
Security Audit of RSKJ Ginger 0.2.0

Patrick McCorry12 and Andrew Miller2

1 University College London, UK
2 University of Illinois at Urbana-Champaign, US

Abstract. RSK commissioned us to audit both the Remasc and Bridge
contract in the rskj implementation. Remasc is responsible for comput-
ing distributing the block reward amongst the miner’s while Bridge is
responsible for transferring coins from Bitcoin to rskj and vice versa. We
highlight that rskj does not consistently implement the deterministic
block selection rule used by miners to decide which block to extend. On
the other hand, we highlight future planned improvements for the design
of Bridge. Overall, we propose changes to both Remasc and Bridge before
discussing potential attacks that can be explored in future research.

1 Introduction

RSK (Rootstock) released their smart contract platform rskj as a side-chain
for Bitcoin in May 2017 and its implementation relies on both EthereumJ
and BitcoinJ. The former permits contracts in rskj to be deterministically
executed by all peers on the network using their copy of the RVM (Rootstock
Virtual Machine). On the other hand, the former permits rskj to verify that
bitcoins from the Bitcoin blockchain are locked into this sidechain for use in
smart contracts.

In this security audit, we focus on two pre-defined contracts Remasc and
Bridge:

– Remasc. Distributes the block reward amongst miners,
– Bridge. Locks and unlocks bitcoins for use rskj.

There is no block subsidy (i.e. minting of new coins) in rskj and instead the
block reward distributed by Remasc relies solely on transaction fees collected
by miners in their blocks. It is also worth mentioning that rskj implements a
variation of the GHOST protocol thus miners are rewarded for creating stale
blocks that are included as uncle blocks in the blockchain. We highlight that
while Ethereum supports paying for uncle blocks via a block subsidy that creates
new coins, rskj implements a reward scheme that evenly splits transaction fees
amongst all miners that create blocks for a given block height. Furthermore
Remasc is the first reward scheme that introduces the concept of burning coins3

if miners deviate from the protocol or if the block reward cannot be evenly split.

3 It is worth mentioning that coins are not in fact burnt or destoryed. Instead the coins
are deallocated for use in rskj and the Federation members are trusted not to allow
the pegged coins to be returned into Bitcoin.



2 Patrick McCorry and Andrew Miller

On the other hand, Bridge is responsible for verifying if bitcoins are locked
into the rskj sidechain. A group of semi-trusted Federation members (i.e. func-
tionaries) interact with Bridge for locking and releasing coins. All transfers require
signatures from a threshold M of N Federation members before it is released in
the respective blockchain. Of course to avoid blockchain re-organisation attacks
coins must be locked in the respective blockchain for a sufficient period of time
before Bridge releases coins for use in rskj or Federation members release coins
back to Bitcoin.

Overall, the implementation of rskj is of excellent quality. The RSK de-
velopers have followed best practice in terms of Java Programming and have
included extensive unit testing for both Remasc and Bridge. Although, we did
find implementation and design issues for both which includes the following:

– We have identified a bug where miners and Remasc will execute different
block selection algorithms in rskj.

– We have implemented a simulator to evaluate Remasc’s reward scheme,
– We identify and explore future planned improvements and the associated

security implications for Bridge.

This report outlined as follows. We begin by describing the reward scheme
implemented in Remasc before highlighting the selection rule bug and the impact
of burning coins if unconfirmed blocks held by miners is not synchronised. Then,
we introduce the Bridge protocol and highlight implementation issues that
may impact its future performance. Finally, we explore some future planned
improvements for Bridge.

2 Remasc Contract

In this section, we provide background information on uncle blocks, the maturity
period before the block reward is computed, and rskj’s selection rule algorithm
that dictates whether block bi should extend sibling block s1 or s2. Next, we
present how rskj computes the block reward such that it is split amongst two
or more miners. Finally, we highlight the selection rule bug we found during our
investigation and the impact of burnt coins if miners have partially disjoint sets
of unconfirmed blocks.

