
Extending the Hardware Architecture of Systemic

Computation to a Complete Programming Platform

Christos Sakellariou, Peter J. Bentley

Department of Computer Science

University College London

London, UK

c.sakellariou@cs.ucl.ac.uk, p.bentley@cs.ucl.ac.uk

Abstract—Systemic Computation is an unconventional paradigm

which defines a model of natural behavior and implies a

massively parallel computer architecture. It is designed to be a

computational paradigm for natural systems and processes

modeling. Existing software implementations have been too

limited in terms of performance, flexibility and programmability.

This paper solves key problems that remained in earlier work,

introduced towards the first practical hardware Systemic

Computation implementation using FPGAs. This is achieved by

making various optimizations and software additions, resulting in

a complete and efficient SC programming platform.

Keywords—systemic computation; programming platform;

FPGA; optimization; TCAM

I. INTRODUCTION

In the past century, continuous advancements in the fields
of electronics and computer science have made modern
computers extremely powerful computing machines. The vast
majority of their architectures are loyal to the conventional von
Neumann design which has now reached well over half a
century in age. Unfortunately, nature is organized in an
inherently different manner, without any sense of program or
data memory and certainly without a sequential state machine
traversing through well-defined states. In order to more
efficiently model natural systems, the serial, deterministic and
centralized design of conventional computers should be
replaced with a parallel, stochastic and distributed architecture.

Systemic Computation [1] (SC) addresses this problem by
defining any natural model as a pool of systems, leaving the
level of abstraction to the user, acknowledging the importance
of the interactions among systems in modeling their behavior.
It uses the notion of scope to constrain and organize stochastic
interacting systems, mirroring the dynamics and hierarchical
organization of nature.

A proof-of-concept software implementation is provided in
[1] along with introducing SC. The functionality of the
paradigm was extensively investigated in [2], where a more
high-level approach was used to model a genetic algorithm,
artificial neural networks and artificial organisms to exploit SC
properties as self-adaptation, fault-tolerance, self-organization.
These first implementations had a crucial role validating SC
but were not designed to take performance into consideration.

They were simulating a systemic computer and any notion of
parallelism. To address this, a GPU-based implementation was
presented in [3], taking advantage of the parallel resources of a
commercial GPU resulting in great performance gains. Yet,
this implementation was too limited as its functionality was
restricted to the demonstrated applications, since it supported
only hardcoded software extensions. However, using a GPU
revealed the potential of a design with a hardware constituent,
overcoming the limited parallelism provided by modern CPUs.

Combining the desirable performance gains due to its
inherent parallelism with the flexibility of designing a custom
architecture, the core of a hardware SC implementation based
on an FPGA was introduced in [4]. This so-called Hardware
Architecture of Systemic computation (HAoS) supports a
limited instruction set through dedicated hardware resources. It
was also suggested that the instruction set may be expanded,
depending on the user applications requirements, through high-
level user-defined plugins to run on an optional CPU. An
investigation on the implementation of the HAoS-CPU
communication interface is given in [5].

However, in order to provide a practical SC programming
platform, four key issues still need to be addressed:

 efficient random selection

 efficient schemata matching

 efficient I/O

 good programmability

These problems are not unique to HAoS - most bio-inspired
hardware architectures (whether based on the cell, evolution, or
neural networks) will also face similar problems as parallel,
stochastic computation inevitably involves one of the
operations: random selection, string matching, high-speed I/O
and tools to ensure ease of programming. This paper uses SC
as the exemplar for optimizations for these key problems.

By addressing these issues, this paper presents the evolution
of HAoS to a practical programming platform. Section II
provides additional background, section III gives an overview
of SC while section IV outlines our novel architecture, as it was
introduced in [4] and [5]. Section V details the enhancements
to our initial design and section VI suggests an intuitive HAoS
programming methodology. Section VII discusses our results
while section VIII concludes the paper.

This work is sponsored by the EPSRC and Toumaz UK Limited.

