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Abstract

In this paper, we demonstrate the use of shape-from-shading (SfS) to improve both
the quality and the robustness of 3D reconstruction of dynamic objects captured by a
single camera. Unlike previous approaches that made use of SfS as a post-processing
step, we offer a principled integrated approach that solves dynamic object tracking and
reconstruction and SfS as a single unified cost function. Moving beyond Lambertian SfS,
we propose a general approach that models both specularities and shading while simul-
taneously tracking and reconstructing general dynamic objects. Solving these problems
jointly prevents the kinds of tracking failures which can not be recovered from by pipeline
approaches. We show state-of-the-art results both qualitatively and quantitatively.

1 Introduction

As the quality of 3D reconstructions of dynamic and deformable objects such as animals and
faces has improved, robustness and the reconstruction of semantically meaningful details
like smile and frown lines become more important. These transient fine details can not be
recovered by tracking alone, and require an understanding of the lighting in the environment
and a knowledge of how the surface normals of the object affect its illumination.

While these shading artefacts can inform highly-detailed reconstructions, they can also
prevent the tracking of objects. In homogeneously textured regions, such as human skin, the
variance in the appearance of a patch due to lighting changes can be much greater than the
difference in appearance between one patch and the next. A combination of these effects
makes it vital that we model illumination changes if we wish to correctly capture facial
deformations particularly those of the brow and cheeks.
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Figure 1: An illustration of our, and rival, approaches on a synthetic face sequence of a specular
object under variable lighting. From Left to right: i) Sample frame ii) The direct reconstruction of
Yu et al. [26], that does not consider shading artefacts. iii) Our new approach that integrates SfS with
non-rigid reconstruction but does not consider specularities. iv) Our unified framework for SfS, non-
rigid structure from motion, and specularity modelling. This framework improves the accuracy of our
approach over Yu et al. by almost a factor of 240% reducing the RMS error from 9.28mm to 3.84mm.

The instability of colour as a tracking cue is well known and has been much remarked
upon in the literature. Focusing on recent works in dynamic 3D reconstruction using depth
or multi-camera capture, it is noticeable how papers such as [5, 13] make use of raw depth
maps without colour information in reconstruction. Similarly, although the RGB-D based
work et al. [27] made use of colour information they only matched appearance between
pairs of adjacent frames as, over long sequences, changes in shadow and illumination made
colour matching unreliable. These problems can largely be ignored in the reconstruction of
rigid scenes that can be assumed not to be moving relative to the lighting environment. Here,
shading artefacts remain constant through out the sequence, while specularities typically
occur sparsely and can be handled without being explicitly modelled through the use of
robust statistics [12].

In the field of non-rigid monocular reconstruction from RGB video, we are not so for-
tunate. With only a single RGB camera as input, we must make use of colour information.
However, without depth information, matching colour only between pairs of frames is prone
to drift, with many tracks gradually diffusing away from an object over long sequences [17].
Similarly, moving objects can no longer be assumed to be static with respect to the lighting
environment, and outside of controlled studio lit environment changes in the orientation of
objects lead to significant changes in appearance. Such changes often lead to the failure of
direct image intensity based trackers such as [26].

Building from cutting edge approaches to non-rigid monocular reconstruction from RGB
video and SfS, we propose a unified framework for jointly reasoning about shape-from-
shading and reconstructing arbitrary deforming objects, making it more robust to changes
in appearance due to illumination. Unlike other object specific approaches, our general
approach targets non-Lambertian surfaces such as skin, and models both specularities and
shading. Further, we empirically demonstrate that modelling the non-Lambertian properties
of surfaces such as skin, and capturing both specularities and shading is vital for the joint
integration of SfS with non-rigid reconstruction.

One of the main challenges in non-rigid 3D reconstruction lies in evaluating the quality of
reconstructions. It is particularly challenging to capture dense deforming objects of interest
with sufficiently high fidelity under real world lighting conditions. For example, depth data
from an infra-red structured light source. e.g. the Microsoft Kinect or [27], can not be
captured under strong natural light, while multi-camera visible-light techniques such as [19]
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DIFFUSE SPECULAR
INTENSITY ALBEDO SHADING HIGHLIGHTS

Figure 2: Intensity decomposition into the product of albedo and diffuse shading (as a function of
spherical harmonics and surface normal directions) plus the specular component.

require relatively uniform lighting to maintain tracking. To validate our approach we both
compare on real world sequence captured using the work of [19], and use this data to generate
realistic synthetic sequences containing severe shading artefacts that could not be tracked by
[19]. Our method displays a strong qualitative and quantitative improvement over these rival
methods. See figure 1 and section 7 for details.

