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Abstract. Parallel genetic algorithms are usually implemented on par-
allel machines or distributed systems. This paper describes how fine-
grained parallel genetic algorithms can be mapped to programmable
graphics hardware found in commodity PC. Our approach stores chro-
mosomes and their fitness values in texture memory on graphics card.
Both fitness evaluation and genetic operations are implemented entirely
with fragment programs executed on graphics processing unit in parallel.
We demonstrate the effectiveness of our approach by comparing it with
compatible software implementation. The presented approach allows us
benefit from the advantages of parallel genetic algorithms on low-cost
platform.

1 Introduction

Genetic algorithms (GAs) are robust search algorithms inspired by the analogy
of natural evolutionary processes [1]. They have demonstrated to be particularly
successful in the optimization problems. As many GA solutions require a sig-
nificant amount of computation time, a number of parallel genetic algorithms
(PGAs) have been proposed in past decades [2][3]. These algorithms differ princi-
pally from the classical sequential genetic algorithm, but they seem to have even
better optimization quality [4]. Previous proposed parallel implementations usu-
ally rely on parallel computers, distributed systems or specialized GA hardware
which are not easily available to the common users. The goal of this paper is to
implement PGA by utilizing graphics hardware found in PC.

The graphics processors (GPUs) on today’s commodity video cards have
evolved into an extremely powerful and flexible processor. Modern GPUs per-
form floating-point calculations much faster than today’s CPUs [5]. Further-
more, instead of offering a fixed set of functions, current GPUs allow a large
amount of programmability [6]. These desirable properties have attracted lots of
research efforts to utilize GPUs for various non-graphics applications in recent
years [7][8][9][10][11][12]. Previous research work has already shown that GPUs
are especially adept at SIMD computation applied to grid data [9]. Therefore,
we can envision that some type of parallel genetic algorithms should be a good
fit for commodity programmable GPUs.
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In this paper, we present a novel implementation of fine-grained parallel
genetic algorithm on the GPU. Real-coded individuals of a population are rep-
resented as a set of 2D texture maps. We perform BLX-α crossover and non-
uniform mutation by executing a fragment program on every pixel at each step
in a SIMD-like fashion. Thus, when application related fitness evaluation is as-
sumed to be implemented on GPU, the GA iterations can run entirely on GPU.
We will demonstrate the effectiveness of GPU implementation by applying it to
function optimization problem. Relative to software implementation, a speedup
of about 15 times has been achieved with population size 5122.

The rest of the paper is organized as follow: The subsequent section gives
background of both genetic algorithms and graphics hardware to facilitate under-
standing of our implementation. In Section 3, we describe the proposed GPU-
based implementation. Section 4 presents performance results, and the paper
concludes with suggestions for future work in Section 5.

2 Background

2.1 Genetic Algorithms

A simple GA starts with a population of solutions encoded in one of many
ways. The GA determines each string’s strength based on an objective function
and performs one or more of three genetic operators on certain strings in the
population. As described in Golberg [13]: in general terms, a genetic algorithm
consists of four parts.

1. Generate an initial population.
2. Select pair of individuals based on the fitness function.
3. Produce next generation from the selected pairs by applying pre-selected

genetic operators.
4. If the termination condition is satisfied stop, else go to step 2.

The termination condition can be either:

1. No improvement in the solution after a certain number of generation.
2. The solution converges to a pre-determined threshold.

In real-code GA, a solution is directly represented as a vector of real-
parameter decision variable [14]. This coding scheme is particularly natural when
tackling optimization problems of parameters with variable in continuous do-
mains.

It has long been noted that genetic algorithms are well suited for parallel
execution. There are three main type of parallel GAs: master-slave, fine-grained,
and coarse-grained [2]. In a master-slave model, there is a single population just
as in sequential GA, but the evaluation of fitness is distributed among several
processors. In a coarse-grained model, the GA population is divided into multiple
subpopulations. Each subpopulation evolves independently, with only occasional
exchanges of individuals between subpopulations. In a fine-grained model, indi-
viduals are commonly mapped onto a 2D lattice, with one individual per node.
Selection and crossover are restricted to a small and overlapping neighborhood.
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Fig. 1. The programmable graphics pipeline

2.2 Graphics Hardware

Graphics hardware is originally designed for accelerating rendering images. Fig-
ure 1 shows a simplified pipeline of modern programmable GPU. First, com-
mands, textures, and vertex data are received from the host CPU through shared
buffers in system memory or local frame-buffer memory. The vertex processor
allow for a program to be applied to each vertex in the object, performing trans-
formations and any other per-vertex operation the user specifies. Vertices are
then grouped into primitives, which are point, lines, or triangles. Next, raster-
ization is the process of determining the set of pixels covered by a geometric
primitive. After this, the results of rasterization stage, a set of fragments, are
processed by a program which runs in the programmable fragment processor.
Meanwhile, the programmable fragment processor also supports texturing op-
erations which enable the processor to access a texture image using a set of
texture coordinates. Finally, the raster operations stage performs a sequence of
per-fragment operations immediately before updating the frame buffer.

