Games in Algebraic Logic: Axiomatisations and Beyond

ROBIN HIRSCH AND IAN HODKINSON*

University College London
Department of Computer Science
Gower Street
London WC1E 6BT, UK
R.Hirsch@cs.ucl.ac.uk

Imperial College London
Department of Computing
South Kensington Campus
London SW7 2AZ, UK
imh@doc.ic.ac.uk

ABSTRACT. A classical problem in algebraic logic is to characterise classes of representable algebras. Taking the example of the representable Tarskian relation algebras, we will discuss how games can help with such problems, and how they lead to a deeper study of representability.

Introduction

A classical problem in algebraic logic is to characterise classes of representable algebras. Taking the example of the representable Tarskian relation algebras, we will discuss how games can help with such problems, and how they lead to a deeper study of representability. We will be able to use the games to help to explain some classical results in this area, and to discuss some more recent ones.

1 Algebras of relations

Algebraic formalisation of unary relations began with Boole in the 19th century. It was very successful. The boolean algebra axioms are sound and

*We would like to thank the referee for helpful comments on a draft of this paper. The second author thanks the organisers for inviting him to speak at the conference.
complete: every boolean algebra is isomorphic to a field of sets [Sto36].

De Morgan proposed considering binary (and higher-arity) relations. Peirce and Schröder developed the theory and established hundreds of laws of binary relations (cf., e.g., [Sch95]). [Mad91] has an interesting discussion of the history. But Pierce lamented:

The logic of relatives is highly multiform; it is characterized by innumerable immediate conclusions from the same set of premises. . . . The effect of these peculiarities is that this algebra cannot be subjected to hard and fast rules like those of the Boolean calculus; and all that can be done in this place is to give a general idea of the way of working with it. [Pei33, 3.342]

In the 1940s, Tarski and his collaborators began to investigate binary relations with modern algebra. Tarski laid down the notion of a field of binary relations, by which he meant a subalgebra of a product of algebras of the form

\[
\Re(X) = (\wp(X \times X), \cup, \setminus, \emptyset, X \times X, \text{Id}_X, \cdot, -1, |),
\]

for some set \(X\), where

\[
\begin{align*}
\text{Id}_X & = \{(x, x) : x \in X\}, \\
R^{-1} & = \{(y, x) : (x, y) \in R\}, \\
R[S] & = \{(x, y) : \exists z((x, z) \in R \land (z, y) \in S)\}.
\end{align*}
\]

He wanted to characterise the algebras isomorphic to fields of binary relations. Such algebras are called representable relation algebras, the class of them is denoted \(\text{RRA}\), and the isomorphism is called a representation.

It’s easily seen why Tarski wanted to admit subalgebras of \(\Re(X)\). They are simply obtained by omitting some of the relations in \(\Re(X)\), but they still contain \(\emptyset, X \times X, \text{Id}_X\), and are closed under the operations, so they can certainly be considered as algebras of binary relations.

But why products? One could argue that if \(X_i (i \in I)\) are pairwise disjoint and have union \(X\), the product \(\prod_{i \in I} \Re(X_i)\) is isomorphic to the relativisation of \(\Re(X)\) to the equivalence relation \(E = \bigcup_{i \in I} (X_i \times X_i)\) on \(X\), defining ‘being in the same \(X_i\)’. Relations not contained in \(E\) are deleted, and the algebra operations are intersected with \(E\); e.g., \(a \cap b\) in the relativisation is defined to be \(c \cap E\), where \(c\) is \(a \cap b\) evaluated in \(\Re(X)\). Such a relativisation is some sort of algebra of binary relations, but maybe not the kind one would first think of considering. So perhaps a better answer is probably that under this ‘subalgebras of products’ definition, \(\text{RRA}\) is a variety — an equationally axiomatised class. This was proved by Tarski in [Tar55]. It follows from Birkhoff’s theorem [Bir35] that \(\text{RRA}\) is closed under subalgebras, products, and homomorphic images.
An algebra is *simple* if it has no non-trivial proper homomorphic images. It can be shown that all simple representable relation algebras are isomorphic to subalgebras of $\mathcal{R}(X)$ for some X: there is no need to consider products. For simplicity of exposition, we will generally restrict our attention here to simple algebras; but most of what we say is either true for arbitrary ones, or can easily be generalised to them. We also generally consider only *non-degenerate* relation algebras, satisfying $0 \neq 1$. (When $0 = 1$, the algebra has only one element; it is isomorphic to $\mathcal{R}(\emptyset)$ and so is representable. This case is not interesting.)

Relation algebras In [Tar41], Tarski proposed axioms to capture \mathcal{RRA}. These axioms defined the class \mathcal{RA} of ‘relation algebras’.

Definition 1. A relation algebra is an algebra of the form $\mathcal{A} = (A, +, -, 0, 1, \cdot, 1, \circledast,)$ such that

- $(A, +, -, 0, 1)$ is a boolean algebra
- $(A, \cdot, 1)$ is a monoid
- ‘Peircean law’ (actually discovered by De Morgan):
 $$(a; b) \cdot c \neq 0 \iff (\bar{a}; c) \cdot b \neq 0 \iff a \cdot (c; \bar{b}) \neq 0$$ for all $a, b, c \in A$.

As is standard, we use the notation $+, -, 0, 1, \cdot, 1, \circledast$ for ‘abstract’ algebra operations corresponding to the ‘concrete’, set-theoretically defined operations $\cup, \setminus, \emptyset, X \times X, \text{Id}_X, -1, |$ (respectively) on algebras of binary relations. Considering *triangles* helps to make the point of the Peircean law clear:

![Diagram of triangles]

The axioms in Definition 1 are equivalent to Tarski’s original ones, which were *equations*. We will not need it here, but it may be of interest to mention that the relation algebra axioms actually capture all equations valid in \mathcal{RRA} that can be proved with 4 variables. The underlying proof system here can be (e.g.,) a sequent calculus or a Hilbert system for first-order logic, tuned to produce proofs using only 4 variables. For details, cf. [Mad83, GivTar87, Mad89].

Did Tarski’s axioms capture \mathcal{RRA}? Well, soundness ($\mathcal{RRA} \subseteq \mathcal{RA}$) is easily seen. But completeness failed. In a celebrated 1950 paper, Lyndon [Lyn50] gave an example of $\mathcal{A} \in \mathcal{RA} \setminus \mathcal{RRA}$. In 1964, Monk [Mon64], building on work of Lyndon [Lyn61] and Jónsson [Jón59], showed that
RRA is not finitely axiomatisable, so proving the key ‘negative’ result in
the field. Many other negative results about RRA are now known. One of
the stronger ones is:

Theorem 2 (Hirsch, Hodkinson, [HirHod02a, Theorem 18.13]).

There is no algorithm to tell whether an arbitrary finite relation algebra is
representable.

The following problem was stated in [HenMonTar71] for ‘cylindric alge-
bras’, but the version for relation algebras is just as pertinent: find a simple
intrinsic characterisation of (the algebras in) RRA. In the next sections,
we will look into this question using games.

2 Case study: atomic and finite relation algebras

First, we try to cast relation algebras and representations in a more man-
geageable form. This is quite useful for atomic relation algebras, and for
representations of finite relation algebras. We will consider the general case
later.

2.1 Atomic relation algebras

An element a of a relation algebra A is said to be an *atom* if a is a minimal
non-zero element with respect to the standard boolean algebra ordering \leq,
where $x \leq y \iff x + y = y$. A is said to be *atomic* if for every non-zero
element x of \mathcal{A}, there is an atom a of A with $a \leq x$. All finite relation
algebras are atomic, of course. We will say more about infinite atomic
relation algebras in Sections 4 and 5.