II. BACKGROUND

SC was inspired by natural behavior and addresses the
problem of modeling natural systems efficiently attempting to
become a gateway to Natural Computation [6]. An extended
overview of alternative paradigms tackling the same problem is
given in [7]. Indicative examples are Constrained Generating
Procedures (CGPs) [8] (finite state machines that analyze
complex systems by reducing them in mechanisms and
constraints of interactions), π-calculus [9] (a process calculus
adapted for biological systems simulation) and Petri nets [10]
(a graphical tool and mathematical theory for concurrent
processes). Moreover, alternative novel architectures attempt to
inherently support natural properties. Examples of such
unconventional architectures are the Perplexus platform [11], a
computing substrate made of reconfigurable devices endowed
with bio-inspired capabilities, RALA [12] based on a lattice of
reconfigurable logic automata cells asynchronously passing
state tokens corresponding to physicals resources and
spiNNaker [13] featuring a vast number of independent ARM-
based multiprocessors to simulate real-time neuron activity.

There is also literature that relates to the four issues
addressed in this paper. Random selection logic (RSL) is used
to randomly select a candidate out of a qualifying subset of a
pool of options, e.g. parent selection in genetic algorithm
implementations [14] or register shuffling for cryptographic
applications [15]. Schemata (or similarly template) matching
has been previously used in the design of adaptive systems [16]
for FPGA context switching (comparing the contents of a shift
register with sequentially retrieved templates from a RAM) and
also in hardware Artificial Immune Systems matching nonself
strings [17]. Efficient on-chip communication is extensively
discussed in [18] and the authors conclude that the use of
FIFO-based computing nodes is preferred for point-to-point
communication. The AXI4 protocol is suggested as the most
preferable solution in [19] for memory-mapped register-based
control interface, and for this reason is adopted in HAoS.
Finally, [19] suggests a programming methodology which is
used in numerous embedded applications [20]. In our work this
is combined with the HAoS software framework and the
updated hardware design to result in the first practical SC
programming platform.

III. SYSTEMIC COMPUTATION OVERVIEW

SC emphasizes the dynamics among the elements of a
system and its environment in the form of systemic interactions
and thus uses a holistic approach to their modeling. In contrast
with the conventional sequence of instructions executed in a
CPU, SC relies on events (interactions) occurring in a parallel
and stochastic fashion and defines a set of conventions [1] for
every natural model: (a) everything is a system, (b) systems
may comprise or share other nested systems, (c) systems can be
transformed but never destroyed or created from nothing, (d)
interaction between systems may cause transformation of those
systems according to a contextual system, (e) all systems can
potentially act as context and interact in some context, (f) the
transformation of systems is constrained by the scope of
systems, and finally (g) computation is transformation.

Each system is represented as a binary string with three
parts, two “schemata” and one function. Inspired by nature, the

notion of scope is used in [1], to define the interaction bounds
of a system. Interactions between two systems are defined by a
third “contextual” system (or context) which sets the
transformation of any, none or both the interacting systems
through the interaction (see Fig. 1c). This pair of systems along
with the interaction-defining context form a valid interacting
triplet. The context through its two schemata provides
templates which are matched against all systems, in the scope it
belongs to, to define a valid triplet. This implies the two main
tasks involved in any SC interaction: (1) finding valid triplets
(context and two randomly-chosen systems matching its
templates in a shared scope) and (2) updating the two
interacting systems according to the transformation function of
the context. SC is further detailed in [1].

The graphical representation of a system in SC is illustrated
in Fig. 1a. The two receptors of a system hold its two schemata
while the transformation function is given in the middle. Three
types of systems are supported: data systems, which do not
define interactions hence their transformation function is
always zero, context systems, defining interactions between
data systems, and context adapters which define
transformations between contexts or contexts and data systems.
Fig. 1d illustrates an accumulator SC program using graphical
notations. Given a pool of data systems and a context which
places the sum of the data of the two interacting systems to one
of them and zeroes the other one, and given enough time, only
one non-zero system will hold the sum of all data values while
the rest will be zero.