2.1 Background

We briefly discuss the concept of uncle blocks, the maturity period before the
block reward is distributed and the selection rule to dictate which block to extend.

Uncle Block. If there are two or more blocks competing for entry into the
blockchain, then one block is accepted into the blockchain as a main block. The
other competing blocks are later included in the blockchain by future main blocks
and become known as uncle blocks. The purpose of uncle blocks is to allow their
proof of work to contribute towards the blockchain’s overall computational weight
and as such the transactions included in an uncle block are not processed.



Security Audit of RSKJ Ginger 0.2.0 3

Algorithm 1 Remasc’s fee distribution

Input: Blockchain bc := (b0, ..., bk), Siblings s := (s1, ..., sn), block b, reward pot λ,
Selection rule was previously broken δk
Output: Boolean δk if selection rule was broken

1: λ := λ+ b.fee . Contribute collected transaction fees to reward pot
2: Λbr := λ/5 and λ := λ− Λbr. . 20% Block Reward.
3: ΛRSK := Λbr/5 and Λbr := Λbr − ΛRSK . 20% RSK Founder Reward
4: sendReward(RSK,ΛRSK)
5: δk+1 := selectionRule(b, s) . Check if bi+1 broke selection rule.
6: if length(s) == 0 then
7: if δk == TRUE then
8: βsr := Λbr/10 and Λbr := Λbr − βsr . Selection rule penalty
9: end if

10: sendReward(b.miner, Λbr) and return δk+1 . Pay miner of b and exit.
11: end if
12: Λpr := Λbr/10 and Λbr := Λbr − Λpr. . 10% Publisher Reward.
13: βpr := Λpr mod length(s) . Remainder after splitting the publisher reward.
14: Λpr := Λpr − βpir
15: for si in s do . Pay miner that included a sibling in their block
16: sendReward(si.inclusion miner, Λpr/length(s))
17: end for
18: sendReward(mi, Λpr/length(s)) . 1 share per sibling included in a miner’s block.
19: if δk == TRUE then
20: βsr := Λbr/10 and Λbr := Λbr − βsr . Selection rule penalty
21: end if
22: βbr := Λbr mod length(s) + 1 and Λbr := Λbr − βbr.
23: Λsib := Λbr/(length(s) + 1) . Individual reward for siblings and miner of b
24: for each si in s do
25: d :=delay(si, bs) . Compute inclusion delay for si as an uncle in bc.
26: if d ≥ 0 then . 5% penalty for each delayed block
27: βsib,i := (Λsib ∗ d)/5 and Λsib,i := Λsib,i − βsib
28: end if
29: sendReward(si.miner, Λsib)
30: end for
31: sendReward(b.miner, Λsib) and return δk

Maturity Period. There is a maturity period ∆ from when bi is accepted
into the blockchain and when the reward for bi is distributed. This grace period
is necessary to provide time for miners to include any siblings (i.e. competing
blocks) s1, ..., sn in the blockchain as uncle blocks. The distribution of the block
reward for bi is computed once block bi+∆ is included in the blockchain.

Selection Rule. Remasc is responsible for checking if the selection rule
presented in Algorithm 2 was correctly followed and will burn 10% of the block
reward if the rule is broken. Notably, this rule dictates that if there were two or
more potential siblings s1, ..., sn competing for block height i− 1, then block bi
should extend the sibling with either the most computational weight or at least
double the fees than any other sibling.



4 Patrick McCorry and Andrew Miller

Algorithm 2 Selection Rule (Current implementation in Remasc)

Input: Block block-1 and siblings s = (s1, ..., sn)
Output: Boolean

1: For each sibling si, if si.individual-weight > block-1.individual-weight OR
si.fees*2 > block-1.fees then return FALSE

2: Return TRUE

2.2 Reward Distribution

We outline in Algorithm 1 how the block reward is distributed amongst the
miners. rskj does not incorporate a subsidy in the block reward and instead
relies solely on transaction fees collected in each block. All fees are sent to the
reward pot λ and 20% of this pot’s coins are allocated as the block reward Λbr
for bi. Unlike other cryptocurrencies, this block reward Λbr is further split into a
RSK Founder Reward ΛRSK , Publisher Reward Λpr, and Sibling Reward Λsib.
Remarkably, a small portion of the block reward can also be burnt (i.e. destroyed)
to penalise miners if deviation from the consensus protocol is detected. In the
following we present how to compute each reward and penalty.

