
Coevolutionary modelling of a miniature
rotorcraft

Renzo DE NARDI and Owen E. HOLLAND
University of Essex,

Department of Computing and Electronic Systems,
Colchester CO4 3SQ, United Kingdom;
rdenar@essex.ac.uk,owen@essex.ac.uk

Abstract. The paper considers the problem of synthesising accurate dynamic mod-
els of a miniature rotorcraft based on minimal physical assumptions, and using the
models to develop a controller. The approach is based on the idea of building mod-
els that predict accelerations, and is implemented using evolutionary programming
in a particularly efficient co-evolutionary framework. Both the structure and the
parameters of the nonlinear models are jointly identified from real data. The mod-
elling method is demonstrated and validated on a miniature quadrotor rotorcraft,
and a controller based on the model is then developed and tested.

1. Introduction

For decades, the wide range of potential applications of unmanned aerial vehicles (UAVs)
has made them the subject of academic and commercial research. Quadrotor rotorcraft like
the one used in this study (Figure 1) are typical examples of very small and capable flying

Figure 1. Quadrotor rotorcraft. Note the reflective markers used for tracking.

machines. Mechanically very simple to build and maintain, robust to crashes, lightweight,
powerful and manoeuvrable, and readily available in the marketplace, these flying ma-
chines are becoming the platforms of choice for many research teams ([7],[9],[12],[13]).

The challenge now is in fully exploiting the potential of these machines; in this paper
we are seeking a methodology able to identify a system using only data collected during
normal piloted flight, and without requiring any prior formal knowledge of the structure
of the system model. The advantages of this approach are clear: as well as eliminating

the need for in-depth knowledge of a specialist engineeringdomain, such as aeronautics,
it offers the possibility of automatically identifying unknown and novel systems. Such
systems are still being developed by talented craftsmen whobuild novel flying machines
(or variations of existing concepts) relying almost entirely on their insight [14], [18],[15].

A second motivation is the possibility of using automatic modelling for automatic
damage recovery (e.g. [6]), where after automatically relearning or adapting the system
model, new control strategies that cope with the damage can be obtained.

In any exercise in modelling, it is first necessary to specifythe domain of use for the
model in question, as this allows us to define the types and extents of discrepancies from
the real system that can be tolerated. In our case we plan to use the model to produce a
dynamic simulator that, within the normal envelope of use ofthe machine, is sufficiently
accurate for the purpose of developing and testing a controller. In this simulator-based
approach, the form of the model is not important as long as themodel replicates the input-
output behaviour of the actual process. However, for comparability with other methods,
we will develop a model in the form of a set of nonlinear differential equations (i.e. in state
space form), a common way of representing dynamic systems:

1
ẋ(t) = f (x(t),u(t− τ)) . (1)

The next two sub-sections will give overviews of evolutionary modelling, and of mod-
elling quadrotors. Our own approach is explained in detail in Section 2, and Section 3
reports the results of the experiments conducted to validate the approach.

1.1. Quadrotor Modelling and Control

Many publications deal with quadrotors, and most of them arededicated to modelling
and control. The control techniques analysed range from simple PID methods [8] to more
complex techniques like LQR, sliding mode or integral backstepping ([7],[9]). A notable
exception is [19] where the vertical dynamic of the quadrotor is learned using Locally
Weighted Linear Reagression and a controller is trained using reinforcement learning.
Most authors begin by proposing models based on first principles. A model for the thrust
of each rotor is generally used, and the balance of forces andmoments at the quadrotor’s
centre of mass allows the computation of the dynamic behaviour of the machine. More
sophisticated models ([13],[16]) can include the aerodynamic effects of blade flapping,
or simple models for the ground effect ([7]). Model parameters are mainly derived from
static tests; if a specific component is known to be critical for control, specific tests are
devised to model it correctly. Ultimately the engineer useshis insight and the results of
control experiments to decide which effects need to be modelled, and which estimated, so
that the final controller will yield the desired performance.

