
 35

Edge-Triggered D-type Flip-flop 
 

The transparent D-type flip-flop is written during the period of time that the write control is active. 
However there is a demand in many circuits for a storage device (flip-flop or latch - these terms are 
usually interchangeable), in which the writing of a value occurs at an instance in time. Such a device 
can be built in a number of ways, one of which uses 2 transparent D-type flip-flops. This form will be 
presented here and the circuit is shown in the figure. 

The 2 transparent flip-flops, FF1 &  FF2, are 
linked in series with the output of FF1 being fed 
into the D input of FF2. The flip-flops operate in 
a complementary fashion such that when FF1 is being written, FF2 is in storage mode, and vice versa. 
This is achieved by FF1 being fed with the input signal Clock,  while FF2 is fed with its inverse. The 
circuit is called an edge-triggered D-type flip-flop, as the value on the D input of  FF1 (the circuit’s 
data input) is stored in the circuit, and output on the Q of FF2, on the 0→1 transition of Clock. This 
transition is called the rising edge, sometimes represented on a circuit diagram by the symbol ↑.  The 
timing diagram shows the response of the circuit to example input signals. It is assumed in the 
diagram that the output is 0 at the beginning. This diagram should help in understanding the circuit 
operation. The circuit operates in the following way:- 
 
Clock at 0: 

• FF1 is enabled and is written with the value on its D input. Any change on D changes the 
stored value and the output value on its Q output. See trace M in the timing diagram. 

• FF2 is in storage mode, and outputs the value stored when last enabled (when Clock was 1). 
 
Clock 0→1 & Clock at 1: 

• FF1 goes into storage mode, storing the value on D at the time of the transition. This value 
is output to FF2 which goes into writing mode to store and output this value. M no longer 
changes as the Input changes, so that the value of FF2 remains constant. 

 
Clock 1→0: 

• FF2 goes into storage mode holding the value it has been receiving from FF1 since the  0→1 
edge of Clock. FF1 goes into writing mode, storing the current value on its D input. M again 
follows the Input, while the Output holds the value stored at the Clock rising edge. 

 
It can be seen that the output from the circuit 
(Q of FF2) only changes on the 0→1 edge of 
Clock, and that the output value is always the 
value on the circuits data input at the time of 
this edge. Thus, the circuit stores the input 
value at the instance that the edge occurs. 
There are more technical details in the box. 

 
The symbol for an edge-triggered D-type flip-flip is shown to the 
left. Note the triangle on the Clock input to denote an edge-
triggered device. A timing diagram with more clock edges is 
shown on the following page. 

 

 

 

In practice, there is a short time period over which storage 
occurs, but this is not a problem since this period can be 
made much shorter than the time for changes in the stored 
value to propagate through the circuit. However, if the value 
on D is changing at the time of the edge, it is not possible to 
determine the stored value. The propagation delay through 
the inverter on the Clock signal must be shorter than 
propagation times through the flip-flops, otherwise the circuit 
has problems at the  1→0 transition. 

 



 36

The vertical dotted lines mark the 
time of the edge. The value on D at 
this time appears on Q a short time 
later due to propagation delays 
through the circuit. 
 
A Simple Example: the Frequency Divider 
Edge-triggered devices are extremely useful and can be used for operations where a single transparent 
D-type flip-flop would fail. A simple circuit with 1 edge-triggered flip-flop is shown in the figure with 

an example timing diagram to the right. 
The inverse of the stored value is fed back into the device input, so that on each rising edge of Clk the 
stored value changes. In the timing diagram it can be seen that the value on D is the same as on the 
inverse output of the device. At the rising edge of Clk, the flip-flop takes on the value of D and Q 
takes on this value after a short time delay due to propagation delays through the flip-flop. At the time 
that Q changes the inverse output and D change. It can be seen that the frequency of the output on Q 
is half the frequency of the input on Clk: the circuit is a clock divider. Long chains of these circuits 
can be put together to reduce a clock frequency. 
 
It should be noted that the edge-triggered device cannot be replaced by a single transparent D-type 
flip-flop, because on the input clock going low, the flip-flop would be enabled for writing while there 
is a low on the input and during this period the output would oscillate as a change on the output feeds 
back to change the stored value which changes the feedback value, and so on. A device that stores just 
on the edge of the input is required. 
 