RSK Founders Reward. First, all blocks send 20% of the block reward to
the RSK Founders.

Full Reward (no siblings) In most cases it is likely that bi is the only
block competing for entry into the blockchain for block height i and as such the
Publisher and Sibling rewards are not computed. Instead, the Remasc contract
will check if the Selection Rule presented in Algorithm 2 was correctly followed.
If the rule is broken then Remasc will burn 10% of the block reward. The miner
is sent the remaining block reward (either 80% or 70%).

Publisher Reward. The contract allocates 10% of the block reward as a
publisher fee Λpr and the remainder βpr := Λpr mod length(s) is burnt. Each
miner m1, ...,mk is sent di publisher rewards, where di is the number of siblings
that miner mi included in their blocks such that:

k∑
i=1

sendReward(mi, di(Λpr/length(s))),

Sibling Reward. Two penalities can be inflicted on the Sibling Reward.
First, Remasc burns 10% of the block reward if the Selection Rule presented
in Algorithm 2 is not correctly followed. The remaining block reward Λbr is
evenly split amongst the siblings and the miner mi of bi such that the individual
block reward is Λsib := Λbr/(length(s)+1), and the remainder βbr := Λbr mod
length(s)+1 is burnt.

Second, the reward for each sibling can be penalised an additional 5% for
each block in which the sibling block was delayed entry into the blockchain as an
uncle block. For example, if the sibling was destined for block 100, and it was
included as an uncle in block 102, then it was delayed by 1 block. This incurs a



Security Audit of RSKJ Ginger 0.2.0 5

Fig. 1: The number of times the selection rule penalty is triggered when the
probability that a sibling is included as an uncle block increases by 10% increments.
This assumes an uncle rate of 50-40% and 10,000 blocks for each simulation run.

single 5% penalty which is burnt βsib. For the rest of this paper the penalty is
known as the late inclusion of an uncle block penalty. Finally, each sibling and
the miner of b is sent their individual reward Λsib.

2.3 Selection Rule Bug

The Selection Rule algorithm is run twice in rskj. First by miners to choose
which block to extend and second by Remasc to determine if the miner’s deviated
from rskj’s consensus protocol. We briefly reiterate how the selection rule is
applied before highlighting how the current implementation does not execute the
same algorithm in both cases.

Miner Selection. Miners select the block with the heaviest weight (including
its uncles). If competing blocks have an equal combined weight, then miners will
choose the block with either the heaviest individual weight or the block that
collects at least double the transaction fee’s than any other sibling.

Remasc. The code checks if the chosen block has the heaviest individual
weight, or if it has collected at least double the fees than any other competing
siblings.

Unlike the miners selection algorithm, Remasc does not check the combined
weight of blocks (i.e. the uncle weights are not included in computing the block’s
weight). This can result in Remasc falsely penalising the miner for deviating
from the consensus protocol. For example, there are two blocks b1, s1 and the



6 Patrick McCorry and Andrew Miller

combined weight for the main block is b1.combined-weight = 230 and the
sibling block is s1.combined-weight = 200. On the other hand, the individual
weights for the main block is b1.individual-weight = 80 and the sibling block is
s1.individual-weight = 90. Remarkably, the miners will select b1 when mining
blocks, whereas the Remasc contract will select s1 when deciding whether the
miner should be penalised. To conclude, this inconsistency will result in Remasc
penalising miners for breaking the selection rule.

3 Remasc Simulator

We implemented a simulator to evaluate Remasc and its reward scheme. Our
simulation creates a blockchain with 10,000 blocks and each block collects 1,000
coins (i.e. transaction fees). It assumes there are five miners with 40, 10, 10, 20, 20
percent hashing power and the simualtor can be configured in the following way:

– Uncle rate4 can be set to 50-40%5 or 5-4%6,
– Late inclusion of uncle block probability7 can be set from 0% to 100%,
– Selection rule can be consistently or inconsistently applied by Remasc.