1.2. Canonical and Evolutionary System Identification

System identification in aeronautics is of course a well developed field of research. Most
established methods tackle the problem of estimating the parameters of a model with a
known structure, one that is generally based on first principles. Methodologies that can

1The vectorx = [φ, θ, ψ, u, v, w, p, q, r] represents the state (φ, θ, ψ are the quadrotor’s attitude angles,
u, v, w andp, q, r are its linear and angular velocity in the body frame of reference),u = [uP , uR, uY , uT] is
the input vector made up by the pitch, roll, yaw, and throttlecommands andτ is the vector of input time delays.

also determine the model structure, for example by using such techniques as artificial
neural networks, have also been developed (e.g. [11]), but the general need for a model to
be transparent and understandable makes those techniques of limited practical use.

The use of evolutionary computation for system identification is not new, but it is only
recently that it has been applied to the identification of models of the type and size useful
in a domain like ours. For example, Bongard and Lipson have successfully demonstrated
the use of co-evolution to regress the dynamics of complex nonlinear systems [4]. The
idea behind the techniques is simple: a set of fitness maximizers is evolved, but the tests
against which the performance of the maximizers is measuredare also under evolutionary
control. Each period of evolution of the models is interleaved with a period of evolution
of the tests; the fitness of the models is obtained by testing them with the evolved tests,
while the fitness of the tests is the variance that each produces in the fitness of the models.
The tests therefore evolve to be as discriminative as possible when measuring the perfor-
mance of the models. In [5] Bongard and Lipson also suggest partitioning a complex prob-
lem by regressing each modelled dimension independently ofthe others; this allows the
methodology to scale up and approach problems out of the reach of standard techniques.

Common to any system identification approach there is the fact that any effect not
present in the dataset cannot be learned. In our case, the experimenter has to make sure
that the flight envelope of interest is adequately covered bythe collected data.

2. Our approach

The only domain knowledge we use is the assumption that the system can be sufficiently
well approximated as a 6DoF rigid body. This might seem to be rather limiting, but in
practice a wide range of vehicles, from wheeled robots to aircraft, helicopters and even
ships can be treated in this way. Physics tells us that any motion that our system exhibits is
due to the effects of forces and moments (i.e. linear and angular accelerations) applied to
the rigid body. If we can relate these instantaneous accelerations to the state and inputs of
the system, we will be able to predict the motion of the objectunder study. This concept
paves the way for the two main ideas of our approach:

• using a general and computationally efficient co-evolutionary method to infer the
structure and the parameters of the nonlinear relationships between the inputs, the
state, and the accelerations;

• directly modelling the accelerations in the body coordinates using the laws of
physics to propagate the state forward in time so that the effects of the translation
and rotation of the body’s frame of reference can be explicitly taken into account.

The sizes of our state and input vectors (12 and4 respectively) mean that the number
of possible nonlinear functions that could relate them to the accelerations is too large
for any method of extensive search, and so an evolutionary approach is indicated. We
have chosen genetic programming (GP) for its ability to handle both the structure and
the parameters of the model, and to deal with both linear and nonlinear functions. The
efficiency of the coevolutionary setup is also important, since every function evaluation
involves integrating the full 6 dimensional state of the model, which is computationally
expensive.

Given that all the state variables and inputs are available from the data, and that we
can precompute the relevant accelerations offline, an obvious approach is to search for

the model that minimizes the error between the predicted andthe computed accelerations.
However, when the acceleration prediction is integrated forward in time, any errors will be
accumulated, creating an obvious risk of divergence. A better approach is to integrate the
predicted acceleration for a specified number of time steps,and select the model that min-
imizes the error between the predicted and the computed value of the state variable itself.
Any divergence will produce a higher error, ensuring a search for models with good long
term prediction ability. As the predicted acceleration is successively integrated through
time, it will affect not just its own, but also the other statevariables. Prediction errors will
propagate through the system just as they would when the model is used as a simulation
tool. In effect, our evolutionary algorithm will produce a model that can cope with the
effects of its own errors.