Atomic relation algebras can be quite easily specified. One can prove
from the RA axioms that \cdot and $;\,$ are additive. That is, $(a + b)\cdot = \check{a} + \check{b},$
$(a + b);c = a; c + b; c$, and $a ; (b + c) = a ; b + a ; c$ are valid laws in relation
algebras. We can even prove from the RA axioms that \cdot and $;\,$ are additive
over infinite sums. It follows that in an atomic relation algebra \mathcal{A}, the
operations \cdot and $;\,$ are determined by their values on atoms, and we can
specify \mathcal{A} by stating:

- the set $\text{At}_\mathcal{A}$ of atoms of \mathcal{A}, and which elements of \mathcal{A} are the sum of
 which atoms (this pins down the boolean structure of \mathcal{A}),
- which atoms are ≤ 1,
- \check{a}, for each atom a (it turns out that \check{a} is also an atom),
- for each $a, b, c \in \text{At}_\mathcal{A}$, whether $a ; b \geq c$ or not. In the case where
 $a ; b \geq c$, we say that (a, b, c) is a ‘consistent triple’.
Remark: It follows from the Peircean law that \((a, b, c)\) is consistent if and only if its Peircean transforms \((a, b, c), (\bar{a}, c, b), (c, \bar{b}, a), (\bar{c}, a, \bar{b}), (\bar{b}, \bar{a}, \bar{c})\) are all consistent.

2.2 Ultrafilters

Given a relation algebra \(\mathcal{A}\), we'll write \(\mathcal{A}\) for its domain as well. An ultrafilter of \(\mathcal{A}\) is a subset \(\alpha \subseteq \mathcal{A}\) such that

1. \(a, b \in \alpha \Rightarrow a \cdot b \in \alpha\),
2. \(a \geq b \in \alpha \Rightarrow a \in \alpha\),
3. \(\alpha\) contains precisely one of \(a, -a\), for every \(a \in \mathcal{A}\).

Examples of ultrafilters are sets \(\alpha\) of the form \(\{b \in \mathcal{A} : b \geq a\}\), for any \(a \in \text{At} \mathcal{A}\). Such 'atom-generated' ultrafilters are called principal ultrafilters.

All ultrafilters \(\alpha\) satisfy \(\mathcal{A} \in \alpha\) and \(0 \notin \alpha\).

Assume that \(\mathcal{A}\) is simple, and suppose we are given a representation \(h : \mathcal{A} \to \mathcal{R}(X)\) for some set \(X\). For \(x, y \in X\), let
\[
h^{-1}(x,y) = \{a \in \mathcal{A} : (x, y) \in h(a)\}.
\]
It is easy to check that

Lemma 3. \(h^{-1}(x, y)\) is always an ultrafilter of \(\mathcal{A}\).

2.3 Representations of finite simple relation algebras

The following is well known and easily proved:

Lemma 4. Any ultrafilter of a finite relation algebra is principal.

Hence, a representation \(h : \mathcal{A} \to \mathcal{R}(X)\) of a finite (simple) relation algebra \(\mathcal{A}\) can be viewed in a simple way as a complete labelled directed graph \(M = (X, \lambda)\), where \(X\) is a set and \(\lambda : X \times X \to \text{At} \mathcal{A}\) is a 'labelling function'. We just define \(\lambda(x, y)\) to be the (unique) atom in \(h^{-1}(x, y)\). It can be checked that for all \(x, y, z \in X\),

- \(\lambda(x, y) \leq 1 \iff x = y\).
- \(\lambda(x, y) = \lambda(y, x)'\).
- \(\lambda(x, y) \leq \lambda(x, z); \lambda(z, y)\). That is, 'all triangles are consistent'.
- For all \(a, b \in \text{At} \mathcal{A}\), if \(\lambda(x, y) \leq a : b\) then there is \(w \in X\) with \(\lambda(x, w) = a\) and \(\lambda(w, y) = b\). 'All consistent triples are witnessed wherever possible.'

Conversely, given a map \(\lambda : X \times X \to \text{At} \mathcal{A}\) satisfying these conditions, we can obtain a conventional representation \(h : \mathcal{A} \to \mathcal{R}(X)\) by defining \(h(a) = \{(x, y) \in X \times X : a \geq \lambda(x, y)\}\). The \('(X, \lambda)\' view of representations of finite relation algebras is very handy, as we will see.
2.4 Two finite relation algebras

1. McKenzie’s algebra \(K\).

Four atoms: \(1', <, >, \sharp\) (so 16 elements altogether).

\[\hat{1}' = 1', \quad \hat{<} = >, \quad \hat{>} = <, \quad \hat{\sharp} = \sharp.\]

All triples are consistent except Peircean transforms of:

\((1', a, a')\) for \(a \neq a'\), \((<, <, >)\), \((<, <, \sharp)\), and \((\sharp, \sharp, \sharp)\).

2. The ‘anti-Monk algebra’ \(M\). We use this name not out of lack of respect, but because \(M\) is in some way the opposite of what are known as ‘Monk algebras’. We believe \(M\) was discovered by Maddux.

Four atoms: \(1', r, b, g\).

\[\hat{a} = a\] for all atoms \(a\). (So \(M\) is a relation algebra all of whose elements are self-converse. Such a relation algebra is said to be symmetric.)

All triples are consistent except Peircean transforms of: \((1', a, a')\) for \(a \neq a'\), and \((r, b, g)\).

These are both relation algebras. Can you tell if they are in \(\text{RRA}\) or not? Games will help to tell, as we will see.

3 Games and representability (finite relation algebras)

In [Lyn50], Lyndon characterised the finite representable relation algebras by a ‘step by step’ construction. In a nutshell, his approach was this:

1. Try to build ‘step by step’ a representation of a given finite relation algebra.
2. Write first-order axioms expressing that you can succeed.

The resulting axioms will be true in a finite relation algebra \(A\) just when \(A\) has a representation.

It’s interesting to compare Lyndon’s method with the Henkin construction of a model of a consistent first-order theory \(T\), as given in, e.g., [Hod93, Theorem 6.1.1] or [ChaKei90, §2.1]. In this construction, \(T\) is extended, sentence by sentence, to a consistent theory \(U\) in a larger signature with additional constants. These new constants are called ‘witnesses’, because the construction arranges that they witness truth of all existential statements in \(U\). Together with other properties of \(U\) enforced by the construction, this ensures that a model of \(U\) (and hence of \(T\)) can be built easily from the witnesses.

The important point for us is that starting from an inconsistent \(T\), the construction won’t work, because it will get stuck somewhere. Consistency
of the original T is used to prove that the construction succeeds, never getting stuck. But this gives us a test for consistency of any theory T. We just try to do the construction, and see if it succeeds.

This is rather what Lyndon did. His construction of a representation of a finite relation algebra A succeeds precisely when A has a representation. The axioms he wrote expresses that the construction succeeds, and hence they characterise representability of A.

We are now going to explain (a minor variant of) Lyndon’s step by step characterisation in more detail, using a game.

3.1 Networks

The ‘pieces’ played during the game are called networks. A network is like a piece of a representation (though of course, the given algebra might not have a representation). It satisfies the universal conditions of ‘representation’.

Definition 5. Let A be an atomic relation algebra. An A-network is a complete labelled directed graph $N = (X, \lambda)$ where $X \neq \emptyset$ and $\lambda : X \times X \to \text{At}_A$ is a labelling function satisfying, for all $x, y, z \in X$,

- $\lambda(x, y) \leq 1 \iff x = y$,
- $\lambda(x, y) = \lambda(y, x)$,
- $\lambda(x, y) \leq \lambda(x, z) ; \lambda(z, y)$ — all triangles in N are consistent.