The rest of this section considers two penalities for studying the impact of
burning coins. First, we investigate the selection rule bug and highlight that in
the worst-case over 3.5% coins are burnt. Second, we investigate the late inclusion
of uncle block’s penalty impact and highlight that in the worst-case over 35%
coins are burnt. Next, we present how to trigger both penalties before discussing
their impact.

3.1 Triggering the Selection Rule Penalty

Figure 1 demonstrates the frequency of triggering the selection rule. We observe
that this trigger only occurs if two or more competing blocks include different
sets of uncle blocks. In fact, there are three cases to consider:

1. Two or more competing blocks always include the same set of uncles.
2. Two or more competing blocks do not always include the same set of uncles.
3. Two or more competing blocks do not include any uncles.

The first and third case are conceptually identicial as only a block’s individual
weight needs to be considered.8 The second case triggers the selection rule penalty

4 Frequency that two or more competing blocks for a block height are created.
5 Uncle rate of 50-40% is computed by allowing miners to create blocks with a proba-

bility α, where α represents their hash power.
6 Uncle rate of 5-4% is computed by allowing miners to create blocks with probability
α ∗ (1/10), where 10 represents the desired 10 second interval.

7 Likelihood that a sibling is included as an uncle in a new block.
8 Either no uncles are included, or all competing blocks include the same uncle set and

as such have the same weight.



Security Audit of RSKJ Ginger 0.2.0 7

Algorithm 3 Selection Rule (Proposed fix for Remasc contract)

Input: Block block-1 and siblings s = (s1, ..., sn)
Output: Boolean

1: For each sibling si, if block-1.totalweight > si.totalweight then return
TRUE.

2: For each sibling si, if block-1.totalweight 6= si.totalweight then return
FALSE

3: For each sibling si, if si.individual-weight > block-1.individual-weight OR
si.fees*2 > block-1.fees then return FALSE

4: Return TRUE

as two or more competing blocks can include disjoint sets of uncle blocks and
thus have different weights.

Figure 1 highlights that the selection rule and the late inclusion of uncle
blocks penalty is most likely to be triggered if miners have a 70% probability
that each sibling is included as an uncle block in their new block. Therefore
all simulated scenarios in this report assumes the 70% probability in order to
evaluate the worst-case scenario. Next, we explore the selection rule’s impact
in terms of burnt coins before highlighting that it is less severe than the late
inclusion of uncle block penalty.

3.2 Selection Rule Penalty Impact

We simulated four scenario that varied whether the selection rule is inconsistent-
ly/consistently applied and if the uncle rate is set to 50-40% or 5-4%. As well,
each scenario is simulated forty times. Our results show that the selection rule
penalty is neglibile in 3/4 simulated scenarios as it was unlikely to be triggered.

The final scenario demonstrated that around 35k coins are burnt if the
selection rule is inconsistently applied and the uncle rate is set to 50-40%9. This
represents around 3.5% of coins in circulation (35,000/1,000,000) if we assume
that transaction fees collected in blocks are never re-spent and thus represent
fresh coins. In practice, we suspect that around 3.5% or more coins will be burnt
as it is unlikely that all collected transaction fees represent new coins.

Next we explain two approaches for fixing the selection bug before presenting
our simulations for the late uncle block inclusion penalty.

3.3 Fixing Selection Rule Bug

Fixing the selection rule bug requires updating Remasc or changing how miners
select blocks. We explore both solutions in the following.

Update Remasc. The first approach can be seen in Algorithm 3. This
involves updating Remasc to include checking the weight of uncle blocks, and

9 Private conversation identified that this is in the realm of possibility and thus worth
investigating.



8 Patrick McCorry and Andrew Miller

only checking the individual weight if two blocks have the same combined weight.
As well, rskj must be updated to maintain each sibling block’s list of uncle hashes.
If the uncle blocks are not verified, then this can result in a miner creating fake
uncle blocks. Although, there does not appear to be a clear benefit to creating
fake uncle blocks as this still requires performing the proof of work.