A vehicle travelling in a given direction, and at the same time rotating, will experience
a sideslip force as a result of inertia. These effects are nonlinear [3], which makes the
model learning problem even harder. The discrete time update of the state variables can be
written in body coordinates as:

u
v
w

t+1

= R
bt+1

bt

u
v
w

t

+

ax

ay

az

t

∆t

p
q
r

t+1

=

p
q
r

t

+

ṗ
q̇
ṙ

t

∆t

 (2)

whereu, v, w are the velocities in the quadrotor body frame of reference,p, q, r are the
rotational velocities about the axes,R

bt+1

bt
is the matrix transformation that rotates the body

frame from its orientation at timet to that att + 1; a = [ax, ay, az] andα = [ṗ, q̇, ṙ] are
respectively the linear and angular accelerations in body coordinates. Equation 2 shows
that the linear accelerations are not simply the derivatives of the linear velocities, and
so an additional nonlinear transformation is needed to compute them. By performing the
transformationRbt+1

bt
in our integration routine, we simplify the learning task.

2.1. Data filtering, computation of derivatives and integration

The first step in our method is the data collection. The 6DoF pose of the vehicle, and the
input from the pilot, are recorded at100Hz. However, we require not only the absolute
pose of our vehicle, but also its first and second derivatives(i.e. the angular and linear
velocities, and the angular and linear accelerations). We first apply a low pass filter to
reduce the effects of noise. A transfer function frequency plot from our data showed the
dynamics of our system to be quite slow, with most of the frequency content below4Hz;
this allowed us to set the cutoff frequency to5Hz. To avoid phase distortion, and to allow
for delay compensation, we use a finite impulse response (FIR) filter with 200 taps.

The need to integrate the state equations forward in time is asignificant computa-
tional drawback of any time-domain method. However, given the limited bandwidth of
our system, we can mitigate this problem by downsampling ourdata. We then compute
the first and second order derivatives as first order differences. During the computation of
the derivatives the necessary changes of coordinates are performed in order to obtain the
mathematical counterpart of the integration procedure described next.

As a final check, we integrate the computed accelerations forward in time to verify
that the resultant time series matches the original time history. With a requirement for
a relative squared error (RSE) lower than5% within a time span of750 steps2 we can

2The length normally used in the regression algorithm, equivalent to30s of clock time.

safely achieve a downsampling factor of4, which brings the sampling frequency to25Hz.
The trim values (i.e. the control values corresponding to the hover condition) for each
of the control data series are then subtracted; this is standard practice in time domain
methodologies.

To produce the development over time of the state variables,the accelerations pre-
dicted by the model need to be integrated from some initial state. As well as executing
the discrete time update equation for linear and angular velocities (i.e. equation (2)), the
integration routine also needs to compute the position and attitude. In order to avoid the
gimbal lock problem arising from the use of Euler angles, andalso to improve accuracy,
the attitude is represented in quaternion form3.

2.2. Co-evolutionary Setup

The coevolutionary setup of our algorithm consists of two main steps that are interleaved
in time: in the first, the models are evolved, and in the second, the tests are evolved.

In our case a model is simply a GP expression tree with a maximum depth of 5. The
inner nodes of the trees are the usual functionals{+,−, ∗, /}while the leaves can be any of
the inputs or a constant value. To reduce the computational complexity we have opted for
using 14 parallel hill climbers in place of a population based strategy; at each generation
the parent is replaced if the offspring generated by mutation performs better. Mutation
is the only evolutionary operator used, and either a macro ora micro mutation is used
with equal probability. A macro mutation randomly selects anode in the tree and replaces
it with a newly generated one, removing or generating child nodes as needed. A micro
mutation selects a node and replaces it with a newly generated subtree. To generate a new
subtree, nodes are drawn at random with a probability of 0.7 of picking a leaf. Following a
macro or micro mutation, one of the constants in the tree is perturbed with a probability of
0.5 by adding a random value from a Gaussian distribution with mean 0 and variance 0.1.
The initial value of a constant node is chosen from a uniform distribution ranging from -5
to 5. Finally, mutation is applied to the delay of each input:with probability0.1, a delay
can be replaced with a new random value between0 and5 (the maximum allowed delay).
All delays are originally initialised to0.