2 Related Work

All previous attempts to unify shape-from-shading with non-rigid 3D reconstruction from
RGB video have been pipeline approaches [7, 11, 18, 19] which first coarsely reconstruct
these deformable objects and then apply shape-from-shading to refine the initial reconstruc-
tion. Examples of this include, the seminal work Face Reconstruction in the Wild [9], which
first made use of automatic point correspondences to compute warps and align images of a
variety of celebrities, before reconstructing faces using SfS to build dense face models. This
was followed by [18], which refined a coarser intensity based model using SfS.

Varol et al. [20] fused shape-from-shading with non-rigid reconstruction, but only per-
formed shape-from-shading on untextured regions of the objects, and non-rigid reconstruc-
tion on the textured areas, before fusing these reconstructions as a post-processing step.
Moreover, they required a known light field and could not reconstruct high-frequency de-
tails such as facial creases. Several works have made use of SfS in refining depth maps,
either captured directly using a depth scanner[6, 15, 25] or captured using a multi-camera
setup [19]. Of the RGB-D approaches [6] is the most related to ours, and computes both
SfS and specularities in order to enhance their depth maps. Previous works have also used
SfS to improve tracking: In multi-camera work Beeler ef al. [3] used a pipeline approach to
improve the tracking and refine the shape of an initial reconstruction by both estimating and
removing ambient occlusions. While Xu ez al. [24] defined linear equations for modelling
changes of illumination and position that occur when tracking a rigid object in video.

Our work builds on the recent template-based approach to monocular and direct non-
rigid 3D reconstruction of Yu et al. [26]. This work made no use of SfS, but generated vivid
reconstructions of objects by deforming a known template to match direct photometric cost.
We extend this direct formulation by augmenting the direct photometric cost with terms that
capture the change in appearance that goes with shape and shading, leading to more lifelike
and plausible reconstructions.
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Algorithm 1: Joint non-rigid 3D reconstruction and shape-from-shading

Input : 3D Template mesh S+ template albedo p; (obtained using Algorithm 2)
Current video frame I’
Solution to previous frame {§'~', R ¢~ ¥~! g1}
Output: Deformed shape §’, rotation R', translation ¢/,
spherical harmonic coefficients I’ and specularities B’ for current frame
1 for each new image frame I' do
2 | Initialise {S',R',¢' ¥ B}« (S~ R~ ¢y g1}
3 Minimise (3) w.r.t. rigid alignment {R',#'} holding {S',I, B’} constant
4 | Minimise (3) w.r.t. deformations and lighting {S",1'} holding {R’,#', B} constant
5 Minimise (3) w.r.t. specularities B’ holding {S',1,R',#'} constant
6 end

3 Problem Formulation

Consider a single RGB perspective camera, of known internal calibration, observing a non-
rigid object. We propose a sequential, frame-by-frame, approach to capture both the 3D
geometry and the reflectance properties of the non-rigid object. We parameterise the object
at time-step ¢ as a mesh 8" with N vertices with associated 3D coordinates §' = {s}, i = 1..N.

Our proposed approach is summarised in Algorithm 1. The goal for each incoming frame
at time ¢ is to estimate the current 3D coordinates of the vertices of the mesh, the light field —
parameterized in terms of spherical harmonics — and specularities, as well as the overall rigid
rotation and translation (R',#') that align the deformed shape and a reference 3D template.
The only inputs to our method are: the current image frame I/’\, the solution to the previous
frame, and a 3D template of the object (including its geometry S and albedo map p ;) acquired
in a preliminary stage described in Section 6 and Algorithm 2. Note that all variables related
to the template are denoted with ".

4 Reflectance Model

Modern solutions [18, 19, 26] to direct 3D reconstruction of non-rigid objects from RGB
video adopt an energy optimisation approach that minimises a robust photometric cost based
upon brightness constancy. In other words, they jointly estimate dense correspondences
alongside non-rigid deformations, by penalising differences in intensity between images and
the new deformed shape, which is assumed to be the same colour and brightness of a ref-
erence template. As the points on the object change colour in response to differences in
illumination or in shading caused by strong deformations these methods need to use robust
costs to cope with deviations from the model.