Update Miner Selection. The second approach requires no changes to
Remasc as the miner’s simply stop checking a block’s combined weight when it is
deciding which fork to extend. It is worth mentioning that this is how Ethereum
works today as it relies on the individual weight of a block, and not the combined
weight of uncles. This appears to be the easiest approach to implement in rskj,
but provides less computational weight towards its blockchain immutability.

3.4 Delayed Uncle Block Inclusion Impact

We tested two scenarios that varied whether the uncle rate was 50-40% or 5-4%
and each scenario is simulated forty times. As well, we assume the uncle block
inclusion probability is set to 70%. This simulation represents the scenario where
miners do not have a consistent view of uncle blocks on the network.

Our results highlight that 35-40k coins are burnt if the uncle rate is 5-4% and
350-400k coins are burnt if the uncle rate is 50-40%. The severity of burning these
coins can be seen if we consider that in the ideal (and non-realistic) case 1 million
coins are collected as transaction fees by Remasc. In the former approximately
3.5-4% of coins are burnt, whereas in the latter 35-40% of coins are burnt.

Figure 2 highlights that approximately 4.1k uncle blocks are included in the
blockchain. Around 37% of sibling are included as uncle blocks immediately and
incur no penalty. On the other hand, the remaining 63% of uncle blocks incurred
a 5% to 25% penalty.10 We leave it as future work to further explore the impact
of this penalty and whether there is a feasible selfish-mining strategy that can
leverage these results.11

4 Bridge

Bridge records the number of bitcoins locked into rskj and supports co-ordination
amongst Federation members for locking/releasing coins. In this section, we
outline the protocol that is currently implemented in rskj, highlight performance
issues before exploring future planned improvements.

10 Every delayed block will incur an additional 5% penalty and our simulation permits
blocks to be delayed for up to 5 blocks.

11 One notable strategy we noticed was that miners can include only their own siblings
as uncle blocks and this provided a slight advantage. We omitted these results as it
requires further investigation.



Security Audit of RSKJ Ginger 0.2.0 9

Fig. 2: The selection rule penalty is triggered if miners create blocks that include
different siblings, and if the same selection rule is not applied by both the miners
and Remasc contract. All four scenarios assume that a miner will include each
sibling with a 70% probability.

4.1 Lock and Release

RSK is responsible for appointing members of the Federations whom are trusted to
lock and release coins in rskj. We briefly describe the lock and release procedures
as currently implemented in rskj below:

Lock. Users send bitcoins to the Federation Address (i.e. a multisig address) in
Bitcoin. After a contest period has passed, one Federation member is responsible
for sending rskj an SPV (Simplified Payment Verification) proof12 that these
bitcoins are under the Federation’s control. Once the SPV proof is verified then
rskj releases an equal portion of coins to the sender’s address (i.e. the user’s
public key that authorised sending these coins in Bitcoin).

Release. The current coin owner in rskj is responsible for initating the
process of releasing these coins for use in Bitcoin13. Bridge creates the bitcoin
transaction that will release the coins and requires signatures from M of N
Federation members to authorise the release.14 These coins are considered released

12 A merkle tree branch and a Bitcoin block header to prove this transaction was
accepted into the blockchain at a specified block height.

13 User calls BridgeSupport.releaseBtc().
14 BTC Transaction is stored in the array rskTxsWaitingForConfirmations and

BridgeSupport.addSignature() collects the Federation’s signatures for a btc re-
lease transaction.



10 Patrick McCorry and Andrew Miller

and removed from rskj once a sufficient number of signatures are collected as
anyone can broadcast the Bitcoin transaction.

It is also worth mentioning how rskj distinguishes if a transaction will lock
or release bitcoins:

– A lock transaction must send bitcoins to the Federation’s address and cannot
contain an input that also spends coins from the Federation’s address.

– A release transaction must contain at least one input that spends coins under
the Federation’s control.