We write N for any of N, X, λ. We rely on the context to tell which one is meant.

3.2 Games on A-networks

Let A be a non-degenerate atomic relation algebra — so $\text{At}_A \neq \emptyset$ — and let $n \leq \omega$. The game $G_n(A)$ has two players, \forall (male) and \exists (female), and n rounds. If $n = 0$, there are no rounds and we declare \exists the winner. Assume $n > 0$. In round 0, \forall picks $a_0 \in \text{At}_A$, and \exists plays an A-network N_0 with a_0 occurring as a label in it. In round t ($1 \leq t < n$), suppose that the current network at the start of the round is N_{t-1}. Play goes as follows. First, \forall picks $x, y \in N_{t-1}$ and $a, b \in \text{At}_A$ with $a; b \geq N_{t-1}(x, y)$:
If there is already a node \(z \in N_{t-1} \) such that \(N_{t-1}(x,z) = a \) and \(N_{t-1}(z,y) = b \), then \(\exists \) simply sets \(N_t = N_{t-1} \). If not, she has more work to do. She begins by adding a new node \(z \) (say) to \(N_{t-1} \), and labelling the edges \((x,z)\) with \(a \) and \((z,y)\) with \(b \). This forms the basis of the new network \(N_t \):

The player \(\exists \) now has to complete the labelling of \(N_t \), by defining \(N_t(u,v) \) for all remaining pairs \((u,v)\) of nodes. These are the ones other than \((x,z)\), \((z,y)\), and pairs of nodes of \(N_{t-1} \), whose labels are already fixed:

It can be very hard for \(\exists \) to complete the labelling. \(N_t \) must be a network, so all its triangles must be consistent. Worse still, \(N_t \) is then passed on to the next round (if any), in which \(\forall \) can make new choices. So even if \(\exists \) succeeds in creating a network \(N_t \), she may have left herself open to a lethal attack by \(\forall \) in a later round. If in some round she cannot manage to complete the labelling and create a network, she loses. Thus, \(\exists \) wins the play of \(G_n(A) \) if she always responds legally to \(\forall \)'s moves.

Note that it is in \(\exists \)'s interests to play as small a network (with as few nodes) as possible. Although she is permitted, by the rules of the game, to make arbitrarily large extensions to the networks played in the game, she only needs to include the nodes shown in the diagrams above. Additional nodes are superfluous and will only make it easier for \(\forall \) to win, by giving him more rope to hang her with. We will always assume that she plays this
way, so that N_0 has at most two nodes, and for each t, N_{t+1} has at most one more node than N_t.

The connection of the game to representability is given by the following theorem. It is more or less what Lyndon proved in [Lyn50] (but he didn't use games). The theorem is not restricted to simple relation algebras, but it only covers finite relation algebras; we will consider what to do about infinite relation algebras later.

Theorem 6. Let \mathcal{A} be a finite relation algebra.

1. $\mathcal{A} \in \mathbf{RRA}$ if and only if \exists has a winning strategy in $G_\omega(\mathcal{A})$.
2. The player \exists has a winning strategy in $G_\omega(\mathcal{A})$ if and only if she has one in $G_n(\mathcal{A})$ for all finite n.
3. One can construct first-order sentences σ_n for $n < \omega$ (independently of \mathcal{A}) such that $\mathcal{A} \models \sigma_n$ if and only if \exists has a winning strategy in $G_n(\mathcal{A})$.

Hence, for a finite relation algebra \mathcal{A}, we have $\mathcal{A} \in \mathbf{RRA} \iff \mathcal{A} \models \{\sigma_n : n < \omega\}$.

Proof. We sketch the main ideas of the proof. For a more rigorous treatment, cf. [HirHod102a, Chapter 11].

1. If $\mathcal{A} \in \mathbf{RRA}$ then \exists can use a representation as a guide in winning $G_\omega(\mathcal{A})$. Conversely, if she has a winning strategy in $G_\omega(\mathcal{A})$, then from plays of the game in which she uses her strategy and \forall plays all possible moves at some stage, we can recover a representation of \mathcal{A}.
2. \Rightarrow is clear. For the converse, we observe that because \mathcal{A} is finite, \exists has only finitely many possible responses to \forall's move in any round. König's tree lemma can now be used to collimate her responses in the finite games into a single winning strategy in $G_\omega(\mathcal{A})$.
3. First, given an \mathcal{A}-network N, and $k < \omega$, we write an axiom $\tau_k(N)$ saying that \exists can win $G_k(\mathcal{A})$ starting from N. We go by induction on k. The case $k = 0$ is easy: we need only say that N is a network:

$$\tau_0(N) = \bigwedge_{x \in N} \left(N(x, x) \leq 1 \land \bigwedge_{y \in N \setminus \{x\}} N(x, y) \not\leq 1 \right) \land \bigwedge_{x, y \in N} N(x, y) = N(y, x) \land \bigwedge_{x, y, z \in N} N(x, y) \leq N(x, z) \land N(z, y)$$

The next formula $\tau_{k+1}(N)$ says that whatever move \forall makes in the first round of the game, there is some N' such that if \exists responds to \forall's move with N' then she can win $G_k(\mathcal{A})$ starting from N' — i.e.,
such that $\tau_k(N')$ holds: ($\tau_k(N')$ has been constructed inductively).

Roughly, τ_{k+1} looks like this:

$$
\tau_{k+1}(N) = \bigwedge_{x, y \in N} \forall a, b \left(N(x, y) \leq a ; b \rightarrow \exists N' \supseteq N \land \bigvee_{z \in N'} (N'(x, z) = a \land N'(z, y) = b) \right).
$$

The formula uses variables to hold the labels on network edges. The expression $\exists N' \supseteq N$ in the middle is really shorthand for a string of quantifiers of the form $\exists v_1 \ldots \exists v_l$, relativised to atoms. The variables v_i represent the atoms labelling the ‘new’ edges of N' (if any) that are not already edges of N. We know how many there are, because N' has at most one more node than N does. The two possibilities — of N' being the same as N or bigger — mean that the rest of the formula is actually a disjunction to cope with these two cases. In the case $N' = N$, the variables v_i are not used. For simplicity, this is not shown above. More details can be found in [HirHod197a, HirHod197a].

Finally, we let $\sigma_n = \forall a_0 \exists N(\tau_{n-1}(N) \land \bigvee_{x, y \in N} N(x, y) = a_0)$ for $n > 0$. Here, the $\exists N$ signifies $\exists v_{00} \exists v_{01} \exists v_{10} \exists v_{11}$. The variable v_{ij} represents the atom $N(i, j)$. Again, these quantifiers are relativised to atoms of the algebra, and again, they are actually followed by a disjunction (not shown above) to allow for the possibility that in her first move, \exists might pick a one-node network (in which case only v_{00} is used) or a two-node network. We let $\sigma_0 = \top$.

q.e.d.

The axioms σ_n (plus the RA axioms) seem to give an intrinsic characterisation of the finite algebras in RRA. But is it a simple one? Can you tell whether McKenzie’s algebra and the anti-Monk algebra satisfy the σ_n for all n?

It’s easier to use the games G_n directly.

Example 7 (McKenzie’s algebra K). Recall that this relation algebra has four atoms: $1’, <, >, \sharp$. We have $\hat{1'} = 1'$, $\hat{<} = >$, $\hat{>} = <$, $\hat{\sharp} = \sharp$. All triples of atoms are consistent except Peircean transforms of $(1', a, a')$ for $a \neq a'$, $(<, <, >)$, $(<, <, \sharp)$, and (\sharp, \sharp, \sharp).