(d)

0110

(a)
C

0000

0110

SYS
(b)

(c)

S1 S2

S1' S2'

NOP

NOP

NOP

SUM

000101

010111

010111
010100

010111

000011

NOP

NOP

NOP

SUM

000000

000000

000000
000000

011100

010111

Figure 1. Graphical SC notation: (a) a data system revealing its binary

contents; its transformation function is zero (b) alternative notation for a data

system called SYS (c) Systems S1 and S2 interact according to the function of

the context C; the notation may optionally include the resulting systems S1'
and S2' (d) Sum operation on a pool of data systems (NOP: No Operation)

IV. THE HARDWARE ARCHITECTURE OF SYSTEMIC

COMPUTATION (HAOS)

The design of our Hardware Architecture of Systemic
computation (HAoS) was presented in [4] and [5], and we
showed in simulation that it can form the basis for an FPGA-
based platform that can outperform prior SC implementations
(software and GPU-based). An overview of the design follows.

A. HAoS Base Architecture

The HAoS base architecture [4] is shown in Fig. 2. The
CORE contains the various memories to hold the SC program
binary information and logic to support the parallel schemata
matching (see next section). The Control Unit (CU), named in
a conventional way, handles the execution of the SC program
and the communication with the optional CPU. The REG
BANK includes configuration and data registers which form a
control and debug interface between HAoS and the CPU. Basic

CU FU

REG BANK

CONF/DATA

REGS

CONF/DATA

REGS

CONTROL

FSM
PROCESSING

UNITS

CPU

INTERFACE

CONF/DATA

REGS

FPGA

EMBEDDED

CPU

EXTERNAL

CPU

CORE
SCOPETABLE

TCAM

L

O

G

I

C

COUNTONES L

F

S

R
DIVIDER

BITPOSSEL

RANDOM SELECTION

LOGIC

M

U

XSCOPES

CONTEXTS

SCH1

BINARY

RAM

TERNARY

RAM

SCH2

Figure 2. The base SC Hardware Architecture

local processing is provided by the Functional Unit (FU) as a
limited instruction set is supported to minimize data transfers
between the REG BANK and the CPU.

The role of the CPU is to allow for more complex high-
level functions by letting the user define, when needed, new
instructions. The SC compiler [1], translates SC source code in
SC assembly. The CPU is also used to load the assembly into
the memory elements of the CORE during initialization.
Following the analysis in [5], it was concluded that an
embedded soft CPU is sufficient in this prototype stage, as it
can minimize communication latency and achieve adequate
bandwidth. However, communicating data during CPU-
handled functions was handled in a naive way in our initial
design. Thus, HAoS-CPU I/O handling is revised in this paper.

B. HAoS Core

Valid triplet generation was the main limitation of prior
software-based implementations. Commonly, three systems
(one of them being a context) were randomly selected in a
given scope and then the operand systems were matched
against the schemata of the context. Identifying valid triplet
with this approach was quite inefficient, especially for SC
programs with a big number of systems and a small number of
valid triplets. HAoS identifies valid triplets using an inherently
parallel approach, using a Ternary Content Addressable
Memory (TCAM) [21].

CAMs are essentially parallel comparators, providing all
addresses that match their compare input in parallel.
Furthermore, TCAMs can also perform ternary comparisons,
identifying partial matches using “don't care” bits. This
guarantees finding all, if any, systems matching the schemata
of a context while a pseudo-random select circuit is used to
nominate those to form valid triplets. Efficient schemata
matching, and in extent the choice and implementation method
of the TCAM, is vital for SC, being the mechanism identifying
interacting systems. Thus, its design is refined in this paper as
it has a great impact on the overall performance of HAoS.

As seen in Fig. 2, apart from the TCAM, the CORE (further
detailed in [4]) consists of the system memories (storing the
binary and ternary parts of systems), the scopetable memories,
various status registers and the Random Selection Logic (RSL).
The RSL returns the address of a (pseudo-)randomly selected
set bit of its input bus. Its inputs provide candidates for random

selection during all the stages of the SC program (see next
section). It consists of COUNTONES which counts the set bits
of a bus, a maximal-length Linear Feedback Shift Register
(LFSR) for pseudo-random number generation, a combinatorial
divider and a module (BITPOSSEL) that given a bus and the
rank of one of its set bits (the position of the set bit with rank 1
is 2 in 01110101), it returns its position. The random selection
works as follows: a random number, from the LFSR, is divided
by the sum of the set bits of the bus (from COUNTONES). The
remainder of this division is used as the rank of the random set
bit that is given to BITPOSSEL in order to identify its position.
The RSL, being mostly a combinatorial circuit in [4], is also
refined here to increase the overall operating frequency.