Issue with Releasing Coins. The lock inspection rule only permits the
Federation to release bitcoins from rskj if there is one or more corresponding
spendable outputs that match its value. This is restrictive as a transaction cannot
both release and lock bitcoins into rskj. As a result the Federation must release
all bitcoins spent in a transaction. To overcome this issue requires removing the
rule ‘cannot contain an input that also spends coins from the Federation’s address ’
when inspecting the lock transaction. Instead rskj can simply track bitcoins
that are sent and received using the Federation’s address.

Recording Transactions. rskj currently records the identification hash
of bitcoin transactions that either lock or release coins.15 The purpose of this
set is to prevent Bridge processing the same transaction two or more times.
However a transaction hash removal policy does not exist and thus the set will
grow indefinitely. We feel that while this is not necessarily a security issue it is
important to highlight for rskj’s long-term performance.

We propose that timers can be used for including and removing transaction
hashes. One possible approach involves recording both the transaction hash and
the inclusion block height (i.e. which block this transaction was included in) if
it appears within the most recent ∆ACCEPT blocks (i.e. 5k blocks). Once this
timer expires then Bridge can verify that the hash is confirmed in the blockchain
expires before releasing the coins and removing the transaction hash. A concrete
protocol for this approach is left as future work.

4.2 Access to Bridge.

Rizzo suggested to investigate the implications of permitting any user to call
functions in Bridge and whether access should be restricted to only Federation
members. All functions can be called by any user in the current implementation
and we will discuss each function seperately to evaluate if there are any potential
attack vectors. A brief summary of the functions are provided before discussing
each one in-depth:

– Receive Headers. Update rskj with the latest set of block headers from
Bitcoin.

15 This is recorded in BridgeStorageProvider.getBtcTxHashesAlreadyProcessed()

which is a SortedSet.



Security Audit of RSKJ Ginger 0.2.0 11

– Register BTC Transaction. Initiate the process of transferring coins
from Bitcoin to rskj.

– Release BTC. Initiate the process of transfering coins from rskj to Bitcoin.
– Add Signature. Submit a Federation Memember’s signature for a BTC

Transaction that releases coins from rskj to Bitcoin.
– Update Collections. Responsible for transiting a Release Transaction from

initiation to finalisation.

Receive Headers. This function accepts a list of serialised block headers.
Bridge will deserialise each block header and append it to the best known
blockchain. Currently, the implementation processes every block header even if
one fails and is not appended to the blockchain. This function can be provided
a list of erroneous block headers and every block header will be processed by
Bridge. We propose that this function should roll-back any changes if a single
block header cannot be appended to the blockchain. Furthermore, there are
currently no unit tests for this function and we propose that some are written.

Register BTC Transaction. This function requires a bitcoin transaction,
a merkle tree branch and the block height of its inclusion. The SPV (Simplified
Payment Verification) proof is checked to confirm that the bitcoin transaction
is indeed accepted into the blockchain and that the transaction sends bitcoins
to the Federation’s address. Bridge confirms that this transaction has not been
previously processed and that it has achieved sufficient depth in the Bitcoin
blockchain. Next, Bridge checks if the transaction is either locking or releasing
coins. In the former the transaction’s creator is sent an equal number of coins in
rskj and in the latter Bridge does not perform any action. Finally, a copy of the
transaction hash is stored to prevent it being re-processed in the future.

We investigated the possibility of performing a replay attack where the
transaction is submitted twice to the function. First, the function can detect if
the same transaction is submitted twice using its hash and will not re-process
it. Second, Bridge waits for the transaction to achieve sufficient depth in the
blockchain and thus it is not feasible to perform a transaction malleability attack.

Next, we considered the possibility of modifying the Bitcoin Script such
that it contained the Federation address, but sent money back to the sender.16

It is worth mentioning that Bridge.isLocktx() relies on Bitcoinj to deter-
mine if the coins are sent to the Federation’s address. This eventually calls
TransactionOutput.IsMine() which inspects the Bitcoin Script for the follow-
ing three types of addresses:

1. A single public key (i.e. a ‘raw’ public key).
2. A pay to public key hash (i.e. a single bitcoin address).
3. A pay to script hash (i.e. multi-signature address).