In contrast, our method explicitly models the reflectance properties of non-Lambertian
objects and can handle materials which exhibit a mixture of specular and diffuse reflection
properties. In practice we adopt an approximation of the Phong reflection model which
models light leaving the non-rigid object at point i as the sum of two additive terms: a
viewpoint-independent diffuse term and a view-dependent specular term: I; = I f-“ff +B;.

To increase our robustness to changes in lighting and shading and to recover high fre-
quency details of the object geometry, we decouple the diffuse component into the product
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Figure 3: Best viewed in colour: A qualitative comparison of our method against that of Yu
et al. [26], on their face dataset.

of object albedo and the object irradiance or shading (see figure 2). While the albedo is in-
dependent of the surface orientation, the shading is a function of the surface normal at each
vertex i IS = p.r(n;(S)). Here p, is the RGB reflectance or albedo, n;(-) is a function that
returns the direction of the surface normal at vertex 7, and r(-) is an irradiance map function
that returns the shading value given the surface orientation vector. We assume white illumi-
nation so r(-) returns a single scalar value. Following Basri and Jacobs [2] we model the
irradiance map using a spherical harmonic basis

N n
rmi(8)) =Y ¥ lunYum(mi(S)) =1-Y (m;(S)) (D)
n=0m=—n
where [, is the coefficient associated with the spherical harmonic function Y,,,,. We limit
our approximation to second order spherical harmonics, i.e. N = 2 giving I nine coefficients.
If we consider a video of a non-rigid object evolving over time §', our reflection model
allows us to write the predicted image intensity of point i observed at time ¢ as

I=pl -Y(ni(S)) +p; )

It is clear that our reflection model allows us to cope not only with varying geometry
($") but also varying illumination coefficients (I') and specularities (ﬁ;). Notably, while the
image brightness of vertex i might vary over time ¢ due to possible changes in illumination
and object surface normals n;(S’) caused by the deformations, its albedo p; is constant over
the entire sequence.

Our insight and the main contribution of this work is to track the non-rigid deformations
of the object based on albedo constancy instead of the more classical image brightness con-
stancy constraint which does not hold for non-rigid objects or when the illumination varies
over time. In this way, we can take advantage of the changes in illumination and shading to
recover high frequency details in non-rigid objects and by increasing 3D tracking accuracy .
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S A sequential approach to joint non-rigid 3D
reconstruction and reflectance estimation

Much like Yu et al. [26], we use a template-based approach to track and reconstruct non-rigid
objects. However, while [26] assigned a fixed intensity to each vertex on the template mesh,
we decompose the intensity of each vertex (see equation (2)) allowing us to take advantage
of the reflectance properties of the object to improve the resulting reconstructions.

5.1 Our Energy

Our per-frame objective takes the form
E(S7 R7 tﬂ 17 ﬁ ) :Edata (S7 R7 ta l7 B )+Esm00th (S; ﬂ )+Earap (S)+Etemp (S; t7 l7 ﬁ )+Esparse (B) (3)

Data Term Ega,: Our data term is a direct photometric cost. Rather than minimising the
more commonly used brightness constancy constraint we use the more complex reflectance
model described in (2) which decomposes the intensity of vertex i into the product of a
constant albedo and a time-varying shading term (where variations can be due to changes in
illumination or to strong deformations) and explicitly models specularities.

Eaa RSLB) = ¥ ||L(w (R(s;) + 1) — p1- ¥ (R(ni(S))) — B, |, )
icVy

where V is the set of estimated visible vertices, 7(-) is the projection from 3D points to
image coordinates, known from camera calibration, and || - ||¢ is the Huber loss.
Spatial Smoothness Term Egy,o0n: This regularisation term encourages spatially smooth
deformations of the shape and specularities. In practice the spatial smoothness on the shape
is decoupled into two terms: a total variation term that encourages smooth deformations of
the shape S with respect to the template S and a Laplacian smoothness term

Esmooth (S7 B) = Esmooth(s) +Esmoolh(ﬁ) = ETV(S) + ELaplacian (S) + Espec (ﬁ) (5)
2
1
:Z Z [(si—s;)—(si — )||8+V Z(Si—s
i€V \ jeN; | ’l JEN; /eN

where N; is the neighbourhood of i.