In our algorithm, tests are simply short subsets of consecutive data chosen from the
training dataset. The first sample of the set represents the initial conditions, and the subse-
quent samples are used by the integration routine. The average squared error of the model
computed from those samples is summed over all the tests in the suite to yield the model
fitness. The position at which a subset of points is taken fromthe dataset is controlled by
evolution; mutation is applied by adding a randomly generated value to the current start-
ing index of the data in the test. In the case of the tests, the population of 5 individuals is
evolved using five parallel hill climbers. The fitness function used for a test is the variance
that each test produces in the current population of models,thereby choosing for identifi-
cation the parts of the dataset not well described by the population of models. This stops
the optimization from focusing too much on dynamic states that are overrepresented in the
data (e.g. hovering). To avoid cyclic oscillations of fitness, we do not use the evolved tests
directly for the evaluation of the models, but instead maintain a suite of 6 tests to which
we add the last best test generated. If the test overlaps one of the tests already in the suite,
it replaces it, otherwise it replaces the oldest test in the suite.

3Although the core integration routine uses quaternions, the attitude is expressed in Euler angles when passed
to the modelling equations.

Bloat tends to increase the size of the models significantly,so after each cycle of
the algorithm, we try to simplify each model by replacing a randomly selected subtree
with a constant. We then try to reconverge the tree by evolving it using only the Gaussian
mutation operator. If the resulting tree performs no betterthan the original, it is discarded.

An iteration of the algorithm typically consists of 600 generations of model evolution,
80 generations of test evolution, and one instance of tree simplification. A typical run of
the full algorithm contains 30 iterations.

3. Experiments

3.1. The quadrotor

The quadrotor used in the study (see figure 1) is a commercially available model [1] pow-
ered by four brushless motors fitted with 8" propellers. The only modification made for
these experiments was the addition of the 5 infrared tracking markers. For data collection
the quadrotor was manually flown in our flying arena which is equipped with a Vicon
MX [2] infrared motion capture system; this system tracks and resolves the quadrotor’s
3D position and orientation in real time with high accuracy and precision (of the order of
millimetres) with a sampling frequency of100Hz. A standard RC transmitter was used to
fly the quadrotor manually; the commands were recorded at100Hz and synchronised to
the flight data. The transmission delay of the RC transmitteris 18ms, and the data capture
delay is typically under10ms; both delays were ignored since at25Hz (the post filtering
data sampling rate) they are smaller than one time step.

A quadrotor is by design a mechanically unstable system since even if the four rotors
are driven at the same speed, the rotational moments produced by each rotor will not cancel
out exactly due to minor differences in drag and lift. MEMS gyros are commonly used on
this type of rotorcraft to provide active stabilisation based on rotational speed feedback. In
[12] Gurdan et al. describe the low level stabilisation algorithm used in our quadrotor; it
is basically a set of three independent PD loops, one for eachrotational axis. No dynamic
models were used to design the machine or the controller, andthe authors relied solely on
their insight and experience to tune the controller empirically.

During the flight we did not have direct access to the low levelmotor inputs; only the
control inputs to the stabilisation loops were recorded. Incontrast to the ’first principles’
models discussed in 1.1 our system identification techniquewill provide a lumped model
of the quadrotor plus the stabilisation controller. We do not consider this as a limitation,
but instead we see it as illustrating the flexibility of our approach. The user can decide at
what level to model the system, without the need to understand either the requirements or
the implications for the structure of the model.