Bridge only stores the pay to script hash of the Federation’s multi-signature
address in its wallet and thus any malicious transaction must satisfy the third

16 For example, it is feasible to craft a Bitcoin script such that the sender can claim
the coins immediately, whereas the Federation member can claim the output after
∆FEDERATION .



12 Patrick McCorry and Andrew Miller

inspection rule. Technically, this requires any new coins sent to the Federation to
follow the Bitcoin Script template OP HASH160 <HASH> OP EQUAL and for <HASH>
to represent a pay to script hash that contains the Federation’s multi-signature
address. It does not appear feasible to craft a malicious Bitcoin script that
appeared to send coins to the Federation due to the deterministic nature of this
type of Bitcoin Script.

Release BTC. The rskj transaction that calls Bridge is used as input to
the function. First, sender’s public key is extracted and a new transaction output
for Bitcoin is created that sends equal number of coins to the sender.17 Second,
the new transaction output is stored in rskTxsWaitingForConfirmations for
future use in Bridge.UpdateCollections(). It is worth mentioning that there
does not appear to be any obvious exploitable feature. There is no direct user-
defined input and it requires a real rskj transaction to successfully call the
Bridge contract.

Add Signature. This function requires a public key, the corresponding sig-
nature and the respective rskj transaction hash. Bridge checks that the pubic key
belongs to a Federation member before fetching the corresponding transaction that
matches the hash provided and verifying that this signature is for this transaction.
This signature is stored in Bridge and if a threshold of signatures for this trans-
action is reached then it is moved from the list rskTxsWaitingForSignatures

to the rskTxsWaitingForBroadcasting list. Again, we could not find any ex-
ploitable flaws as Bridge verifies all user-defined input correctly.

Update Collection requires no user-defined input. This function is respon-
sible for transiting a BTC transaction through three stages such as CONFIRM,

SIGNATURES, BROADCAST once a Release rskj transactio is registered using the
Release BTC function. A transaction can transition from CONFIRM to SIGNATURES

once it has achieved depth in the blockchain. Next, it requires a threshold of
signatures from Federation members to be sent using the Add Signature function
before it can transition from SIGNATURES to BROADCAST. Finally a grace period
is provided to broadcast the BTC transaction before it is removed altogether
from Bridge.

We highlight that the current implementation only permits one RSK transac-
tion to be stored in rskTxsWaitingForSignatures. This can be seen as there is
a while loop that checks if any release transaction can transition from CONFIRM

to SIGNATURES. The inner code of this while loop will only be executed if
rskTxsWaitingForSignatures is empty.18 Of course, if a single release trans-
action transitions from CONFIRM to SIGNATURES then this inner code will not
execute. We propose fixing this while loop to permit the list to contain more
than one item.

4.3 Future Planned Improvements

We briefly identify and explore future improvements for Bridge. This includes
how to replace compromised federation keys, incentives for Federation members

17 The public key used in the rskj transaction is converted to a Bitcoin address.
18 iter.hasNext() && provider.getRskTxsWaitingForSignatures().size()==0



Security Audit of RSKJ Ginger 0.2.0 13

to participate and whether access to some functions in the Bridge contract should
be restricted to Federation members only.

Federation Key Replacement. Locking coins into rskj involves sending
bitcoins to a multi-signature address that is under the Federation’s control. Each
member of the Federation has a single public-private key pair that is included
as part of this multi-signature address. Of course, releasing these coins requires
M out of N signatures, where N is the membership size of the Federation.
Unfortunately there is no contingency plan to replace a member’s public-private
key pair in the event that it is potentially compromised. There are two issues
that must be considered:

1. New Consensus Rule. A new public-private key pair for the Federation
member must be computed and included as a new consensus rule in rskj.

