Coevolutionary modelling of a miniature
rotorcraft

Renzo DE NARDI and Owen E. HOLLAND
University of Essex,
Department of Computing and Electronic Systems,
Colchester CO4 3SQ, United Kingdom;
rdenar@essex.ac.uk,owen@essex.ac.uk

Abstract. The paper considers the problem of synthesising accurai@nelg mod-
els of a miniature rotorcraft based on minimal physical agstions, and using the
models to develop a controller. The approach is based onlézedf building mod-
els that predict accelerations, and is implemented usioly#onary programming
in a particularly efficient co-evolutionary framework. Bothe structure and the
parameters of the nonlinear models are jointly identifiesnfreal data. The mod-
elling method is demonstrated and validated on a miniatusslptor rotorcraft,
and a controller based on the model is then developed areditest

1. Introduction

For decades, the wide range of potential applications ofammad aerial vehicles (UAVS)
has made them the subject of academic and commercial ras€aradrotor rotorcraft like
the one used in this study (Figure 1) are typical examplegnf small and capable flying

Figure 1. Quadrotor rotorcraft. Note the reflective markers usedrfaking.

machines. Mechanically very simple to build and maintadbust to crashes, lightweight,
powerful and manoeuvrable, and readily available in theketaftace, these flying ma-
chines are becoming the platforms of choice for many rekdasms ([7],[9],[12],[13]).
The challenge now is in fully exploiting the potential of #semachines; in this paper
we are seeking a methodology able to identify a system ugihgdata collected during
normal piloted flight, and without requiring any prior fortrdaowledge of the structure
of the system model. The advantages of this approach are eleavell as eliminating

the need for in-depth knowledge of a specialist engineedomain, such as aeronautics,
it offers the possibility of automatically identifying unkwn and novel systems. Such
systems are still being developed by talented craftsmenhwiid novel flying machines
(or variations of existing concepts) relying almost efyien their insight [14], [18],[15].

A second motivation is the possibility of using automaticdalling for automatic
damage recovery (e.g. [6]), where after automaticallyamglimg or adapting the system
model, new control strategies that cope with the damage eabtained.

In any exercise in modelling, it is first necessary to spettifydomain of use for the
model in question, as this allows us to define the types arehexbf discrepancies from
the real system that can be tolerated. In our case we plaretthesmodel to produce a
dynamic simulator that, within the normal envelope of us¢éhefmachine, is sufficiently
accurate for the purpose of developing and testing a caetroh this simulator-based
approach, the form of the model is not important as long asihael replicates the input-
output behaviour of the actual process. However, for coatglity with other methods,
we will develop a model in the form of a set of nonlinear diffietial equations (i.e. in state
space form), a common way of representing dynamic systems:

% (t) = f (x(t),u(t - 7). 1)

The next two sub-sections will give overviews of evolutipnamodelling, and of mod-
elling quadrotors. Our own approach is explained in detaibéction 2, and Section 3
reports the results of the experiments conducted to validiet approach.

1.1. Quadrotor Modelling and Control

Many publications deal with quadrotors, and most of themdedicated to modelling
and control. The control techniques analysed range fromlsifAlD methods [8] to more
complex techniques like LQR, sliding mode or integral baegping ([7],[9])- A notable
exception is [19] where the vertical dynamic of the quadrigdearned using Locally
Weighted Linear Reagression and a controller is trainedgustinforcement learning.
Most authors begin by proposing models based on first piieig\ model for the thrust
of each rotor is generally used, and the balance of forcesraomdents at the quadrotor’s
centre of mass allows the computation of the dynamic beliawwbthe machine. More
sophisticated models ([13],[16]) can include the aerodyioeeffects of blade flapping,
or simple models for the ground effect ([7]). Model paramgtre mainly derived from
static tests; if a specific component is known to be criticalldontrol, specific tests are
devised to model it correctly. Ultimately the engineer ulissinsight and the results of
control experiments to decide which effects need to be medlednd which estimated, so
that the final controller will yield the desired performance