Consider the following play of $G_\omega(K)$. The player \forall starts off by picking the atom \sharp. The player \exists responds with the network N_0 as shown below.

```
0 ————> 1
```


The edge \((0, 1)\) is labelled by \(\sharp\). We know that in any \(K\)-network \(N\) and nodes \(x, y\) of \(N\), we have \(N(x, y) = 1\) if and only if \(x = y\), and \(N(y, x) = N(x, y)\). So \(\exists\) has no choice over the labels of the remaining edges of \(N_0\). We don’t need an arrow on the edge in the diagram to indicate its direction, because \(\bar{\sharp} = \sharp\), so the converse edge \((1, 0)\) will also be labelled \(\sharp\).

The player \(\forall\) continues by choosing the two nodes \(0, 1\) of \(N_0\), and the atoms \(>\) and \(<\). The player \(\exists\) has to add a new node, say 2, and label \((0, 2)\) with \(>\) and \((2, 1)\) with \(<\). She has no choice in labelling the remaining edges of her response, \(N_1\):

![Diagram](https://via.placeholder.com/150)

We prefer to show the edge \((2, 0)\), which will be labelled \(\bar{>} = <\).

The player \(\forall\) now picks the nodes 0, 1 again, and the atoms \(<\,>\). The player \(\exists\) now has to add a node 3, with \((0, 3)\) labelled \(<\) and \((3, 1)\) labelled \(>\). She has no choice over the remaining edges: in particular, she must label the edge \((2, 3)\) by \(<\), since all other choices lead to inconsistency of the triangle \(2, 0, 3\).

![Diagram](https://via.placeholder.com/150)

Now \(\forall\) deals the killer blow, picking \(2, 3\) and the atoms \(\sharp, \sharp\). The player \(\exists\) has to add a new node, say 4.

![Diagram](https://via.placeholder.com/150)
The player \exists cannot consistently label the edge $(0, 4)$ by $<$ or $1'$ (because of the triangle $2, 0, 4$), nor by $>$ (because of the triangle $3, 0, 4$). She has to use \sharp. Similarly, she must label $(1, 4)$ with \sharp. But now, $0, 1, 4$ is an inconsistent triangle, and \exists has lost. It is clear that she never had any real choice, so what we have described is a winning strategy for \forall in $G^\omega (K)$ (and indeed in $G_4 (K)$). The player \exists has no winning strategy, so by Theorem 6, K is not representable.

Example 8 (Anti-Monk algebra \mathcal{M}). Recall that \mathcal{M} has four atoms: $1', r, b, g$. We think of these as the colours red, blue, and green. \mathcal{M} is symmetric: we have $\tilde{x} = x$ for all atoms x. All triples of atoms are consistent except Peircean transforms of $(1', a, a')$ for $a \neq a'$, and (r, b, g).

Consider a typical \mathcal{M}-network N as shown below. Observe that all triangles involve at most two colours from r, b, g, as required for consistency. We don’t need any arrows at all on edges this time, since $\tilde{a} = a$ for all atoms a, so the labels on an edge (u, v) and the converse edge (v, u) are always the same.

Suppose that N is in play in some round of the game $G^\omega (\mathcal{M})$. A typical move of \forall will be to pick two nodes and some atoms or other. We assume by way of example that he picks the two right-hand nodes x, y in the diagram, and the atoms p, q, say. If there is a node z in N with $N(x, z) = p$ and $N(z, y) = q$, as in the game rules, then \exists has an easy job. We’ll assume there isn’t; it follows that $p, q \neq 1'$. The player \exists must now add a new node on the right as shown:
Then, she must fill in the remaining labels, to give a network N', say:

In this example, the edge (x, y) that \forall picked in N is labelled r. His chosen atoms p, q, combined with r, must not all be different, or his choice would be illegal because $r \not\leq p; q$. So two of p, q, r must be equal. There are two possibilities.

Case 1: $p = q$; so N looks like:

In this case, \exists simply uses p to label all remaining edges:

It is clear that all triangles have at least two edges of the same colour, so are consistent.

Case 2: $r = p \neq q$ or $r = q \neq p$. Let’s suppose that $r = q \neq p$ (the other case is similar), and that the new node is called z:
Observe that \(x\) and \(z\) look the same as seen from \(y\): the labels on the edges \((y,x)\) and \((y,z)\) are the same. The player \(\exists\) tries to make this true for the other nodes, as well as \(y\). That is, she defines \(N'(t,z) = N(t,x)\) for all nodes \(t\) of \(N\) other than \(x,y\):

Now, there are three kinds of triangle in \(N'\):

1. Triangles consisting of nodes of \(N\). These are certainly consistent, because \(N\) is a network.
2. Triangles of the form \(t,x,z\), involving \(x,z\). These have two edges with identical colours, because \(N'(t,z) = N'(t,x)\). So they are consistent.
3. Triangles of the form \(t,u,z\), involving \(z\) but not \(x\). The sides of such a triangle are coloured the same as in the triangle \(t,u,x\) of \(N\) (because \(z\) looks the same as \(x\) from \(t\), and from \(u\)). But the triangle \(t,u,x\) is consistent, by case 1, and hence, so is triangle \(t,u,z\).

So all triangles of \(N'\) are consistent, and \(N'\) is a \(M\)-network.

This can be elaborated into a winning strategy for \(\exists\) in \(G_\omega(M)\), showing that \(M\) is representable. This elegant strategy is due to Maddux (personal communication).

3.3 Summary

1. McKenzie’s algebra \(K \not\in \text{RRA}\). So \(\text{RRA} \subset \text{RA}\), as Lyndon (1950) showed. In fact, \(K\) is one of the smallest non-representable relation algebras. There are other 4-atom non-representable relation algebras, but all relation algebras with at most 3 atoms are representable.
2. The anti-Monk algebra $\mathcal{M} \in \text{RRA}$.

Exercise: Show that if (X, λ) is any representation of \mathcal{M}, then X is infinite. This is perhaps surprising. The obvious way of forcing a finite relation algebra to have only infinite representations is to include a relation $<$ like the one in \mathcal{K}, whose algebraic properties force it to be interpreted as a dense linear order. But \mathcal{M} is finite and symmetric.

4 Infinite relation algebras
Games can still be used to characterise representability of infinite relation algebras. But there are some issues that need dealing with first.

4.1 Complete representations
Recall that a relation algebra is atomic if every non-zero element of it lies above an atom. All finite relation algebras are atomic, but not all infinite relation algebras are — indeed, some have no atoms at all. Even the atomic ones need care. Lemma 3 holds for infinite algebras, but Lemma 4 does not: not all ultrafilters of an infinite relation algebra, even an atomic one, are principal. So we cannot assume that in a representation of such an algebra, we can associate an atom with every edge in the representation.

Let us start by picking out the representations where we can associate atoms to edges.

Definition 9. A representation h of a relation algebra \mathcal{A} is said to be a complete representation if $h^{-1}(x, y)$ is a principal ultrafilter of \mathcal{A} — it contains an atom of \mathcal{A} — for every $x, y \in X$.

Complete representations are special kinds of representations. It is not hard to show that in the above notation,

Theorem 10 (Hirsch, Hodkinson, [HirHod02a, Theorem 2.21]). h is a complete representation just in case h preserves all existing infima and suprema in \mathcal{A}: i.e., if $S \subseteq \mathcal{A}$, and S has a least upper bound $a \in \mathcal{A}$ (with respect to \geq), then

$$h(a) = \bigcup_{s \in S} h(s) \subseteq X \times X,$$

and similarly for greatest lower bounds.