C. HAoS Control Flow

The control flow of a typical SC program is shown and
described in Fig. 3. Adhering to the law of conservation of
energy in nature, systems are never destroyed but only
transformed. This is reflected in the computation infinite loop,
although the program may halt when no further interactions are
possible, as the state of the system cannot further change.

Hardware

Reset

Select Context in Scope

Compare Schemata 1

Compare Schemata 2

All Systems

Stable?

Y

N

Context Found?

Y

N

Match?

Y

N

Match?

Y

N

CPU Access

Initialization

Load

Program

Compute

Infinite

Loop

Get Valid

Triplet

Store

Triplet

Transform

Write

Result

Select Valid

Scope
Halt

Figure 3. SC Program Control Flow : HAoS enters an infinite computation

loop, after the SC program is loaded, which involves finding valid triplets and

transforming the selected systems. A hard reset initializes the system and the

program is loaded on HAoS memories. Each iteration comprises four main
and an optional step. At first, a valid triplet is identified by randomly selecting

a scope, a context in this scope and two systems matching the schemata of this

context. Then, the selected systems are retrieved, they transform through their
interaction and the changed systems are updated and stored back to local

memory. Optionally, at the end, the user may pause execution to extract debug

information. In the case of a context mismatch (any of its schemata does not
match any system in the scope), it gets disabled to prevent future mismatches.

Moreover, if a scope contains no valid contexts, it also gets disabled until a

new system is added to it. The program halts if all scopes have been disabled.

V. OPTIMIZATIONS AND ENHANCEMENTS

The four key issues are addressed below with various
solutions which are hardware optimizations and software
enhancements made to the initial design to increase its
performance and make it more user-friendly and flexible.

ISSUE 1: The Random Selection Logic is too slow

Like many nature-inspired architectures, randomness is
fundamental to SC. The random selection logic is in the critical
path of the base design. Improving the efficiency of the RSL
would therefore be a tremendous advantage. Here we describe

optimizations designed to increase the overall operating
frequency by 4 times, by carefully balanced pipelining and
decrease the area utilization by sharing resources.

SOLUTION 1.1: Resource sharing

The BITPOSSEL module of the RSL, combined a parallel
bit count with a branchless selection method. The bit count is
used to provide partial sums which are then appropriately
masked and passed through a barrel-shifter. As a result, we
obtain the position of a bit with a given rank in the input bus.
As seen in Fig. 4, the COUTNONES and BITPOSSEL
modules of the RSL are now merged. The parallel sum-of-bits
counter in COUNTONES is reused for the generation of the
partial sums during the identification of the position of the
selected bit.

SOLUTION 1.2: Design a constant-latency barrel-shifter

The length of the barrel shifter is equal to the size of the
longest input bus to the RSL, which is in turn equal to the
number of maximum supported systems. Thus, when this
number is increased, the number of logic levels required for the
barrel shifter implementation have a considerable impact to the
delay along the critical path. For this reason, the conventional
barrel shifter is replaced with a parallelized and pipelined
version. This instead uses an array of multiplexers with
registered pre-shifted (by the required pre-calculated number of
bits) versions of only the possible subset of shifting
combinations of the input buses. While this results in a slightly
higher resource utilization as the number of maximum
supported systems increases, it provides the ability to minimize
its latency and moreover make it independent of the maximum
number of systems, resulting in deterministic performance.

SOLUTION 1.3: Balanced pipelining

Moreover, rather than registering the inputs of the RSL or
the output of the input selection multiplexer (Fig. 4), the output
of the adder-tree that counts the set bits is registered, reducing
the number of registers required to pipeline this stage from
Number of RSL Input Buses x Input Bus Length to the length of
the maximum sum of set bits (for 1024 maximum supported
systems : from 5x1024=5120 registers down to just 11).