3.2. Identification

After filtering and downsampling, a series of13800 data points was extracted;11800 of
them were used for training with the remainder reserved for validation. Each sample point
consists of 3 arrays, the statex, the computed accelerationsa,α and the control inputu.
During evolution, the individual tests were conducted using short chunks of750 consec-
utive sample points4. The state information in the dataset is used only to define the initial

4Longer time windows would be able to to enforce a search for even better long term prediction abilities but at
the expenses of increased computational needs; the length of 750 was empirically found to be a good trade off.

condition of the system; from that moment onward, the state is computed using the inte-
gration routine. At each timestep, the model under test is fed the control inputs, and the
current state. Since the delay of each input is controlled bythe evolutionary algorithm, it
is important to remember that some of the control data might not be the ”current” ones.
The predicted accelerations and the remaining ”true” accelerations from the dataset form
the inputs to the integration routine.

The fitness of a given model is the average absolute error between the true state vari-
able and the one predicted by the integration routine; for example, for a model that predicts
the variableė, the fitness (fė) would be:

fė = −

∑N

n=0

(

∑T

t=0
|et − êt|

)

n

N ∗ T
e ∈ {u, v, w, p, q, r}

whereT is the number of samples in each of the tests,N is the number of tests in the test
suite,et is the true and̂et is the predicted state variable. The algorithm also delivered a
very similar performance using the classic squared error fitness metric.

We can now move towards the production of a full model. Each ofthe six equations
was first identified independently, and then, for each one, the best model found after30
repetitions of the coevolutionary algorithm was selected.Then we simply provided the
predictions of the set of six models as the input to the integration routine. After setting
the state to some initial value from the dataset we propagated the system forward in time
with the recorded control input as the only input. To have a better understanding of the
algorithm’s precision and reliability we repeated the procedure of producing a full model
30 times. A qualitative example of the evolution in time of the state variables for a win-
dow of 7s (randomly selected from the validation data) is shown in Figure 3.2. The pre-

0 2 4 6

−6

−4

−2

0

2

u[
m

/s
]

0 2 4 6

−6

−4

−2

0

2

v[
m

/s
]

0 2 4 6
−2

0
2
4
6
8

w
[m

/s
]

0 2 4 6

−1

0

1

p[
ra

d/
s]

0 2 4 6
−1

0

1

q[
ra

d/
s]

0 2 4 6
−0.2

0
0.2
0.4
0.6

r[
ra

d/
s]

Figure 2. Prediction over a7s time window; true data (continuous line), best model (dashed line), envelope of
the min and max values predicted within the whole populationof 30 models (shaded area).

dictions appear to be in good agreement with the recorded data; this is especially so for
the angular velocities since they depend directly on the control input. The linear velocities
suffer a larger error as consequence of the accumulation of the angular velocity error. As
expected the error increases as a function of time, but even the worst models still appear
well behaved.

In table 1 we can see the equations5 of the model with the median error performance
produced by the30 runs of the GP process (we will refer to the median model asmodelM

5We have simplified the expressions and rounded the constant terms to one decimal place for better readability.

from now on); we chose this as a good representative of the full set of models, but a similar
structure can also be seen in the best model.

Median model

ax = 10.0θ − 0.6u + 0.18 − 0.5q − 0.56pr + 0.1v − 0.6uY

ay = 0.3 − 9.2φ− 0.6v + v/(4.3 + φ− r)

az = 28.2uT −5 − w + 2.1u2

P − 0.02

ṗ = 10.3uR−1 − 4.15p

q̇ = −9.8uP − 3.3q − 1.2θ + 0.2u+ 9.8quRuY + (ψ − quP)(−uY + quRuY)

ṙ = −7.8uY −2 − 1.9r + 2quY − r2uY −2

Table 1. Model with median error performance from 30 repetitions of the algorithm. Terms in bold appear
(directly or after an appropriate series expansion) in every single one of the 30 models. The symboluX−k

indicates the inputX delayed byk timesteps.