2. Bitcoin Transactions. All locked coins in Bitcoin must be sent to the
Federation’s new multi-signature address.

One solution for updating a Federation member’s public key is to permit
a threshold of Federation members to sign an key replacement message. This
message invalidates the compromised public key and replaces it with a public key
that was freshly generated by the respective member. Once replaced Bridge can
enforce that all newly locked coins are under controlled by the new Federation’s
multi-signature address before an equal portion of coins can be released in rskj.
Of course, there are other problems such as authenticating the ownership of this
new public key and whether the miners should be required to also approve a
Federation’s new public key.

On the other hand, the Federation may need to transfer all locked coins
in Bitcoin to the new multi-signature address in the event that two or more
Federation member’s public keys are compromised. RSK have not allocated coins
to pay for this transfer which is likely to be expensive as transaction fees in
Bitcoin were 420 satoshis/byte in June 2017. Furthermore, Bridge cannot yet
support transferring coins due to the transaction inspection rules outlined earlier.

We recommend that Bridge is updated to support transferring coins to a new
Federation’s multi-signature address. Furthermore, we recommend that either all
Federation Members must deposit coins into Bridge (i.e. a stake) to cover the
transaction fees. Otherwise, the block reward’s burnt coins or a portion of the
reward can be allocated for this constingency plan.

Incentive for Federation Participation. Federation members are trusted
to participate in Bridge in order to provide transparency to the community.
However there is currently no financial incentive for them to use Bridge as
opposed to running a classical consensus protocol for signing release transactions.
It is possible to encourage usage of this contract by creating a Federation Reward
in Remasc. This reward can be proportionally split amongst members of the
Federation based on the number of signatures (i.e. the signatures for releasing coins
from rskj to Bitcoin) collected in Bridge. Otherwise, Bridge can be simplified by
removing the functionality to collect signatures altogether and simply deallocate
the coins from usage in rskj once a user initiates this process.



14 Patrick McCorry and Andrew Miller

Privacy of a Release Transaction. Bridge does not provide privacy to
the sender when coins are released from rskj to Bitcoin. We suspect that a
publicly verifiable on-chain mixing protocol is required such that Bridge can
deterministically construct a CoinJoin transaction upon releasing the coins.
Although we leave this as future work to construct a concrete protocol. It is
also worth mentioning RSK may not incorporate an on-chain and trustless
mixer within the forseeable future due to implementation complexity. Thus, we
recommend that senders mix their coins prior to initiating a release transaction
and if this proves successful then RSK can later decide to incorporiate the mixing
protocol into Bridge.

5 Conclusion

Our security audit of rskj Ginger 0.2.0 was comissioned by RSK. We focused on
Remasc that controls how the block reward is distributed amongst miners and
Bridge that allows coins to be transferred from Bitcoin to rskj and vice versa.
Before we highlight our findings it is worth mentioning that the RSK developers
have implemented both Remasc and Bridge to an excellent standard.

In Remasc we identified that the block selection rule is not consistently applied
for both miners and Remasc. To evaluate the impact of this inconsistency we
built a simulator that can vary the uncle rate, probability that an uncle block is
included in the blockchain and whether the selection rule is consistently applied.
Out of simulated four scenarios we identified one scenario that represented the
worst-case and enabled over 3.5% coins in circulation to be destroyed. This led
us to also identify that if this bug was fixed then it remains feasible for 35-40%
of coins in circulation to be burnt in the worst case if miners do not have a
consistent view of unconfirmed blocks.

In Bridge, we identified performance issues such as the contract only permitting
one release transaction to collect signatures from the Federation members at a
time. As well, rskj cannot release coins to Bitcoin unless there is a combination
of locked coins of equal value. Next, we highlight several future improvements
to resolve security implications in rskj. This includes a contingency plan in
the event that one or more Federation member’s public keys are potentially
compromised, providing an incentive (or reward) for Federation member’s to
participate in Bridge and whether releasing coins from rskj to Bitcoin can also
provide financial privacy.

6 Acknowledgements

We thank the RSK developers for interacting and answering questions throughout
the process of this audit.


	Security Audit of RSKJ Ginger 0.2.0

