irc. This is be-
cause derivation expansion does not presergafety in general. To see why this is the
case consider that while ansafe derivation may exist fan I- ¢;: 0, no w-safe deriva-
tion may exist foff1 - new C(&n) . fi: 0 (due to non-termination in the other expressions
ej) even though this expression has the same normal fosn as

6 Expressivity

In this section we consider the formal expressivity of oorcalculus and predicate sys-
tem. We show thatf is Turing complete by considering an encoding of Combinator
Logic (cL). Through the approximation result of the previous sectibnormal forms
of thecL program can be assigned a non-trivial predicate in our systéus, we have
a predicate-based characterisation of all (terminating)futable functions i@o.

Combinatory Logic is a model of computation defined by H. @{it6] indepen-
dently ofLc. It defines a higher-order term rewriting system over of thection sym-
bols{S,K } and the following rewrite rules:

Kxy — Xx
Sxyz — xz(yz)

Our encoding oL in F is based on aurryfied first-order versionf the system above
(see [6] for details), where the rules f8andK are expanded so that each new rewrite
rule has asingleoperand, allowing for the partial application of functiombols. Ap-
plication, the basic engine of reduction in term rewritiygtems, is modelled via the
invocation of a method namegbp belonging to a&ombinator interface Since we do
not have interfaces proper i*, we have defined @ombinator class but left the body
of theapp method unspecified to indicate that in a full-blown Java paogthis would

be an interface. The reduction rules of curryfied each apply to (or are ‘triggered’
by) different ‘versions’ of theS andK combinators; in our encoding these rules are
implemented by the bodies of five different versions ofd¢hg method which are each
attached to different subclasség (different versions) of théombinator class.

Definition 26. The encoding of Combinatory Logic() into theF# programoocL
(Object-OrientectL) is defined using the class table in Figure 2 and the fundtidn
which translates terms af. into F* expressions, and is defined as follows:

x| = x Ttatz] = Tl .app([t2])
[KI = newki() [S] = new S1()
The reduction behaviour @focL mirrors that ofcL.

Theorem 27. For CL termsty, to: t; —* to if and only if [t | —* [ta].

class Combinator extends Object {

Combinator app(Combinator x) { return this; } }
class K1 extends Combinator {

Combinator app(Combinator x) { return new Ko(x); } }
class Ko extends K; { Combinator x;

Combinator app(Combinator y) { return this.x; } }
class S1 extends Combinator {

Combinator app(Combinator x) { return new Sz(x); } }
class So extends S1 { Combinator x;

Combinator app(Combinator y) { return new S3(this.x, y); } }
class S3 extends Sz { Combinator y;

Combinator app(Combinator z) {

return this.x.app(z).app(this.y.app(z)); } }

Fig. 2. The class table for Object-Oriented Combinatory Logio€L) programs

Given the Turing completeness of, this result shows that our model of class-
basedoo is also Turing complete. Although this certainly does naheas a surprise,
it is a nice formal property for our calculus to have. In aidit our predicate system
can perform the same ‘functional’ analysisas does for.c andcL. This is illustrated
by atype preservatiomesult. We focus on Curry’s type system for and show we can
give equivalent types tooCL programs.

Definition 28 (Curry Types). The set oimple typess defined by the grammar:
T:=¢ | 1—>1

Definition 29 (Curry Type Assignment for cL). 1. AbasisB is a set of statements
of the formx:t in which each of the variablesis distinct.
2. Simple types are assignedao-term using the following natural deduction system:

Ble t1T =T Bl tT

VAR) — (xTEB) —E):
() B el XT () B e tito:T

(K): BR KTiot ot (9 B st o) 51 =T) 5151

To show type preservation, we first define what the equivaé@urry’s types are
in terms of predicates.

Definition 30 (Type Translation). The function[-], which transforms Curry types
into predicatey is defined as follows:

Tl b
lt—=1] = (app:[td— 1)

It is extended to bases bfs|| = {x:[t]] | xT€B}.

5 Note we haveoverloadedthe notation[[- |, which we also use for the translation®f terms
to F* expressions.

We can now show the following type preservation result.
Theorem 31 (Preservation of Types). If B, t:1then[[B] - [t] : [t].

Furthermore, since the well-known encoding of tleinto CL preserves typeability,
we also have a type-preserving encoding ofinto F¥; it is straightforward to extend
this preservation result to full-blown strict intersectitypes. We stress that this result
really demonstrates the validity of our approach. Indeed poedicate system actually
has more power than intersection type systemgfgisince there not all normal forms
are typeable using strict types, whereas in our system tteey a

Lemma 32. If e is a L -free approximate normal form abocL, then there arao-safe
© andl1 and strict predicatey such thatp :: M Fe:0.