Graphics cards hardware have features which help parallelism. A GPU con-
tains a multiple number of pixel pipelines which process data in parallel (sixteen
in our case). These pixel pipelines are each SIMD processing elements, carrying
out operations typically on four color components in parallel [5].

3 A Real-Coded Parallel Genetic Algorithm on the GPU

3.1 Algorithm Overview

In this paper, we adopt the fine-grained parallel model suitable for SIMD im-
plementation. A typical fine-grained parallel GA has been proposed and studied
in [4]. We adopt a 2D toroidal grid as the spatial population structure where
each grid point contains one individual. The neighborhood defined on the grid
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Fig. 2. Spatial population structure and neighborhood shape

always contains 5 individuals: the considered one plus the North, East, West,
and South individuals (see Figure 2).

The crossover operator defines the procedure for generating a child from two
parent genomes. For each individual, the best individual in its neighborhood will
be selected as one of the parents, while the other one is itself.

Several crossover operators can be defined for real representation: averag-
ing crossover, uniform crossover and blend crossover [14]. In this work, blend
crossover is used. Let us assume that and are two chromosomes that have been
selected to apply crossover to them. Blend crossover operator randomly selects
a value for each offspring gene yi, using a uniform distribution within the range:

[Cmin + α · I, Cmax − α · I]

where Cmin = min{x1
i , x

2
i }, Cmax = max{x1

i , x
2
i }, I = Cmax − Cmin, and α is the

tunable parameter, the higher the value of α the more explorative the search.
Mutation operation is the final step of genetic operation. The role of muta-

tion in GA is to restore lost or unexpected genetic material into a population
to prevent the premature convergence of GA to a local result. Some of the com-
monly used mutation operators for real-coded GA are reviewed in [14]. In our
approach, a non-uniform mutation [15] is adopted. If the operator is applied at
generation step t and tmax is the maximum number of generations then the new
value of the i-th gene in an individual will be:

yi = {xi + δ · (Ui − xi)
xi − δ · (xi − Li)

τ = 0
τ = 1

where τ is a random number taking value 0 or 1 with equal probability, Li and
Ui are the lower bound and upper bound of xi, and

δ = 1 − r(1−t/tmax)b

where r is a random number within the range [0, 1] and b is a user defined
parameter.

3.2 Representation of Population

In this section we describe the internal representation of population. If the GPU
is to perform GA operators for us, the first thing we need to do is to represent
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Fig. 3. The representation of chromosomes in a population as a set of 2D textures is
shown

population data in a format that is accessible by the GPU. The general idea is
to store population in a set of texture maps and to exploit fragment programs
to implement genetic operators.

In our representation, the chromosome of each individual is sequentially di-
vided into several segments which are distributed in a number of textures with
the same position (see Figure 3). Every segment contains four genes packed into
a single pixel’s RGBA channels. We call those textures population textures. An-
other 2D texture map, called fitness texture, is used to hold the fitness scores
of each individual in the population. The position of the fitness of a particular
individual maps to the position of the individual in the population.

The proposed representation enables the efficient computation of genetic op-
erators. It has several advantages: First, it naturally keeps 2D grid topology of
the population described in Section 3.1. Second, for each individual, fragment
programs of genetic operators only need lookup considered pixel or near neigh-
borhood pixels in each texture map. Thus it keeps the memory footprint of each
fragment as low as possible to efficiently utilize texture cache. Third, packing
of four concessive genes in one texel makes use of the wide SIMD computa-
tions carried out by the GPU. Up to four times as many genes can be processed
simultaneously.

3.3 Fitness Evaluation

It is important to emphasize that our framework is designed for solving problems
whose fitness function can be implemented entirely in GPU. Only in this case
can we avoid the bottleneck of reading population data from graphics hardware
to system memory in each iteration of GA. On the other hand, executing fit-
ness evaluation on GPU can take advantage of the GPU’s parallel processing
capabilities,

Implementation of fitness evaluation on GPU is application related. In some
cases, such as solving function optimizer problems, fitness evaluation can be
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easily implemented in a single fragment program. For more complicated appli-
cations, we refer readers to a homepage of research on general purpose use of
GPU (http://www.gpgpu.org). After the fragment program responsible for fit-
ness evaluation has been executed, the fitness values are stored in fitness texture.
This texture is then redisplayed in following rendering pass, and other fragment
program is run to perform genetic operators.