This property gave rise to the name ‘complete representation’. Any representation of a finite relation algebra is complete. A model-theoretic saturation argument will easily show that any infinite representable relation algebra has incomplete representations. So for infinite relation algebras, the question of interest is whether they have any complete representation at all.
Definition 11. A relation algebra is said to be *completely representable* if it has a complete representation. We write \(\text{CRA} \) for the class of completely representable relation algebras.

It is not hard to see that any completely representable relation algebra must be atomic. It’s easy to find non-atomic representable relation algebras, and these cannot have any complete representation. But in fact, there are even atomic relation algebras that have a representation but don’t have a complete representation. They are representable, but not completely representable. The first such relation algebra was given by Lyndon in [Lyn50], though it was not recognised as such at the time.

Games can help to analyse complete representations. We can generalise the game \(G_n(A) \) seen earlier to a game \(G_\kappa(A) \) with \(\kappa \) rounds, where \(\kappa \) is any cardinal. Then we can prove

Theorem 12. Let \(A \) be any atomic relation algebra \(A \). If \(A \) is completely representable, then \(\exists \) has a winning strategy in \(G_\kappa(A) \) for any \(\kappa \). If \(\exists \) has a winning strategy in \(G_\kappa(A) \) for \(\kappa = |\text{At} A| + \aleph_0 \), then \(A \) is completely representable.

There is also an approximate characterisation of complete representability, generalising Theorem 6:

Theorem 13 (Hirsch, Hodkinson, [HirHod97b, HirHod02a]). For any atomic relation algebra \(A \), the following are equivalent:

1. The player \(\exists \) has a winning strategy in \(G_n(A) \) for all finite \(n \),
2. \(A \) is elementarily equivalent to (i.e., satisfies the same first-order sentences as) some completely representable relation algebra.

It is easily seen that the class \(\text{CRA} \) of completely representable relation algebras is pseudo-elementary (cf. [ChaKei90, Exercise 4.1.17] and [Hod93, §5.2] for information about pseudo-elementary classes). However, there are many negative results about it. [HirHod97b] and [HirHod02a] used game-inspired relation algebras to show that \(\text{CRA} \) is not elementary (it is not definable by any set of first-order sentences). By Theorem 2, it is not definable by a second-order (or higher-order) sentence, or a sentence of fixed-point logic. The completely representable relation algebras with countably many atoms can be characterised using the infinitary logic \(L_{\infty\omega} \), using Theorem 12 (this was observed by Väänänen at the meeting). But the countability assumption is necessary: there are atomic relation algebras \(A, B \), the former with uncountably many atoms, that agree on all \(L_{\infty\omega} \)-sentences, with \(B \) completely representable and \(A \) not.\(^1\) So \(\text{CRA} \) is not definable by a sentence of \(L_{\infty\omega} \).

\(^1\)In the notation of [HirHod02a, Theorem 17.25], take \(A = A_{\kappa, \omega} \) and \(B = A_{\omega, \omega} \).
4.2 Games and representations for infinite relation algebras

So much for complete representations. What about arbitrary ones? Can we use games to test whether an infinite relation algebra is representable?

Our game characterisation of the finite representable relation algebras in Theorem 6 relied on every edge in a representation being labelled by an atom — i.e., on completeness of the representation. For infinite relation algebras, which may not have complete representations, this is not going to work.

There are two ways out of this difficulty. We can modify the games to handle arbitrary (complete or incomplete) representations. One of the changes is that player \forall will choose arbitrary elements of the algebra, not just atoms. Then, we can use universal algebra to turn the σ_n of Theorem 6 into equations. This gives an equational axiomatisation of RRA. The method is very close to one of Lyndon from [Lyn56]. For details, cf. [HirHod97a, HirHod02a]. Alternatively, we can take advantage of canonical extensions.

Definition 14. The canonical extension \mathcal{A}^σ of a relation algebra \mathcal{A} is a special relation algebra formed from the set $\text{Uf}\mathcal{A}$ of all ultrafilters of \mathcal{A}. Its boolean part is just the full power set algebra $(\mathcal{P}(\text{Uf}\mathcal{A}), \cup, \cap, \emptyset, \text{Uf}\mathcal{A})$. So \mathcal{A}^σ is atomic. We will identify an atom $\{\alpha\}$, consisting of a single ultrafilter α, with the ultrafilter α itself. So the atoms of \mathcal{A}^σ are essentially the ultrafilters of \mathcal{A}. Then:

- The atoms $\leq 1'$ (in the sense of \mathcal{A}^σ) are precisely the ultrafilters containing $1'$ (in the sense of \mathcal{A}).
- The converse of an atom (ultrafilter) α is the ultrafilter consisting of the converses of all the elements of α: in symbols, $\bar{\alpha} = \{\bar{a} : a \in \alpha\}$. (The relation algebra axioms ensure that this is an ultrafilter.)
- A triple (α, β, γ) of ultrafilters is consistent just when every triple (a, b, c) of elements of \mathcal{A} taken from them (i.e., $a \in \alpha$, $b \in \beta$, $c \in \gamma$) satisfies the consistency condition $(a ; b) \cdot c \neq 0$. This generalises the consistency condition for atoms given in §2. It is equivalent to say that $a ; b \in \gamma$ whenever $a \in \alpha$ and $b \in \beta$.

Apart from some changes in notation, this definition is due to Jónsson and Tarski [JónTar51, JónTar52], and it generalises Stone’s related construction for boolean algebras [Sto36]. Any relation algebra \mathcal{A} has a canonical extension \mathcal{A}^σ, and \mathcal{A} embeds in \mathcal{A}^σ via $a \mapsto \{\alpha : \alpha$ an ultrafilter of $\mathcal{A}, a \in \alpha\}$. For finite \mathcal{A}, we have $\mathcal{A} \cong \mathcal{A}^\sigma$. Thus, the following generalises Theorem 6:

Theorem 15. A relation algebra \mathcal{A} is representable if and only if \exists has a winning strategy in $G_n(\mathcal{A}^\sigma)$ for all finite n.

Proof. \(\Rightarrow\): In an important result, Monk proved that if \(\mathcal{A}\) is representable then \(\mathcal{A}^\sigma\) is representable. (Monk did not publish it; his result is reported in his student McKenzie’s Ph.D. dissertation [McK66].) In fact, it can even be shown that if \(\mathcal{A}\) is representable then \(\mathcal{A}^\sigma\) is completely representable [HirHod102a, Theorem 3.36]. So by Theorem 12, \(\exists\) has a winning strategy in \(G_n(\mathcal{A}^\sigma)\) for all finite \(n\).

\(\Leftarrow\): Assume that \(\exists\) has a winning strategy in \(G_n(\mathcal{A}^\sigma)\) for all finite \(n\). By Theorem 13, \(\mathcal{A}^\sigma\) is elementarily equivalent to some (completely) representable relation algebra \(\mathcal{B}\). Up to isomorphism, \(\mathcal{A}\) is a subalgebra of \(\mathcal{A}^\sigma\). We saw in Section 1 that \(\text{RRA}\) is a variety, and so is closed under elementary equivalence and under taking isomorphic copies of subalgebras. So we obtain \(\mathcal{A} \in \text{RRA}\) as required.

q.e.d.

This means that we can still use the games \(G_n\) to characterise representability. We just need to play on the canonical extension, not the relation algebra itself. (For finite algebras \(\mathcal{A}\), this makes no difference, since \(\mathcal{A}^\sigma \cong \mathcal{A}\).) This characterisation of representability is perhaps not intrinsic, since it uses the canonical extension; but it is still useful.