1.2. Canonical and Evolutionary System Identification
System identification in aeronautics is of course a well tiped field of research. Most

established methods tackle the problem of estimating thanpeters of a model with a
known structure, one that is generally based on first priasifMethodologies that can

1The vectorx = [¢, 0, %, u,v, w,p,q, 7] represents the state, 9, are the quadrotor’s attitude angles,
u, v, w andp, g, r are its linear and angular velocity in the body frame of refiee),u = [up, ur,uy, ur] is
the input vector made up by the pitch, roll, yaw, and thratdenmands aneé- is the vector of input time delays.

also determine the model structure, for example by usingp sechniques as artificial
neural networks, have also been developed (e.g. [11]) heugéneral need for a model to
be transparent and understandable makes those technfdumeisenl practical use.

The use of evolutionary computation for system identifarats not new, but it is only
recently that it has been applied to the identification of eleodf the type and size useful
in a domain like ours. For example, Bongard and Lipson hageessfully demonstrated
the use of co-evolution to regress the dynamics of compledimear systems [4]. The
idea behind the techniques is simple: a set of fithess magmniz evolved, but the tests
against which the performance of the maximizers is measanedlso under evolutionary
control. Each period of evolution of the models is interkéwith a period of evolution
of the tests; the fitness of the models is obtained by testiamtwith the evolved tests,
while the fitness of the tests is the variance that each pexinche fithess of the models.
The tests therefore evolve to be as discriminative as plessifsen measuring the perfor-
mance of the models. In [5] Bongard and Lipson also suggestipaing a complex prob-
lem by regressing each modelled dimension independentlyeobthers; this allows the
methodology to scale up and approach problems out of thé ifatandard techniques.

Common to any system identification approach there is thetlfiad any effect not
present in the dataset cannot be learned. In our case, tleeimenter has to make sure
that the flight envelope of interest is adequately coveretthbyollected data.

2. Our approach

The only domain knowledge we use is the assumption that thtersycan be sufficiently
well approximated as a 6DoF rigid body. This might seem todiber limiting, but in
practice a wide range of vehicles, from wheeled robots torat, helicopters and even
ships can be treated in this way. Physics tells us that anipmtitat our system exhibits is
due to the effects of forces and moments (i.e. linear andlangacelerations) applied to
the rigid body. If we can relate these instantaneous a@tées to the state and inputs of
the system, we will be able to predict the motion of the objexter study. This concept
paves the way for the two main ideas of our approach:

e using a general and computationally efficient co-evolidigrmethod to infer the
structure and the parameters of the nonlinear relatiosdigépveen the inputs, the
state, and the accelerations;

e directly modelling the accelerations in the body coordisatising the laws of
physics to propagate the state forward in time so that theetsffof the translation
and rotation of the body’s frame of reference can be explitiken into account.

The sizes of our state and input vector8 &énd4 respectively) mean that the number
of possible nonlinear functions that could relate them ® dlecelerations is too large
for any method of extensive search, and so an evolutiongpyoagh is indicated. We
have chosen genetic programming (GP) for its ability to heumbth the structure and
the parameters of the model, and to deal with both linear amdimear functions. The
efficiency of the coevolutionary setup is also importamgsievery function evaluation
involves integrating the full 6 dimensional state of the mloavhich is computationally
expensive.

Given that all the state variables and inputs are availabla the data, and that we
can precompute the relevant accelerations offline, an obvépproach is to search for

the model that minimizes the error between the predictedlf@domputed accelerations.
However, when the acceleration prediction is integrateddod in time, any errors will be
accumulated, creating an obvious risk of divergence. Aebefpproach is to integrate the
predicted acceleration for a specified number of time stapd select the model that min-
imizes the error between the predicted and the computee wdlthe state variable itself.
Any divergence will produce a higher error, ensuring a deéwc models with good long
term prediction ability. As the predicted accelerationusaessively integrated through
time, it will affect not just its own, but also the other statgiables. Prediction errors will
propagate through the system just as they would when the Ii®dsed as a simulation
tool. In effect, our evolutionary algorithm will produce aodel that can cope with the
effects of its own errors.