Since our system has a subject expansion property ¢asafe typeability is pre-
served under expansion for the imagesofterms inoocL), this leads to a complete
characterisation of termination farocL.

Theorem 33. Lete be an expression such that= [t] for somecL termt; thene has
a normal form if and only if there are-safep and[and strict predicates such that
D MEe:o.

7 Some Observations

In this paper we have shown how the approach can be applied to class-based
preserving the main expected properties of intersectipa $ystems. There are however
some notable differences between our type system and piewiork onLC andTRS
upon which our research is based.

Firstly, we point out that when considering the encodingiofand via thatL.c) in
FF, our system providesiorethan the traditional analysis of terms as functions: there
are untypeablec andcL terms which have typeable imagesdwmcL. Let & be the
following cL term:S (S K K) (S K K). Notice thatd 6 —* & §, i.e. it is unsolvable,
and thus can only be given the type(this is also true forf 5 5]). Now, consider the
termt=S(K 8) (K 3). Notice that it is a normal form[¢] has a normal form also), but
that for any ternt’, S (K &) (K &) t' —* 8 8. In a strict system, no functional analysis
is possible fottsince@ — w is not a type and so the only way we can type this term is
usingw®. In our type system however we may assign several forms diqate to[[t] .
Most simply we can deriv@ - [t] : S3, but even though a ‘functional’ analysis via the
app method is impossible, it is still safe to access the fieldhiefualue resulting from
Tt] — both®+ [t] : (x:k2) and® [t]: (y:Kz) are also easily derivable statements. In
fact, we can derive even more informative types: the expeg¥K 3| can be assigned
predicates of the forrag s = (app:(01) — (app: (02N (app:(02) — 03)) — 03)), and
so we can also assigi: 0ks) and (y:oks) to [t]. Notice that the equivalent-term
to tis Ay.(Ax.xx) (Ax.xx), which is aweakhead normal form without a (head) normal

6 In other intersection type systenesd.[11]) @ — wis a permissible type, but is equivalent to
w (that isw < (¢ — w) < w) and so semantics based on these type systems identify 6érms
type @ — w with unsolvable terms.

form. The ‘functional’ view is that such terms are obsemadlly indistinguishable
from unsolvable terms. When encodedtifi however, our type system shows that these
terms become meaningful (head-normalisable).

The second observation concemréncipal types. In theLc, each normal form
has auniqguemost-specific typei.e. a type from which all the other assignable types
may be generated. This property is important for practigpktnference Our in-
tersection type system farl* does not have such a property. Consider the follow-
ing programgclass C extends Object {C m() {return new C();}}. The expression
new C() is a normal form, and so we can assign it a non-trivial predidaut observe
that the set of all predicates which may be assigned to thpsession is thénfinite
set{C,(m:() = C),(m:() — (m:() = C)),...}. None of these types may be considered
themostspecific one, since whichever predicate we pick we can aldayise a more
informative (larger) one. On the one hand, this is exactlatwie want: we may make
a series of any finite number of calls to the methodnd this is expressed by the
predicates. On the other hand, this seems to preclude ttsébpityg of practical type
inference for our system. Notice however that these présicare not unrelated to one
another: they each approximate the ‘infinite’ predicate() — (m:() — ...)), which
can be finitely represented by the recursive tye(m: () — X). This type concisely
captures the reduction behaviourmefv C(), showing that when we invoke the method
m On it we again obtain our original term. irc such families of types arise in con-
nection with fixed point operators. This is not a coincidetice class wasrecursively
defined, and in the face of such self-reference it is not thpnsing that this is reflected
in our type analysis.

8 Conclusions & Future Work

We have considered an approximation-based denotatiomalges for class-basexb
programs and related this to a predicate-based semanfingdl@sing an intersection
type approach. Our work shows that the techniques and stemuifs of this approach
can be transferred straightforwardly from other prograngriormalismsi(e. Lc and
term rewriting systems) to theo paradigm. Through characterisation results we have
shown that our predicate system is powerful enough (at lagstinciple) to form the
basis for expressive analysesas programs.