5 Infinite atom structures

Recall from Section 2 that for an atomic relation algebra, if we know the value of the relation algebra operators applied to atoms, then we can determine these operators on arbitrary elements. For an atomic relation algebra \(\mathcal{A}\), we call

\[
\text{At} \mathcal{A} = \{ \text{At} \mathcal{A} \setminus \{a \in \text{At} \mathcal{A} : a \leq 1\}, \{(a, \bar{a}) : a \in \text{At} \mathcal{A}\}, \\
\{(a, b, c) : a, b, c \in \text{At} \mathcal{A}, a \geq b \geq c\}\}
\]

the atom structure of \(\mathcal{A}\). A tuple \(S = (S, I, f, C)\) is called an atom structure if it is the atom structure of some atomic relation algebra. It is not hard to derive from the relation algebra axioms a first-order sentence expressing that \(S\) is an atom structure. We used atom structures in Section 2 as a kind of notational device to allow us to present finite relation algebras more concisely. They certainly serve this function, but in some ways it is with infinite atomic relation algebras that connections between the representability of an algebra and the properties of its atom structure become most interesting.

Any atomic relation algebra uniquely determines its atom structure, but once we move away from finite relation algebras, we see that there can be many relation algebras possessing the same atom structure but with different (non-isomorphic) boolean structures. The boolean structure of \(\mathcal{A}\) (i.e., which suprema of sets of atoms exist in \(\mathcal{A}\)), together with the atom
structure, determine A up to isomorphism. Informally, we have

$$\text{atomic relation algebra} = \text{atomic boolean algebra} + \text{atom structure}.$$

Now all boolean algebras are representable, but the representability problem for relation algebras is highly non-trivial. So we might surmise that the difficulties in representing an (atomic) relation algebra reside in its atom structure. More precisely, we might guess that whether an atomic relation algebra is representable or not is determined by its atom structure. For complete representations, in which all edges are labelled by atoms, this is of course true (though the ‘completely representable atom structures’ are at least as hard to characterise as the completely representable relation algebras). But for arbitrary representations, it is not so clear.

What are the possible atomic relation algebras with a given atom structure? At one end of the spectrum we can define the \textit{complex algebra} CmS of an atom structure S. This is the biggest atomic relation algebra whose atom structure is S. Its domain is the full power set of the domain of S, and the relation algebra operations are determined by the atom structure. If the cardinality of the atom structure S is λ then CmS has cardinality 2^λ. At the other end of the spectrum, the \textit{term algebra} TmS is the smallest atomic relation algebra whose atom structure is S. It is the subalgebra of CmS generated, using the relation algebra operations, by the atoms. The cardinality of the term algebra is λ, for infinite atom structures. It is easily seen that if A is an atomic relation algebra with $\mathfrak{A}_tA = S$, then up to isomorphism, A is a subalgebra of CmS and TmS is a subalgebra of A.

So we may distinguish two types of representability for atom structures. An atom structure is \textit{weakly representable} if it is the atom structure of some representable relation algebra. An atom structure is \textit{strongly representable} if every relation algebra with that atom structure is representable. Since any subalgebra of a representable relation algebra is also representable, we can easily see that:

\textbf{Theorem 16.}

1. An atom structure is weakly representable if and only if its term algebra is representable.
2. An atom structure is strongly representable if and only if its complex algebra is representable.

For finite atom structures, the term algebra is the same as the complex algebra, so weak and strong representability coincide. Several questions immediately present themselves:
• Is representability of an atomic relation algebra determined by its atom structure? That is, could an (infinite) atom structure be weakly representable but not strongly representable?

• Is the class of weakly representable atom structures elementary?

• What about the class of strongly representable atom structures?

• Can we define either class with finitely many axioms?

The last question is easily dealt with: by Theorem 2, there can be no finite axiomatisation of either class. Also, since \(\text{RRA} \) is a variety, a result of [Ven97a] shows that the class of weakly representable atom structures is elementary.

The other questions are more tricky. To help us answer them, we look at a class of interesting atom structures obtained from graphs.

5.1 Graphs and relation algebras

By a graph, we mean an irreflexive symmetric ‘edge’ relation on a finite or infinite set of ‘nodes’. A set \(I \) of nodes of a graph is said to be independent if no two nodes in \(I \) are connected by a graph edge. For finite \(k \), a \(k \)-colouring of a graph is a partition of its nodes into at most \(k \) independent sets. The chromatic number of a graph is the least finite \(k \) for which it has a \(k \)-colouring, and if there is no such \(k \) then the chromatic number is \(\infty \).

Given a graph \(\Gamma \), we can make an atom structure \(\mathcal{S}(\Gamma) = (S, I, f, C) \) whose atoms are red, blue, and green copies of each node of \(\Gamma \), plus \(1' \) as an extra atom. That is, the set of atoms is

\[
S = \{ r_x, g_x, b_x : x \in \Gamma \} \cup \{ 1' \}.
\]

(Here and below, if \(\Gamma \) is a graph, we also let \(\Gamma \) denote its set of nodes.) The set \(I \) of sub-identity atoms is just \(\{ 1' \} \). The converse function \(f \) leaves each atom fixed — \(\mathcal{S}(\Gamma) \) is symmetric. To define \(C \), we stipulate that all triples of atoms are consistent (included in \(C \)) except the following:

• Peircean transforms of \((1', a, a') \) for \(a \neq a' \),

• monochromatic triples of nodes forming an independent set in \(\Gamma \) — i.e., triples \((r_x, r_y, r_z) \) where \(\{x, y, z\} \subseteq \Gamma \) is independent, and similarly for green and blue.

It turns out, for any graph \(\Gamma \), that \(\text{Cm}(\mathcal{S}(\Gamma)) \) is a simple relation algebra (to prove associativity of composition we need to take advantage of the three colours), and so \(\mathcal{S}(\Gamma) \) is a genuine relation algebra atom structure. Surprisingly, perhaps, its strong representability is entirely determined by the chromatic number of \(\Gamma \), in the case where \(\Gamma \) is infinite:
Theorem 17 (Hirsch, Hodkinson, [HirHod,02b, HirHod,02a]). For any infinite graph Γ, the relation algebra $\text{Cm}(S(\Gamma))$ is representable if and only if Γ has chromatic number ∞.

Proof. First, some notation: if $Z \subseteq \Gamma$, we let $r_Z = \{ r_z : z \in Z \}$, and similarly we define g_Z, b_Z. Note that these are all in $\text{Cm}(S(\Gamma))$, since the domain of the complex algebra is the full power set of the set of atoms.

\Rightarrow: Suppose that $h : \text{Cm}(S(\Gamma)) \to \mathcal{R}(X)$ is a representation. As usual, we write $+, \cdot, \cup, \cap, |$ for the operations of $\text{Cm}(S(\Gamma))$, and $\cup, \cap, |$ for those of $\mathcal{R}(X)$.

Supposing, for contradiction, that Γ has finite chromatic number, its set of nodes can be partitioned into independent sets I_0, \ldots, I_{n-1} for some finite n. Clearly, in $\text{Cm}(S(\Gamma))$ we have

$$1' + r_{I_0} + g_{I_0} + b_{I_0} + \cdots + r_{I_{n-1}} + g_{I_{n-1}} + b_{I_{n-1}} = 1.$$

Now h respects $+$: we have $h(a + b) = h(a) \cup h(b)$, for any $a, b \in \text{Cm}(S(\Gamma))$, and this extends by induction to sums of any finite length. So for any distinct $x, y \in X$, since $(x, y) \not\in h(1')$, we know that $(x, y) \in h(c_{I_k})$ for some $k < n$ and some colour $c \in \{ r, g, b \}$.