A vehicle travelling in a given direction, and at the sameetimtating, will experience
a sideslip force as a result of inertia. These effects ardimear [3], which makes the
model learning problem even harder. The discrete time epafahe state variables can be
written in body coordinates as:

u , u ay P D D
v =R, v| + |ay| At q = gl +1q| At] (@)
w t+1 Wy @z]y r t+1 Tl Tl

wherewu, v, w are the velocities in the quadrotor body frame of referepce,r are the
rotational velocities about the axé%ﬁ:“ is the matrix transformation that rotates the body
frame from its orientation at timeto that att + 1; a = [as, ay, a.] anda = [p, ¢, 7] are
respectively the linear and angular accelerations in badydinates. Equation 2 shows
that the linear accelerations are not simply the derivatvethe linear velocities, and
so an additional nonlinear transformation is needed to caenghem. By performing the
transformatiorRZ:+1 in our integration routine, we simplify the learning task.

2.1. Data filtering, computation of derivatives and intetijya

The first step in our method is the data collection. The 6Dasep the vehicle, and the
input from the pilot, are recorded &00H ~. However, we require not only the absolute
pose of our vehicle, but also its first and second derivatfvesthe angular and linear
velocities, and the angular and linear accelerations). Ygé dpply a low pass filter to
reduce the effects of noise. A transfer function frequeroy foom our data showed the
dynamics of our system to be quite slow, with most of the festpy content below H z;
this allowed us to set the cutoff frequencystfl z. To avoid phase distortion, and to allow
for delay compensation, we use a finite impulse response (Hiet with 200 taps.

The need to integrate the state equations forward in timesig@ficant computa-
tional drawback of any time-domain method. However, gives limited bandwidth of
our system, we can mitigate this problem by downsamplingdata. We then compute
the first and second order derivatives as first order difie@enDuring the computation of
the derivatives the necessary changes of coordinates dogrmped in order to obtain the
mathematical counterpart of the integration procedurerite=d next.

As a final check, we integrate the computed accelerationegaiat in time to verify
that the resultant time series matches the original timeilisWith a requirement for
a relative squared error (RSE) lower tha# within a time span of750 step$ we can

2The length normally used in the regression algorithm, edjeivt to30s of clock time.

safely achieve a downsampling factordofvhich brings the sampling frequency26H z.
The trim values (i.e. the control values corresponding ® hlbver condition) for each
of the control data series are then subtracted; this is atdngractice in time domain
methodologies.

To produce the development over time of the state variabidesaccelerations pre-
dicted by the model need to be integrated from some initatestAs well as executing
the discrete time update equation for linear and angularcités (i.e. equation (2)), the
integration routine also needs to compute the position #itdde. In order to avoid the
gimbal lock problem arising from the use of Euler angles, alsd to improve accuracy,
the attitude is represented in quaternion fétm

2.2. Co-evolutionary Setup

The coevolutionary setup of our algorithm consists of twomséeps that are interleaved
in time: in the first, the models are evolved, and in the secthredtests are evolved.

In our case a model is simply a GP expression tree with a mariaepth of 5. The
inner nodes of the trees are the usual functiofigls—, x, /} while the leaves can be any of
the inputs or a constant value. To reduce the computatiamaptexity we have opted for
using 14 parallel hill climbers in place of a population lthstrategy; at each generation
the parent is replaced if the offspring generated by muigperforms better. Mutation
is the only evolutionary operator used, and either a macra imicro mutation is used
with equal probability. A macro mutation randomly selectwae in the tree and replaces
it with a newly generated one, removing or generating chddes as needed. A micro
mutation selects a node and replaces it with a newly gertesatatree. To generate a new
subtree, nodes are drawn at random with a probability of Dpfcking a leaf. Following a
macro or micro mutation, one of the constants in the treerisigeed with a probability of
0.5 by adding a random value from a Gaussian distributioh mi¢an 0 and variance 0.1.
The initial value of a constant node is chosen from a unifoistritbution ranging from -5
to 5. Finally, mutation is applied to the delay of each inpuith probability0.1, a delay
can be replaced with a new random value betwgand5 (the maximum allowed delay).
All delays are originally initialised to.