ARAP Term Ej,pap: This as rigid as possible cost [16] encourages non-rigid objects to pre-
serve locally rigidity while deforming. It allows for local rotations to occur while preserving
the relative locations between neighbouring points.

N

Earap(8,{Ai}) = Z Y li(si—s)) —Aisi —5))l5 (6)

i=1jeN;

where the variables A; describe per-point local rotations.
Temporal Smoothness Eenp: This set of temporal regularisers prevents flickering through-
out the sequence

2
Eemp(S,0.1,8) =[S =8 2+ [le =13+ 11+ BB,
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Algorithm 2: 3D Template acquisition

Input : Rigid image subsequence {Iiigid} f=1F
Output: 3D coordinates of template mesh vertices S = {§,} and
Template albedo map p = {p,} wherei=1---N
1 Obtain rigid camera poses for each frame {If-igid} using VisualSFM [23]
Estimate 3D template mesh vertices S= {s%} using MVS [4, 8, 21]
Estimate diffuse component f;ﬁff Vi template vertices as median colour over all frames

Solve for the illumination coefﬁcientsTminimising (9) assuming white albedo
Solve for albedo map of the template p = {p;} minimising (10)

M oA W N

where §'! Vil Blil are the shape, translation, spherical harmonic coefficients and
specularities in the previous frame and || - || # denotes the Frobenius norm of a matrix.
Sparsity Term Egp,pe: This prevents the entire image being “explained away” as a specu-
larity, by penalising the use of specularities.

Esparse(ﬁ) = Z ||Bl||g ®)

IS%

Energy Optimisation: For reasons of efficiency, we adopt a multi-stage optimisation sim-
ilar to the approach taken by real-time SLAM approaches such as [10]. Starting from the
solution given by the previous frame, we hold all other coefficients fixed and optimise first
over rotations and translations, followed by jointly optimising shape and spherical harmonic
coefficients, and finally re-estimating the specularities. The first two of these optimisations
are performed coarse-to-fine over a 3-layer spatial pyramid, providing robustness against
sudden movements and deformations of the object while for efficiency reasons, specularities
are only estimated at the finest level, and propagated to the coarser levels of the pyramid,
ready for the next iteration. Algorithm | summarises our optimisation strategy. We use the
Levenberg-Marquardt implementation from the Ceres solver [1] for all continuous optimisa-
tion, applying preconditioned conjugate gradient for the linear solver.

6 Template Capture

This section describes how we capture the static geometry and the reflectance properties of
the object of interest — or in other words how we build the template model used for tracking.
We achieve this by moving a hand-held camera around the object while it remains rigid for
a few seconds, to observe it from different angles. During the template capture step, we
assume that the illumination remains constant.

Template geometry: For each frame we estimate the relative pose of the camera with
respect to the object using a standard off-the-shelf structure from motion approach (Visu-
alSFM [23]). We then use an existing multi-view stereo approach [4] to produce individual
depth maps for each frame. Finally the depth maps are fused using the volumetric technique
of [21] and the probabilistic visibility approach of [8] to produce as output a watertight mesh
of the template shape parameterized as the set of 3D vertex coordinates S = {§;}, i = 1..N.
Template reflectance properties: The next step of the template acquisition stage is to assign
a colour value to each vertex i on the mesh. Our implicit assumption is that the light leaving
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Table 1: Comparison results with Yu et al. [26] on 4 different ground truth rendered syn-
thetic sequences. We report average RMS error (in mm.) over all frames w.r.t ground truth.