Observe that X must be infinite (since $S(\Gamma)$ is). So it follows from Ramsey’s Theorem [Ram30] that there are distinct $x_i \in X$ ($i < \omega$) and some element $a \in \text{Cm}(S(\Gamma))$ of the form c_{I_k} for some colour c and $k < n$, such that $(x_i, x_j) \in h(a)$ for all $i < j < \omega$. So $(x_0, x_2) \in h(a)$. Also, $(x_0, x_1), (x_1, x_2) \in h(a)$, so that $(x_0, x_2) \in h(a)|h(a)$. Now h is a representation, so it respects all the algebra operations. We deduce that

$$(x_0, x_2) \in h(a) \cap (h(a)|h(a)) = h(a \cdot (a ; a)).$$

But for any nodes $p, q, s \in I_k$, we know that $\{ p, q, s \}$ is an independent subset of Γ (since I_k is), and so (c_p, c_q, c_s) is not a consistent triple of atoms in $S(\Gamma)$. Because $' ; '$ in $\text{Cm}(S(\Gamma))$ is defined additively from the atoms, we have

$$a ; a = \sum_{p, q \in I_k} c_p ; c_q = \{ s \in S(\Gamma) : \exists p, q \in I_k ((c_p, c_q, s) \text{ is consistent}) \}.$$

It is clear that the ‘s’ here cannot lie in a, so $a \cdot (a ; a) = 0$, and $(x_0, x_2) \in h(0) = \varnothing$. This is impossible.

\Leftarrow: Assume Γ has infinite chromatic number. We’ll show that there exists a winning strategy in the game $G_\omega((\text{Cm}(S(\Gamma)))^a)$ played on the canonical extension $(\text{Cm}(S(\Gamma)))^a$ (see Definition 14), and hence by Theorem 15 that $\text{Cm}(S(\Gamma))$ is representable.
Call a set X of nodes of Γ small if the induced subgraph of Γ on the set of nodes X has finite chromatic number. Call a set large if its complement is small. Then the set of all nodes is large, any superset of a large set is large, and the intersection of two large sets is still large (because the union of two small sets is small). By assumption, Γ itself is not small, so \emptyset is not large. Now, using Zorn’s lemma or the boolean prime ideal theorem, for each colour $c \in \{r, g, b\}$ the set

$$\{c_L : L \subseteq \Gamma, L \text{ large}\}$$

of c-coloured copies of large sets can be extended to an ultrafilter μ_c of $\text{CmS}(\Gamma)$ — i.e., an atom of the canonical extension $(\text{CmS}(\Gamma))^\sigma$, if we identify μ_c with $\{\mu_c\}$ again. If $Z \subseteq \Gamma$ and $c_Z \in \mu_c$, then Z is not small, and so in particular, not independent.

The three atoms μ_r, μ_g, μ_b are very useful for \exists when playing the game $G_\omega((\text{CmS}(\Gamma))^\sigma)$. In fact, they allow her to win it. First, a little calculation will establish that any triangle in a network with two edges labelled with the same μ_c is consistent:

\[(\ast) \text{ Let } \gamma \text{ be any ultrafilter of } \text{CmS}(\Gamma), \text{ and let } c \in \{r, g, b\} \text{ be given. Then } (\mu_c, \mu_c, \gamma) \text{ is a consistent triple of atoms of } (\text{CmS}(\Gamma))^\sigma. \]

This is clear if $\{1\} \in \gamma$. Assume that $\{1\} \notin \gamma$. Take $X, Y \in \mu_c$ and $Z \in \gamma$. Then (by Definition 14) we need to find $x \in X$, $y \in Y$, and $z \in Z$ such that (x, y, z) is a consistent triple of atoms in $\text{S}(\Gamma)$. We can replace these sets by smaller ones in their ultrafilters; so we can suppose that $X = Y \subseteq c_\Gamma$. Now, X has the form c_X', for some $X' \subseteq \Gamma$.

But $c_{X'} \in \mu_c$, so as we saw, X' cannot be independent. Let $p, q \in X'$ be connected by an edge of Γ. Then $c_p \in X$, $c_q \in Y$. We know that Z cannot be $\{1\}$ or \emptyset; take $z \in Z$ with $z \neq 1$. Then by the definition of $\text{S}(\Gamma)$, (c_p, c_q, z) is consistent.

Now let us see how \exists can win the game $G_\omega((\text{CmS}(\Gamma))^\sigma)$. Suppose that in some round, the current network is N, and \forall picks nodes $x, y \in N$ and atoms (ultrafilters) α, β. If \exists has to extend the network, we will have $\{1\} \notin \alpha, \beta$. Now since in $\text{CmS}(\Gamma)$ we have $\{1\} + r_\Gamma + g_\Gamma + b_\Gamma = 1$, any ultrafilter must contain one of these four sets — in fact, exactly one, since they are pairwise disjoint. So there are $c, c' \in \{r, g, b\}$ such that $c_p \in \alpha$ and $c'_q \in \beta$. Since we have three colours, \exists can pick a colour $c'' \notin \{c, c'\}$ (this is chiefly why we introduced three colours). Then the following holds:

\[(\ast \ast) \text{ For any ultrafilter } \gamma \text{ not containing } \{1\}, \text{ the triples } (\alpha, \mu_{c''}, \gamma) \text{ and } (\beta, \mu_{c''}, \gamma) \text{ are consistent triples of atoms of } (\text{CmS}(\Gamma))^\sigma. \]
This is simply because if $X \in \alpha$, $Y \in \mu_{c'}$, and $Z \in \gamma$, we can find $x \in X$ of colour c, $y \in Y$ of colour c'', and $z \in Z$ with $z \neq 1'$. The triple (x, y, z) is not monochromatic, so it is a consistent triple in $S(\Gamma)$. So by Definition 14, $(\alpha, \mu_{c'}, \gamma)$ is consistent, as claimed. The argument for $(\beta, \mu_{c'}, \gamma)$ is similar.

The player \exists lets the new network be N' with new node z. She labels $N'(z, t) = N'(t, z) = \mu_{c''}$ for each node t of N with $t \neq x, y$.

Then N' is a network. We check consistency of triangles in N'. The Peircean law in $(\text{Cm} \mathcal{S}(\Gamma))_\sigma$ ensures that it is enough to check a triangle in any single orientation. The triangle xyz is consistent, because \forall’s move is assumed legal. Pick any $t \in N$ other than x, y. As $t \neq x, y$, we have $\{1'\} \not\in N(x, t), N(y, t)$ (cf. Definition 5). So by $(* *)$ above, the triangles txz and tyz are consistent. For any $t, t' \in N$ other than x, y, triangle $t'z$ is consistent by $(*)$ above. All other triangles lie in N and so are (inductively) consistent. Other checks are straightforward. So this gives a winning strategy for \exists in the game.

Corollary 18. $S(\Gamma)$ is strongly representable iff Γ has infinite chromatic number (for any infinite graph Γ).

Proof. By Theorems 16 and 17. q.e.d.

5.2 Applications

The corollary allows us to translate problems about atom structures into problems about graphs. Graphs seem easier to work with, and far more is known about them.