In our algorithm, tests are simply short subsets of consecdata chosen from the
training dataset. The first sample of the set representsitied conditions, and the subse-
quent samples are used by the integration routine. Theg&auared error of the model
computed from those samples is summed over all the teste isuite to yield the model
fithness. The position at which a subset of points is taken ftemdataset is controlled by
evolution; mutation is applied by adding a randomly gereztatalue to the current start-
ing index of the data in the test. In the case of the tests, dpelation of 5 individuals is
evolved using five parallel hill climbers. The fithess funatused for a test is the variance
that each test produces in the current population of motleseby choosing for identifi-
cation the parts of the dataset not well described by the latipn of models. This stops
the optimization from focusing too much on dynamic states #ine overrepresented in the
data (e.g. hovering). To avoid cyclic oscillations of fitagse do not use the evolved tests
directly for the evaluation of the models, but instead naimt suite of 6 tests to which
we add the last best test generated. If the test overlapsfdhe tests already in the suite,
it replaces it, otherwise it replaces the oldest test in thite s

3Although the core integration routine uses quaternioresattitude is expressed in Euler angles when passed
to the modelling equations.

Bloat tends to increase the size of the models significastlyafter each cycle of
the algorithm, we try to simplify each model by replacing adamly selected subtree
with a constant. We then try to reconverge the tree by evglitinsing only the Gaussian
mutation operator. If the resulting tree performs no béttan the original, it is discarded.

An iteration of the algorithm typically consists of 600 geaigons of model evolution,
80 generations of test evolution, and one instance of trapldication. A typical run of
the full algorithm contains 30 iterations.

3. Experiments
3.1. The quadrotor

The quadrotor used in the study (see figure 1) is a commeyreiadiilable model [1] pow-
ered by four brushless motors fitted with 8" propellers. Thi anodification made for
these experiments was the addition of the 5 infrared trackiarkers. For data collection
the quadrotor was manually flown in our flying arena which isipped with a Vicon
MX [2] infrared motion capture system; this system trackd egsolves the quadrotor’s
3D position and orientation in real time with high accurang @recision (of the order of
millimetres) with a sampling frequency 000 H z. A standard RC transmitter was used to
fly the quadrotor manually; the commands were recorddd@# > and synchronised to
the flight data. The transmission delay of the RC transmnigté$ms, and the data capture
delay is typically undetOms; both delays were ignored since2itH = (the post filtering
data sampling rate) they are smaller than one time step.

A quadrotor is by design a mechanically unstable systenesmen if the four rotors
are driven at the same speed, the rotational moments praty@ach rotor will not cancel
out exactly due to minor differences in drag and lift. MEMSa@yare commonly used on
this type of rotorcraft to provide active stabilisation ed®n rotational speed feedback. In
[12] Gurdan et al. describe the low level stabilisation aildpon used in our quadrotor; it
is basically a set of three independent PD loops, one for esational axis. No dynamic
models were used to design the machine or the controllethenauthors relied solely on
their insight and experience to tune the controller emaitjc

During the flight we did not have direct access to the low levetor inputs; only the
control inputs to the stabilisation loops were recordectdntrast to the ‘first principles’
models discussed in 1.1 our system identification technigli@rovide a lumped model
of the quadrotor plus the stabilisation controller. We db cansider this as a limitation,
but instead we see it as illustrating the flexibility of oupapach. The user can decide at
what level to model the system, without the need to undedstither the requirements or
the implications for the structure of the model.