LF (mm) SF (mm) LC (mm) SC (mm)
Yu et al. [26] 7.29 7.93 9.18 9.28
Ours (not modelling specularities) 291 3.28 3.50 4.21
Ours (modelling specularities) 2.73 2.89 342 3.84

the surface of the template is the sum of a viewpoint-independent diffuse term and a view-
dependent specular term. We estimate the diffuse term I?iff as the median colour over all the
frames in the rigid subsequence in which the projected vertex is visible. While some previous
approaches favoured the use of the minimum observed intensity value [14], we choose to
use the median as proposed by Wood er al. [22] since it provides robustness to shadows
and errors in the camera tracking. We decompose the diffuse component of the template
I?iff further into the product of an albedo map and an irradiance function parameterized in
terms of spherical harmonics to approximate the illumination and the surface normals as
described in (2). First we solve for the spherical harmonic coefficients by optimising the
following photometric objective function with respect to i:

Etemplate(i) = ;/ Hf;ﬁff_ f)il Y (n,(g)) He ®

where f)i is an initial assumption of the albedo map (e.g. white, uniform colour, or the result
from k-means).

The albedo map is estimated by minimising the same cost with a small variant — we give
a lower confidence to points with low shading. Also, a weighted local smoothing term is
added based on the difference in intensity.

Ez/emplate (FA’) = Z W?

IS%

W pr @) + X T |pi-p, a0

i€V jeN;
where w? = r(n;) is chosen to decrease the importance placed on regions of low shading and

/ L-1,|3 . .
Wi =exp (— %) to encourage points with similar appearance to share the same albedo.
s

7 Experimental Evaluation

We tested the proposed method on ground truth sequences generated using the reconstructed
face shapes from [19], down-sampled ten times in order to reduce the runtime of our method.
Each of the vertices of the mesh will have a constant albedo over time, which was estimated
using the first reconstructed shape provided in a similar way as described in section 6. Us-
ing this albedo map, we render four different scenarios combining Lambertian or specular
surfaces on a scene lit by two white directional lights with constant or changing intensity.
Thus, we have sequences with a perfect Lambertian surface with fixed (LF) or changing il-
lumination (LC), and a specular surface with fixed (SF) or changing illumination (SC) (see
figure | and 4). To test these ground truth sequences we use a coarse-to-fine pyramid with a
template mesh of ~ 6,000 vertices at the coarsest level and, for the finest level, one with the
same amount of vertices as the ground truth (~ 24,000 vertices). We run our method on a
computer with an Intel Core i7-5930K CPU, which takes around one minute to process each
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REAL SEQUENCE SYNTHETICALLY RENDERED
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Figure 4: Best viewed in colour: A qualitative comparison of our method against that of Yu
et al. [26], on (LEFT) the real-world sequence of [19] and (RIGHT) our four synthetically
rendered sequences (from left to right: LF, SF, LC and SC).

frame. Table 1 shows the comparison results against the recent template-based method of Yu
et al. [26] using their publicly available code. It can be seen that our approach is significantly
better in all four cases, with or without modelling specularities. We reduce the baseline er-
ror by a factor of 220%-260% when the specular component is not estimated and around
240%-280% when it is. It should also be noticed how estimating the specular component
improves the results for pure Lambertian sequences. This is due to the fact that the estimated
specularities are also compensating for the errors in the initially computed albedo. In figure
5 it can be seen the decomposition of the results from two frames of the SC sequence and
shows how our method can handle this challenging scenario with big changes on intensity.
Our results can be best viewed in the accompanying video'.

We further evaluate qualitatively on the same face sequence using the real images as input
(figure 4), on the face sequence of [26](figure 3), and on a new ball sequence (figure 6). In
the case the first one, notice the improvement on the reconstructed deformation of the mouth
thanks to our diffuse shading model while [26] is only able to recover a flat surface.

8 Conclusion

We have presented a principled approach jointly reasoning about non-rigid structure from
motion and shape-from-shading, and provided strong empiric evidence that it is required

IPlease visit http://www0.cs.ucl.ac.uk/staff/Qi.Liu/bmvcl6/better_together.html
to check video results and to access our publicly available code and datasets.
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INPUT ALBEDO SHADING SPECULAR NORMAL IRRADIANCE

Figure 5: Results of two different frames from the SC sequence and the corresponding intrinsic
decomposition.

Input

Yu et al.

Input

Figure 6: Comparison between the results of Rui e7 al. and our method on a real sequence of a ball.

to avoid systematic tracking failures, and that it significantly improves the reconstruction
quality of fine semantic details. Although, we focused upon the challenging problem of
reconstruction from a single RGB camera, such joint reasoning could readily be applied
to RGB-D and multi-camera based approaches, and the increased robustness and detailed
reconstructions it brings is likely to be of use to the wider community.
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