3.4 Random Numbers Generator

As described above in Section 3.1, we can find random numbers are involved
in both crossover and mutation operator. However, current graphics hardware
does not provide the function for generating random numbers. We use the Linear
Congruential Generator (LCG) to generate pseudo-random numbers [16]:

Ij+1 = a · Ij + c (mod m)

where m is called the modulus, and a and c are multiplier and the increment
respectively. LCG can be implemented in a simple fragment program. We store
a matrix of random numbers in a texture called random texture. It is updated
once by the fragment program in each iteration of GA loop.

3.5 Genetic Operators

Selection, crossover and mutation operators described in Section 3.1 can be eas-
ily mapped to a single fragment program. The fragment program needs lookup
population textures, fitness texture and random texture described in above sec-
tions. System parameters such as mutation probabilities and crossover probabil-
ities etc. are passed to the fragment program by uniform parameters. We invoke
the fragment program by rendering a screen-parallel quadrilateral. The result is
written into a new population texture.

In our implementation, for a population represented by n population textures,
n rendering passes have to be performed in every generation of GA. In each
rendering pass, four genes of each chromosome are processed parallelly. This is
possible because the crossover operator and mutation operator we used all can
be performed on independent gene.

4 Experimental Results

Our performance results were measured using an AMD Athlon 2500+ CPU with
512M RAM and an NVidia GeForce 6800GT GPU. The GPU-based implementa-
tion was developed with Cg code [6]. We used the Colville minimization problem
as benchmark. It is defined as:

f(x) = 100(x2
1 − x2)2 + (1 − x1)2 + 90(x2

3 − x4)2 + (1 − x3)2

+ 10.1((1 − x2)2 + (1 − x4)2) + 19.8(x2 − 1)(x4 − 1)
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Table 1. GA Parameters

Parameters Value
Crossover Rate 1.0
Mutation Rate 0.05

Blend Crossover Parameter α 0.5
Non-uniform Mutation Parameter b 3

Table 2. Time cost and speed up for different GA module (500 generations)

Population Size Genetic Operators Fitness Evaluation
GPU(s) CPU(s) Speedup GPU(s) CPU(s) Speedup

322 0.211 0.296 1.4x 0.044 0.013 0.3x
642 0.262 1.201 5.8x 0.046 0.062 1.4x
1282 0.444 5.230 11.8x 0.074 0.587 7.9x
2562 1.187 21.209 17.9x 0.176 2.725 15.4x
5122 4.075 81.882 20.1x 0.602 10.299 17.1x

Fig. 4. The effects of population size on the run time (500 generations)

where −18 ≤ xi ≤ 10, i = 1, 2, 3, 4; with the global solution (1, 1, 1, 1) and
f (1, 1, 1, 1) = 0.

GPU-based implementation was compared with software implementation
running on single CPU with different population size. GA parameters are shown
in Table 1. Figure 4 shows GPU-based implementation is much faster than the
software implementation. We see that speedup increases as we increase the pop-
ulation size. Table 2 shows performance improvement of the GPU-based imple-
mentation stems from both genetic operators and fitness evaluation. The results
also show that when the population size is 322, fitness evaluation of GPU-based
implementation is slower than that of software version. This happens because
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when the objective function is simple and meanwhile the population is small,
the evaluation time is mainly consumed by the overhead of graphics pipeline.

5 Conclusion

In this work, we have presented a novel implementation of parallel genetic algo-
rithms on commodity graphics hardware. Our approach gives a representation of
population suitable for GPU processing. All genetic operators have been imple-
mented on GPU. Tests on a function optimization problem show that the larger
the population size is, the better speedup over the software implementation can
be achieved. Our work has provided a promising platform for implementation of
PGAs. Looking toward future, programmable GPUs are on a much faster perfor-
mance growth than CPUs. They also have many other advantages: inexpensive,
readily available, easily upgradeable, and compatible with various operating sys-
tems and hardware architectures.

There are still several constrains in our approach. For problems whose fitness
function is not suitable for GPU implementation, the performance of our method
will be seriously limited because of the bottleneck of transferring data between
system memory and video memory in each GA loop. Another limitation is that
commonly used binary encoding scheme of GAs seems hard to be implemented
on the GPU because there is no bit-operator supported in current GPUs.

In the future, we will apply the presented approach in real-world problems
such as GA-based image processing [17]. Another future work is further imple-
mentations of other variants of genetic algorithms. Using GPU cluster [18] to
perform parallel genetic algorithms is also of interest.
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