3.2. Ildentification

After filtering and downsampling, a series Bf800 data points was extractedl] 800 of
them were used for training with the remainder reserveddtidation. Each sample point
consists of 3 arrays, the statethe computed accelerationsee and the control inputi.
During evolution, the individual tests were conducted gshort chunks of50 consec-
utive sample points The state information in the dataset is used only to defiadritial

4Longer time windows would be able to to enforce a search fendetter long term prediction abilities but at
the expenses of increased computational needs; the lehgtt evas empirically found to be a good trade off.

condition of the system; from that moment onward, the satmputed using the inte-
gration routine. At each timestep, the model under testdstie control inputs, and the
current state. Since the delay of each input is controllethbyevolutionary algorithm, it
is important to remember that some of the control data mighbe the "current” ones.
The predicted accelerations and the remaining "true” aatibns from the dataset form
the inputs to the integration routine.

The fitness of a given model is the average absolute errodeetthe true state vari-
able and the one predicted by the integration routine; fangxe, for a model that predicts
the variablez, the fitness ;) would be:

Salo (Sholer)

fé:_ N+T ee{uavawapaqar}

whereT is the number of samples in each of the testds the number of tests in the test
suite, e, is the true and; is the predicted state variable. The algorithm also dedidex
very similar performance using the classic squared errogdsi metric.

We can now move towards the production of a full model. Eacthefsix equations
was first identified independently, and then, for each oreepést model found afte&}0
repetitions of the coevolutionary algorithm was selectBaen we simply provided the
predictions of the set of six models as the input to the irgégn routine. After setting
the state to some initial value from the dataset we propdghtesystem forward in time
with the recorded control input as the only input. To have tebbeinderstanding of the
algorithm’s precision and reliability we repeated the guehare of producing a full model
30 times. A qualitative example of the evolution in time of thiate variables for a win-
dow of 7s (randomly selected from the validation data) is shown iruFég3.2. The pre-

2 2 = 8
N
0 R 0 b N 72 6
@ o w
E—Z WY £ 2 g £ 4
S -4 S -4 s 2 =
Ol ==~ ~ —
-6 -6 5
0 2 4 6 0 2 4 6 0 2 4 6
1
_ 1 _ 4 0.6 \
1]) w
= = -~ 0.4
bsi =] 3
B O\W g O ® o2 \
o [=3 =
-1 0 = =
-1 -0.2
0 2 4 6 0 2 4 6 0 2 4 6

Figure 2. Prediction over &s time window; true data (continuous line), best model (dddhee), envelope of
the min and max values predicted within the whole populatib8 models (shaded area).

dictions appear to be in good agreement with the recordeaj thas is especially so for
the angular velocities since they depend directly on thérobimput. The linear velocities
suffer a larger error as consequence of the accumulatidrecdigular velocity error. As
expected the error increases as a function of time, but dweworst models still appear
well behaved.

In table 1 we can see the equatidn$the model with the median error performance
produced by th&0 runs of the GP process (we will refer to the median modehadelM

5We have simplified the expressions and rounded the constans to one decimal place for better readability.

from now on); we chose this as a good representative of thedubf models, but a similar
structure can also be seen in the best model.

Median model
az = 10.00 — 0.6w + 0.18 — 0.5¢g — 0.56pr + 0.1v — 0.6uy
ay =0.3—-92¢p—-06v+v/(43+¢—71)
az =28.2ur_5 — w+ 2.1u% —0.02
p=10.3ur—1 —4.15p
¢=—-98up —3.3¢g — 1.20 + 0.2u + 9.8quruy + (¢ — qup)(—uy + quruy)
P =—T.8uy_2 — 1.97 + 2quy — ruy _2

Table 1. Model with median error performance from 30 repetitionsta algorithm. Terms in bold appear
(directly or after an appropriate series expansion) inyegargle one of the 30 models. The symhot _
indicates the inpuX’ delayed byk timesteps.