Although understanding the model produced by our evolutionary algorithm is far from
simple, it is interesting and instructive to try to analyse the structures present in all30
models. (They are highlighted in bold in table 1). First, in the expression of the linear
accelerationsax anday, we can recognize something like the small angle approximation
to the projection of gravity (i.e.10.0θ and 9.2ψ). At hover the thrust is exactly equal
to the weight, so any pitch or roll movements will project theaccelerationssin(θ)g and
sin(φ) cos(θ)g in the forward and lateral direction; again, our terms are approximations
of these. The reader familiar with aerodynamics will also spot the Stokes’ drag (the ex-
pression of the viscous drag appropriate for relatively slow speeds) appearing in the terms
0.6u for ax and0.6v for ay; this also appears in the expression ofaz as−w. The vertical
acceleration is seen to be proportional to the throttle input uT ; this makes sense because
in a quadrotor the throttle directly controls the mean speedof the rotors, which is propor-
tional to the thrust (and our brushless motor controller canexactly maintain the required
speed thanks to rotational speed feedback). Of course, the inertia of the motors and rotors
reduces the bandwidth of the propulsion group; our GP expression models this as a control
delayuT−5. The angular accelerations show the presence of the PID controller loop. We
know from [12] that the controller produces a change in rotorspeeds proportional to the
control input; this explains the terms10.3uR−1,9.8uP and7.8uY −2 (in ṗ,q̇ andṙ respec-
tively). The controller output is also inversely proportional to the rotational speed in the
controlled axis, giving rise to the terms−4.15p, −3.3q and−1.9r

Although they were derived from real and noisy data, the models produced here are
completely deterministic; a way of simulating the disturbances naturally produced in ro-
tors suggested in [9] is to add some form of noise to the control inputs. In all our simula-
tions we have used Gaussian noise with a standard deviation equal to10% of the maximum
value of the control input in the data used for identification.

3.3. Control

We then moved on to test the model in conjunction with a controller. As a first step we
manually tuned a PID controller on the test quadrotor to perform waypoint navigation. The
position and attitude estimation provided by the Vicon system were used as the feedback
signals for a series of nested PID loops, with the inner layerconsisting of three PD loops
controlling pitch, roll, and yaw angle using the attitude and angular speed infomation from
the motion capture system. The outer layer consisted of three PD loops, two of which,

given the lateral and longitudinal distance from the next waypoint (i.e. the current error in
body coordinates), would output a pitch and a roll angle to betracked by the loops of the
inner layer. The third PID loop controlled the throttle input as a function of the altitude
error.

The next step was to investigate the possibility of producing a controller directly based
on the model.We were not attempting at this stage to produce an optimal controller (in-
deed, better tracking results than those presented here canbe found in the literature e.g.
[17]); a simple but effective controller was all that was required. Our previous experience
in evolving controllers had been successful ([10]) so we decided to evolve from scratch the
parameters of the PID controller we had already developed. We used a simple approach
based on evolutionary strategies: each candidate controller would attempt to flymodelM
on a randomly generated course. The controller’s fitness wasdefined as proportional to the
distance covered in the allotted time, and inversely proportional to its deviation from the
course (for a detailed explanation we refer to [10]).

To compare the performance of the controller in the simulated and in the real sys-
tem, we used one of the trajectories generated during the evolution of the PID controllers.
We first recorded the path followed in simulation, and then recorded the path of the real
quadrotor flying the same trajectory while controlled by theevolved PID. The recorded
trajectories are plotted in Figure 3. The high similarity between the paths followed by the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x[m]

y[
m

]

Figure 3. Evolved PID controlling the quadrotor and its model; simulated using the model (blue continuous
line) and three repetition of the task on the real quadrotor (red,green and cyan dashed lines).

real quadrotor and the simulation experimentally validates our modelling technique, and
shows that a PID controller evolved in simulation can be transferred to the real system.
Both the model and the quadrotor behave poorly (but more important similarly) right after
the sharpest bend; we believe this to be a result of our suboptimal choice of controller
structure.