Our work has also highlighted where tle® programming style differs from its
functional cousin. In particular we have noted that becatfiske oo facility for self-
referenceit is no longer the case that all normal forms have a mostiipgor prin-
cipal) type. The types assignable to such normal forms doekiemseem to be repre-
sentable using recursive definitions. This observationdiumotivates and strengthens
the case (by no means a new concept in the analysispfor the use of recursive types
in this area. Some recent work [22] shows that a restrictédtilihighly expressive
form of recursive types can still characterise stronglynmalising terms, and we hope
to fuse this approach with our own to come to an equally pedaig more concise and
practical predicate-based treatmenbtaf.

We would also like to reintroduce more features of full Jasakbinto our calculus,
to see if our system can accommodate them whilst maintathiegtrong theoretical

properties that we have shown for the core calculus. For plgmimilar toAp [23],
it seems natural to extend our simply typed system to anahgexception handling
features of Java.

References

. M. Abadi and L. CardelliA Theory of ObjectsSpringer Verlag, 1996.
. S.van Bakel. Intersection Type Assignment Systeh@S 151(2):385-435, 1995.
. S.van Bakel. Cut-Elimination in the Strict Intersectiipe Assignment System is Strongly
Normalising.NDJFL, 45(1):35-63, 2004.
4. S.van Bakel. Completeness and Partial Soundness Rissutitersection & Union Typing
for Apfl. APAL, 161:1400-1430, 2010.
5. S. van Bakel and U. de’Liguoro. Logical equivalence fobtgping object and recursive
types.ToCS 42(3):306-348, 2008.
6. S.van Bakel and M. Fernandez. Normalisation Resultsypedble Rewrite System#&aC,
2(133):73-116, 1997.
7. S.van Bakel and M. Fernandez. Normalisation, Approxionatand Semantics for Combi-
nator SystemsTCS 290:975-1019, 2003.
8. S.van Bakel and R. Rowe. Semantic Predicate Types fos®ased Object Oriented Pro-
gramming. InFTfJP’09, 2009.
9. A. Banerjee and T.P. Jensen. Modular Control-Flow Analygith Rank 2 Intersection
Types.MSCS 13(1):87-124, 2003.
10. H. BarendregtThe Lambda Calculus: its Syntax and Semantiésrth-Holland, 1984.
11. H. Barendregt, M. Coppo, and M Dezani-Ciancaglini. Aefilambda model and the com-
pleteness of type assignmedSL, 48(4):931-940, 1983.
12. L. Cardelliand J.C. Mitchell. Operations on Reco$SCS 1(1):3-48, 1991.
13. L. Cardelli. A Semantics of Multiple InheritanckC, 76(2/3):138—-164, 1988.
14. M. Coppo and M Dezani-Ciancaglini. An Extension of thesiBa-unctionality Theory for
theA-Calculus.NDJFL, 21(4):685-693, 1980.
15. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Fuowél characters of solvable terms.
Zeitschrift fur Mathematische Logik und Grundlagen der Mamhatik 27:45-58, 1981.
16. H.B. Curry. Grundlagen der Kombinatorischen LogM, 52:509-536, 789—834, 1930.
17. F. Damiani and F. Prost. Detecting and Removing Dead:@sthg Rank 2 Intersection. In
TYPES'96LNCS 1512, pp 66—-87, 1998.
18. K. Fisher, F. Honsell, and J.C. Mitchell. A lambda Calsubf Objects and Method Special-
ization. NJ, 1(1):3-37, 1994.
19. A.lgarashi, B.C. Pierce, and P. Wadler. Featherwem¥d:Ja minimal core calculus for Java
and GJ.ACM Trans. Program. Lang. Sys23(3):396—450, 2001.
20. T.P.Jensen. Types in Program Analysis. In LNCS 25660dp-222. Springer, 2002.
21. J.C. Mitchell. Type Systems for Programming Languagiesiandbook of TCSsolume B,
chapter 8, pages 415431, 1990.
22. Hiroshi Nakano. A Modality for Recursion. LiCS pages 255-266, 2000.
23. M. Parigot. An algorithmic interpretation of classicakural deduction. IhPAR’92 LNCS
624, pp 190-201, 1992.
24. G.D. Plotkin. The origins of structural operational senics.JLAP, 60-61:3—15, 2004.
25. D. Scott. Domains for Denotational SemanticdAALP’82, LNCS 140, pp 577-613, 1981.
26. W.W. Tait. Intensional interpretation of functionalsfimite type I. JSL, 32(2):198-223,
1967.
27. C.P. Wadsworth. The relation between computationab@ndtational properties for Scott’s
D.-models of the lambda-calculuSIAM J. Compyt5:488-521, 1976.

WN P