Although understanding the model produced by our evolatipalgorithm is far from
simple, it is interesting and instructive to try to analyke structures present in a0
models. (They are highlighted in bold in table 1). First, lre texpression of the linear
accelerationg, anda,, we can recognize something like the small angle approximat
to the projection of gravity (i.e10.06 and9.2¢)). At hover the thrust is exactly equal
to the weight, so any pitch or roll movements will project tiezelerationsin(6)g and
sin(¢) cos(6)g in the forward and lateral direction; again, our terms angragimations
of these. The reader familiar with aerodynamics will alsotdpe Stokes’ drag (the ex-
pression of the viscous drag appropriate for relativelwsdpeeds) appearing in the terms
0.6u for a, and0.6v for a,; this also appears in the expressiorugfas—w. The vertical
acceleration is seen to be proportional to the throttle ingy this makes sense because
in a quadrotor the throttle directly controls the mean sp#dte rotors, which is propor-
tional to the thrust (and our brushless motor controller @gactly maintain the required
speed thanks to rotational speed feedback). Of coursen¢intsi of the motors and rotors
reduces the bandwidth of the propulsion group; our GP esmesnodels this as a control
delayur_5. The angular accelerations show the presence of the PIDadlenioop. We
know from [12] that the controller produces a change in rgfm¥eds proportional to the
control input; this explains the term®.3ugr_1,9.8up and7.8uy_» (in p,q ands respec-
tively). The controller output is also inversely proport# to the rotational speed in the
controlled axis, giving rise to the termst.15p, —3.3¢g and—1.9r

Although they were derived from real and noisy data, the rsopeduced here are
completely deterministic; a way of simulating the disturbas naturally produced in ro-
tors suggested in [9] is to add some form of noise to the cbimpaits. In all our simula-
tions we have used Gaussian noise with a standard deviafie ®10% of the maximum
value of the control input in the data used for identification

3.3. Control

We then moved on to test the model in conjunction with a cdletroAs a first step we
manually tuned a PID controller on the test quadrotor togrerfwaypoint navigation. The
position and attitude estimation provided by the Vicon egstvere used as the feedback
signals for a series of nested PID loops, with the inner lagasisting of three PD loops
controlling pitch, roll, and yaw angle using the attitudel@mgular speed infomation from
the motion capture system. The outer layer consisted o&tRi2 loops, two of which,

given the lateral and longitudinal distance from the nexgpant (i.e. the current error in
body coordinates), would output a pitch and a roll angle ttrdeked by the loops of the
inner layer. The third PID loop controlled the throttle it@s a function of the altitude
error.

The next step was to investigate the possibility of prodgieicontroller directly based
on the model.We were not attempting at this stage to prodaagtimal controller (in-
deed, better tracking results than those presented hergectbund in the literature e.g.
[17]); a simple but effective controller was all that wasu&gd. Our previous experience
in evolving controllers had been successful ([10]) so wedkztto evolve from scratch the
parameters of the PID controller we had already developedu¥é¢d a simple approach
based on evolutionary strategies: each candidate castretiuld attempt to flymodelM
on arandomly generated course. The controller’s fitnessiefised as proportional to the
distance covered in the allotted time, and inversely prigoal to its deviation from the
course (for a detailed explanation we refer to [10]).

To compare the performance of the controller in the simdlated in the real sys-
tem, we used one of the trajectories generated during tHatewoof the PID controllers.
We first recorded the path followed in simulation, and thexorded the path of the real
quadrotor flying the same trajectory while controlled by éwelved PID. The recorded
trajectories are plotted in Figure 3. The high similarityvaeen the paths followed by the

18

161

14r

121

1k

yim]

08
¢

06

0.4r

0.2r

ok

-0.2
-2

x[ml

Figure 3. Evolved PID controlling the quadrotor and its model; sintetiusing the model (blue continuous
line) and three repetition of the task on the real quadrott,green and cyan dashed lines).

real quadrotor and the simulation experimentally validater modelling technique, and
shows that a PID controller evolved in simulation can bedfamed to the real system.
Both the model and the quadrotor behave poorly (but more itapbsimilarly) right after
the sharpest bend; we believe this to be a result of our sirbalpthoice of controller
structure.