Delay/Shift Circuit 
 
Another useful circuit 
which requires edge-
triggered devices is 
shown to the right. 
 
On the rising edge of Clk, each flip-flop stores the output of the flip-flop immediately to its left, while 
the leftmost flip-flop stores the input value. This circuit can be used immediately as a delay circuit: 
the input value appears on the rightmost output after a delay of 4 rising edges. It could also form the 
basis of a shift register, since the circuit shifts data values; extra logic would be needed in this case. A 
number of different types of shift register are used in computer systems:- 
• serial-in/parallel-out shift register: in terms of the figure above, 4 bits would be shifted in from 

the input into different flip-flops using 4 rising edges on Clk and then all 4-bits would be read out 
in parallel as a single 4-bit data item. 

• parallel-in/serial-out shift register: in terms of the figure above, each flip-flop would be loaded 
with a different bit from a 4-bit data value, and the device would be clocked to shift each bit out of 
the end serially one bit at a time.  

• parallel-in/parallel-out shift register: these enable a data value to be shifted one or more binary 
places. A data item would be loaded in parallel, shifted and the modified value read out in parallel. 
Bits shifted out of one end can be shifted in at the other or new bits can be shifted in. 

 

 

 

 



 35

Finite State Machines 
 
Edge-triggered flip-flops play a key role in a very important digital circuit, the Finite State Machine. 
Finite State Machines (FSMs) are important because they allow for a sequence of operations to be 
performed with a controllable interval for each operation, and for a choice to be made of the next 
operation to be performed under the control of input signals. Thus FSMs allow control circuits of 
great complexity to be built. 
  
The digital FSM is a circuit with feedback signals, and as in many circuits where there are feedback 
signals, the outputs of the circuit are a function not only of the circuit’s inputs, but also of the internal 
state of the circuit. The state of an FSM is easily identifiable as the information that forms the state of 
the FSM is stored in edge-triggered flip-flops. A generalised circuit for a FSM is  shown below. 
 
The circuit has 2 major 
components a set of edge-
triggered flip-flops, labelled 
latches in the figure, and a 
block of combinational logic 
(there is no feedback in this 
block). This logic takes the 
input signals and the output 
values of the latches and 
generates a set of output 
values from the circuit and a 
set of new inputs to the 
latches. The outputs from 
the latches (their stored 
values) are called the 
current state of the circuit, while the inputs to the latches carry the next state of  the circuit: the next 
state becomes the current state when the latches are written by the rising edge on the Clock input.  
 
Both the output values and the next state values are functions of the inputs and the current state.  
The maximum number of states of the circuit (not all may be used or reached) is 2no of latches, i.e. with 8 
latches there are 256 states, with 20 latches, 1M states. Since the next state is defined by the 
combinational logic, any state, i.e. a particular set of 1s and 0s in the latches, can be reached from any 
other state. Thus, in an 8 latch FSM, state 10100000 could be followed by 00011000 or by 11101000, 
depending on the design. It is possible to make the next state dependent on one or more input signals: 
state 10100000 might be followed by state 00011000 if input I is 1, but by state 11101000, if I is 0. 
The maximum number of choices from a state is 2no of inputs , i.e. with no inputs, there is only one 
possible successor state, with one input, two possible successors, with 2 inputs 4, etc. Of course the 
number of successor states can never be greater than the maximum number of states. 
 
From a particular state, the FSM will step through a sequence of successor states controlled by the 
inputs to the device and the states themselves. The sequencing is controlled by the clock. The outputs 
from the FSM are controlled by the inputs and the state sequence. 
 
A very simple FSM can be designed to produce the basic 
traffic light controller that goes through the light sequence: 
 Red    -    Red & Orange    -    Green    -    Orange    -    Red 
 
The figure to the right shows the state diagram of the traffic 
light controller. The states of the controller are the circles; 
the transitions between states are marked by the arrows. It 
can be seen that there is only one successor state for each state: there is no choice of successor in this 
FSM. 

 

 



 36

This lack of choice means that no inputs are required. To turn this state diagram into a digital circuit 
requires a number of stages:- 
 
State Assignment 

Unique binary patterns, or labels, must be allocated to each state. The number of bits required 
is log2(number of states). Thus, 2 bits are needed for 4 states, 3 bits for 5,6,7 and 8 states, etc. 
The pattern allocation can be purely arbitrary, but some allocations give simpler solutions. 
The number of state bits determine the number of latches in the FSM. A set of state 
assignments for the traffic light controller is shown on the state diagram above. 