If we replace $\text{Cm} \mathcal{S}(\Gamma)$ by a subalgebra (e.g., $\text{Tm} \mathcal{S}(\Gamma)$), the left-to-right implication in Theorem 17 can fail. Even if the nodes of Γ can be partitioned
into independent sets \(I_0, \ldots, I_{n-1}\) for some finite \(n\), it might be that the element \(\{c_x : x \in I_k\}\) does not belong to the algebra, for some \(k < n\) and some colour \(c\). Indeed, taking the graph \(Z\) with nodes \(Z\) and edges between consecutive integers only, a not too difficult exercise shows that the term algebra \(T_mS(Z)\) is indeed representable, though the chromatic number of \(Z\) is just two. (The first part of the exercise is to calculate exactly which sets of atoms are generated using the relation algebra operations.) Thus, \(S(Z)\) is weakly but (by Corollary 18) not strongly representable, and we conclude:

Theorem 19. There exist weakly but not strongly representable atom structures.

A more complicated sequence of graphs is derived from finite graphs \(G_n\) \((n < \omega)\) constructed probabilistically by Erdős [Erd59]. Each \(G_n\) has chromatic number at least \(n\), and no cycles of length \(n\) or less. Here, a cycle is a sequence \(x_1, \ldots, x_l\) of distinct nodes with \((x_1, x_2), \ldots, (x_{l-1}, x_l)\), and \((x_l, x_1)\) all being graph edges. The length of this cycle is \(l\).

We can use this wonderful construction in graph theory to answer the last remaining question from those listed above. We set \(\Gamma_k\) to be the disjoint union of the graphs \(G_n\) for all \(n > k\). Each \(\Gamma_k\) has infinite chromatic number, but an ultraproduct \(\Gamma\) of the \(\Gamma_k\) has no cycles, and hence (by well known graph theoretic work: cf., e.g., [Die97]) chromatic number just two. It follows from Corollary 18 that every \(S(\Gamma_k)\) is strongly representable, but an ultraproduct \(S(\Gamma)\) of them is not strongly representable. \((S(-)\) commutes with taking ultraproducts.) By Loś’s theorem (cf. [Hod93, Theorem 9.5.1] or [ChaKei90, Theorem 4.1.9]), any first-order sentence true in all the \(S(\Gamma_k)\) must also be true in \(S(\Gamma)\). We conclude that:

Theorem 20. The class of strongly representable atom structures is not elementary: it cannot be defined by any set of first-order axioms.

Probabilistic constructions of graphs have been useful for relation algebras on other occasions. For example, in Theorem 15 we mentioned Monk’s result that if \(A\) is a representable relation algebra then so also is its canonical extension \(A^\sigma\). So \(RRA\) is closed under taking canonical extensions, and we say that it is a canonical variety. But does it have an axiomatisation by equations \(\varepsilon\) that are individually canonical, in the sense that for any relation algebra \(A\), if \(A \models \varepsilon\) then \(A^\sigma \models \varepsilon\)? The answer is ‘no’: [Hod,Ven05] uses a probabilistic graph construction and a ‘local’ variant of Theorem 17 to show that:

Theorem 21. Every first-order axiomatisation of \(RRA\) has infinitely many non-canonical sentences.
Similar considerations led to a proof that not every canonical variety is generated by an elementary class of frames,\footnote{Cf. [Gol,Hod,Ven04, Gol,Hod,Ven03].} solving a problem of Fine in modal logic [Fin075]. More details of these and other related results can be found in [HirHod02b, Hod,Ven05] and [HirHod02a, Chapter 14].

6 Games in algebraic logic: pros and cons
Games have made a substantial contribution to our understanding of relation algebras. The idea has many precursors, notably in the seminal paper of Lyndon [Lyn50]. Let us end with a rundown of the pros and cons of using games in relation algebras and algebraic logic generally.

6.1 Pros
1. Games provide a simple practical test for representability. (They are also very useful for theoretical purposes, as we saw in Theorem 17.)
2. Games can be used to produce axioms as well (with care, they sometimes even yield finite axiomatisations).
3. Sometimes, a winning strategy can be extracted and used for other things, such as decidability, complexity, finite model property.
4. Games on relation algebras generalise to games for other kinds of algebras of relations, such as complex algebras (cf., e.g., [Hod,MikVen01]).
5. Most importantly in our view, games can suggest some fairly sophisticated constructions of relation algebras. These can be used to prove:

(a) \textbf{RRA} is not finitely axiomatisable (first proved in [Mon64], not using games).

(b) \textbf{RRA} is not axiomatisable by equations using finitely many variables altogether ([Jón91], although the result was stated by Tarski in a video made in 1974).

(c) \textbf{RRA} is not closed under Monk completions\footnote{Cf. [Hod97, HirHod02a].}: the example \text{Tm S}(Z) above shows this, since its completion is isomorphic to \text{Cm S}(Z). Hence, \textbf{RRA} is not Sahliqvist-axiomatisable [Ven97b].

(d) In first-order logic, more 3-variable sentences are provable with \(n+1\) variables than with \(n\) variables, for all \(n \geq 3\), motivated by games and relation algebras [HirHod,Mad02a, HirHod,Mad02b].

(e) For a finite relation algebra \(\mathcal{A}\), it is undecidable whether \(\mathcal{A} \in \textbf{RRA}\) [HirHod02a].

(f) \textbf{RRA} is canonical (Monk), but any first-order axiomatisation of it has infinitely many non-canonical axioms [Hod,Ven05].
6.2 Cons

We use games as a construction method, essentially forcing, to build representations of relation algebras. In general, the representations so obtained are infinite. These games are not good at building finite representations.

For example, suppose that \(\mathcal{A} \) is a finite relation algebra with a ‘flexible atom’, \(f \), say. This means that \((a, b, f)\) is consistent for all atoms \(a, b \neq 1 \). The game \(G_\omega(\mathcal{A}) \) shows that \(\mathcal{A} \) is representable: \(\exists \) can win by using \(f \) to label network edges wherever needed, and it will always be consistent to do so.

Problem 22 (Maddux). Must such an \(\mathcal{A} \) have a finite representation?

There is a general issue here: *find ways of constructing finite representations*. Can we combine games with, *e.g.*, probabilistic constructions?

Some algebraic logicians avoid games and prefer the traditional ‘step by step’ approach, enumerating the requirements of a construction and dealing with them one by one. Certainly, games are not needed in simple cases, but when the going gets tougher we believe that they are invaluable, and they bring their own insights. The feeling that games are in some way undignified is addressed by Hodges, who comments:

‘The notion of a game has to do with people acting together, setting themselves and each other tasks. As a result, game-theoretic versions of mathematical ideas often have a direct intuitive appeal when compared with more formalistic treatments. In the period 1900–1950 logic was fighting to establish itself as a serious branch of mathematics, and if you want your mathematics to be serious you don’t start by talking about people setting up competitions or exercise sessions. Today logic has won its battle for recognition, and [we] can afford to make intuitiveness one of [our] chief aims.’

[HirHod102a, p. vii]

References.

[ChaKei90] Chen C. Chang and Howard J. Keisler, Model Theory, 3rd edition, North-Holland 1990

[Die97] Reinhard Diestel, Graph Theory, Springer 1997 [Graduate Texts in Mathematics 173]

[HenMonTar71] Leon Henkin, J. Donald Monk, and Alfred Tarski, Cylindric Algebras, Part I, North-Holland 1971

[HirHod02a] Robin Hirsch and Ian Hodkinson, Relation Algebras by Games, North-Holland 2002 [Studies in Logic and the Foundations of Mathematics 147]

[HodVen05] Ian Hodkinson and Yde Venema, Canonical Varieties With No Canonical Axiomatisation, *Transactions of the American Mathematical Society* 357 (2005), p. 4579–4605

184 Robin Hirsch and Ian Hodkinson

Received: March 1st, 2005;
In revised version: August 24th, 2005;
Accepted by the editors: August 31st, 2005.