4. Conclusion

The methodology presented here has been shown to be capalaetdying the dynamics
of a non-trivial platform without the need for any speciatisdomain knowledge. Stages
traditionally left to the abilities of the skilled engineauch as the choice of the model
structure or of the relevant inputs, have been automatezlu$h of genetic programming
permits the nonlinearities in the model to be handled n#iyyedong with the identification

of all its parameters, enabling the results achieved in ksitimn to be transferred to the
real platform.

Although we have successfully demonstrated the principle,work will need to be
further validated and extended to be of any practical usprégent the technique does not
provide any adequate characterisation of the parameténs imodel, nor does it include
a sensitivity analysis of the model output to parameter ghan

Future research will address the complementary problenutngatically building
a controller; we are hopeful that this will reach the samelewf performance as more
traditional approaches, with the advantages of being g &ultomatic methodology.

5. Acknowledgment

Our thanks go to Richard Newcombe and Julian Togelius foynvasightful discussions,
and to Swarm Systems Ltd. for financial support.

References

[1] Ascending technologies GmbH. http://www.asctec.dgffindex.php?id=4&pid=2&lang=en&cat=pro.

[2] Vicon MX homepage. http://www.vicon.com/product&@nmx.html.

[3] P. Abbeel, V. Ganapathi, and A. Y. Ng. Modeling vehicutynamics, with application to modeling
helicopters. INeural Information Processing SysterBecember 2006.

[4] J. Bongard and H. Lipson. Nonlinear system identificaticsing coevolution of models and testEEE
Transaction on evolutionary computatio®(4):361-384, August 2005.

[5] J. Bongard and H. Lipson. Automated reverse engineeahgonlinear dynamical systemsPNAS
104(24):9943-9948, June 2007. p.

[6] J. Bongard, V. Zykov, and H. Lipson. Resilient machinBeough continuous self-modelingScience
314:1118-1121, 2006.

[7] S. Bouabdallah.Design and control of quadrotors with application to autamaus flying PhD thesis,
EPFL, 2007.

[8] S. Bouabdallah, A. Noth, and R. Siegwart. PID vs LQ contezhniques applied to an indoor micro
quadrotor. InProceeding of IROS 2002004.

[9] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. KoGke. A prototype of an autonomous
controller for a quadrotor UAV. IfProceedings of ECC Q2007.

[10] R. De Nardi, J. Togelius, O. Holland, and S. Lucas. Neoeaworks for helicopter control: Why modu-
larity matters. INEEE Congress on Evolutionary Computatjaguly 2006.

[11] W.E. Faller and S. J. Schreck. Neural network: Applmas and opportunities in aueronauti¢¥ogress
in Aerospace Science32:433-456, 1996.

[12] D. Gurdan, J. Stumpf, M. Achtelik, K. Doth, G. Hirzingemnd D. Rus. Energy-efficient autonomous four-
rotor flying robot controlled at 1khz. Ihhe 2006 International Conference on Robotics and Autamnati
September 2006.

[13] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. TomlQuadrotor helicopter flight dynamics
and control: Theory and experiment. Rroceedings of the AIAA Guidance, Navigation, and Control
Conference2007.

[14] P. Muren. The proxflyer. http://www.proxflyer.com.

[15] K. Nakamura. Mr. Kimio NAKAMURA's Coaxis Micro Helicoger. http://liaison.ms.u-tokyo.ac.jp/agusta
/coaxis/nakamura.html.

[16] P.Pounds, R. Mahony, and P. Corke. Modelling and cowfra quad-rotor robot. IRCRA 2006

[17] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. dnd multi-vehicle flight testbed for fault detec-
tion, isolation, and recovery. IAIAA Conference on Guidance, Navigation and Cont26i06.

[18] A.Van de Rostyne. The pixelito. http://pixelito.reémce.be.

[19] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. foniulti-agent quadrotor testbed control
design: Integral sliding mode vs. reinforcement learnimgEEE/RSJ International Conference on Intel-
ligent Robots and Systep005.