 
Generation of Boolean functions for combination logic   

The functions mapping the inputs and current state to the next state and the output must be 
produced. These are generated from the state diagram and the state assignments. One way to  
do this is to build truth tables and then use Karnaugh maps to produce a function for each 
output from the combinational logic.  
 
For the traffic light controller, the truth table is shown in the figure.  
 
Here, the current state bits are 
named cs1 & cs0, while the next 
state bits are ns1 & ns0.  
The outputs to control the lights 
are named Red, Orange & Green. 

 
Taking the first line of the table, the current state is 00(RED), and only the Red output is 
active turning on just the red light, while the next state bits show that the successor state will 
be state 01(Red & Orange). The various outputs only depend on cs1 & cs0. 

 
The Karnaugh map for ns1 is to the right, along with 
the Boolean function derived from it. It can easily be 
seen that ns1 is just cs0: the least significant bit of 
the state assignment becomes the most significant bit 
on the next state transition. 

 
The Karnaugh map for ns0 is to the right, along 
with the Boolean function derived from it. It can 
easily be seen that ns0 is just the inverse of cs1. 

 
The Boolean functions can be derived in the same way to give the following:- 

 
Circuit Layout: 

It can be seen that ns0 and Red are 
identical, so that they can be merged 
to reduce the number of outputs in the 
final circuit. Everything has now been 
done and the circuit can be drawn out. 
It is shown to the left. 

 
Only one thing remains: the choice and 
generation of the clock frequency. The latter 
controls the interval between state transitions, 
i.e. the time spent in each state and how long 
a light is on. 
 

 

 

 

Red   =  cs1 Orange = cs1.cs0 + cs1.cs0 Green = cs1.cs0
 

 



 37

A State Machine with Conditional Branching 
 
To the right is a state diagram 
for a state machine with 2 
states and 2 transitions from 
each state. Separate inputs 
control the choice of transition 
from each state, and the value 
of the input signals that cause a transition to be taken are marked against each transition. 
Input GotoB determines the choice at A: if it is 0, the machine stays in state A, if it is 1, the state of the 
machine becomes B. Input GotoA has no effect while the machine in state A: this is shown by the fact 
that the don’ t care (X)  value is shown against GotoA for both transitions from A. Input GotoB 
controls the transitions from state B in  a similar fashion. 
 
With 2 states, there is only need for 1 state bit. 
Let us label ithe state bit Q, so that state A is 
assigned Q =0, B is Q = 1. After state 
assignment the truth table is simply derived 
from the state diagram as shown to the right. 
The Karnaugh map, which shows how next Q, 
usually denoted Q’ , is dependent on Q, GotoA 
and GotoB. It is trivially derived and not 
shown, but from it the Boolean function for Q’  
can be found:-  
 
 
The circuit for the state machine has just one edge-triggered flip-flop and has logic to implement the 
Boolean function for the input to this flip-flop (Q’ ). 
Although a simple state machine, its operation can be identified with the basic Fetch-Execute 
operation of a CPU. Taking state A as the Fetch state, and state B has the Execute state, then operation 
could be interpreted thus:- 

• in the Fetch state, the Q signal is 0 and the 0 value enables logic elsewhere to read a word from 
memory. 

• signal GotoB is set to 1 if all the instruction has been read in after this read; GotoB is set to 0 if 
further reads from memory are required to get the complete instruction. The number of words 
to read in is usually found by analysis of the first word of the instruction. 

• when the state machine is clocked, it goes into the Execute state only when all the instruction is 
available, GotoB = 1; otherwise it stays in the Fetch state. 

• in the Execute state, the Q signal is 1 and the 1 value enables logic elsewhere to execute the 
instruction. 

• the machine stays in the Execute state until the execute logic indicates that execution is 
complete by setting GotoA to 1, so that the machine moves back to the Fetch state. 

 
An example of a more complex state 
diagram is shown right. The FSM 
arbitrates between 2 requests, ReqA 
& ReqB, for access to a shared 
resource and outputs 2 signals to 
grant access to the resource to a 
request. 
The transitions are marked with the 
input values and the output values 
with a ‘ /’  separating the 2 sets. 

 

 

Q’      =      Q.GotoB   +  Q. GotoA
 

 