4. Conclusion

The methodology presented here has been shown to be capable of identifying the dynamics
of a non-trivial platform without the need for any specialised domain knowledge. Stages
traditionally left to the abilities of the skilled engineer, such as the choice of the model
structure or of the relevant inputs, have been automated. The use of genetic programming
permits the nonlinearities in the model to be handled naturally, along with the identification

of all its parameters, enabling the results achieved in simulation to be transferred to the
real platform.

Although we have successfully demonstrated the principle,this work will need to be
further validated and extended to be of any practical use. Atpresent the technique does not
provide any adequate characterisation of the parameters inthe model, nor does it include
a sensitivity analysis of the model output to parameter changes.

Future research will address the complementary problem of automatically building
a controller; we are hopeful that this will reach the same levels of performance as more
traditional approaches, with the advantages of being a fully automatic methodology.

5. Acknowledgment

Our thanks go to Richard Newcombe and Julian Togelius for many insightful discussions,
and to Swarm Systems Ltd. for financial support.

References

[1] Ascending technologies GmbH. http://www.asctec.de/main/index.php?id=4&pid=2&lang=en&cat=pro.
[2] Vicon MX homepage. http://www.vicon.com/products/viconmx.html.
[3] P. Abbeel, V. Ganapathi, and A. Y. Ng. Modeling vehiculardynamics, with application to modeling

helicopters. InNeural Information Processing Systems, December 2006.
[4] J. Bongard and H. Lipson. Nonlinear system identification using coevolution of models and tests.IEEE

Transaction on evolutionary computation, 9(4):361–384, August 2005.
[5] J. Bongard and H. Lipson. Automated reverse engineeringof nonlinear dynamical systems.PNAS,

104(24):9943–9948, June 2007. p.
[6] J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-modeling.Science,

314:1118–1121, 2006.
[7] S. Bouabdallah.Design and control of quadrotors with application to autonomous flying. PhD thesis,

EPFL, 2007.
[8] S. Bouabdallah, A. Noth, and R. Siegwart. PID vs LQ control techniques applied to an indoor micro

quadrotor. InProceeding of IROS 2004, 2004.
[9] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke. A prototype of an autonomous

controller for a quadrotor UAV. InProceedings of ECC 07, 2007.
[10] R. De Nardi, J. Togelius, O. Holland, and S. Lucas. Neural networks for helicopter control: Why modu-

larity matters. InIEEE Congress on Evolutionary Computation, July 2006.
[11] W. E. Faller and S. J. Schreck. Neural network: Applications and opportunities in aueronautics.Progress

in Aerospace Sciences, 32:433–456, 1996.
[12] D. Gurdan, J. Stumpf, M. Achtelik, K. Doth, G. Hirzinger, and D. Rus. Energy-efficient autonomous four-

rotor flying robot controlled at 1khz. InThe 2006 International Conference on Robotics and Automation.,
September 2006.

[13] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin. Quadrotor helicopter flight dynamics
and control: Theory and experiment. InProceedings of the AIAA Guidance, Navigation, and Control
Conference, 2007.

[14] P. Muren. The proxflyer. http://www.proxflyer.com.
[15] K. Nakamura. Mr. Kimio NAKAMURA’s Coaxis Micro Helicopter. http://liaison.ms.u-tokyo.ac.jp/agusta

/coaxis/nakamura.html.
[16] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a quad-rotor robot. InACRA 2006.
[17] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. Indoor multi-vehicle flight testbed for fault detec-

tion, isolation, and recovery. InAIAA Conference on Guidance, Navigation and Control, 2006.
[18] A. Van de Rostyne. The pixelito. http://pixelito.reference.be.
[19] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin. Multi-agent quadrotor testbed control

design: Integral sliding mode vs. reinforcement learning.In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2005.