PIPELINED

COUNTONES

&

BITPOSSEL

LFSR
PIPELINED

DIVIDER

RANDOM SELECTION LOGIC

M

U

X

SCH1

SCH2

ADDRESS To MEMORIES

SCOPES

CONTEXTS

SUM

RANK

P

P

Figure 4. The Revised RSL module. P is a pipeline register. COUNTONES

and BITPOSSEL modules have been merged to share the adder tree. The RSL

has been pipelined where the data buses have minimim length having in mind
the trade-off between minimizing latency and excessive resource utilization.

The module with the higher impact in the critical path delay
of the RSL, however, is the combinatorial divider. Thus, the
divider is now pipelined (one-level deep with registered input
and outputs). The level of pipelining throughout the RSL was
fine-tuned to match the critical path outside the RSL and it was
decided that a latency of 20ns (50MHz) was adequate for the
prototype, as deeper pipelining, although possible, would
require considerable changes in the control logic and would
affect resource utilization in order to achieve timing closure.

ISSUE 2: The schemata-matching logic latency is high

Nature-based hardware architectures have commonly used
CAMs for efficient string-matching [17]. The performance of
the schemata-matching logic is crucial for HAoS as well. The
TCAM of our initial architecture had a high latency when
being written. Here, we revise its design to always have a
single-clock latency.

SOLUTION 2.1: Select a TCAM design with one clock latency

Standard FPGA CAM design techniques include registered-
based, RAM-based and Look-Up Table based approaches [21].
Moreover, Xilinx provides an reference design which combines
the LUT technique with the optimized shift-register blocks
(SRL16E) found in its FPGAs [21]. Although RAM-based
CAMs are the most efficient in terms of resource utilization
[21], they do not support the ternary mode required for partial
schemata matching in SC. The initial HAoS design used the
suggested by Xilinx SRL16E-based approach which, according
to [21], provides efficiency in terms of the trade-off between
required area and operating frequency. However, since this
design was effectively constructed by a chain of parallel 16-bit
shift registers, that implied that each write operation, shifting
data in, one bit at a time, required 16 clock cycles. It was
noticed, that as the number of entries for the TCAM increased,
reflecting the number of supported systems, for deep TCAM
implementations (>128 entries) the area footprint was
comparable to the one of the simple register-based design (5%-
15% area overhead depending on size) with similar operating
frequency. Since the TCAM is written every time a system is
altered during an interaction, replacing the SRL16E-based
TCAM with an array of registers and comparators, provided
single-clock read and write operation, saving 15 or 30 clock
cycles for interactions changing one or both systems.

ISSUE 3: CPU I/O is inefficient

Hi-speed I/O is vital for any modern computing system.
Based on latency and bandwidth, the investigation in [5]
suggested that on-chip interconnect is preferable to alternatives,
as it accomplishes data transfers at wire speed. However,
HAoS initially did not fully exploit this fact. Here, we present
various optimizations which minimize communication and
enable faster and fewer CPU (read and write) data accesses.

SOLUTION 3.1: Hardware handles interaction result writing

HAoS makes available to the user all the fields of an active
triplet since those that will be used during an interaction
depend on the transformation function. In the initial design all
this user data are read from and written back to HAoS directly
by the CPU. Looking for a more efficient way, in order to
avoid the extra overhead on the software side, the CPU would
directly just write the changed systems to HAoS registers and
writing the memories would be handled efficiently in hardware.
However, since writing a triplet to the memories is performed
in one clock cycle, to reduce latency, all user data would have
to be updated when a change was made. Enabling the option of
independently writing parts of the triplet would greatly increase
the control logic complexity and the required area footprint.

SOLUTION 3.2: Write-detection minimizes CPU writes

To address this issue, a write-detection mechanism was
devised, inspired by the “dirty-bit” scheme commonly used in

page replacement and data cache design [22]. As mentioned
above, since all user data are available in the beginning of an
interaction, the user may read only the parts of the triplet that
are going to be used in his custom function. The great
enhancement comes when writing back the transformed triplet.

Each field of the transformed triplet is now associated with
a write-detection flag. This flag array is reset when an
interaction is assigned to the CPU. The address of the registers
that hold each individual field of the transformed triplet (see
Fig. 5) is already given in the predetermined memory map of
the CPU (the memory management subsystem of the CPU
accesses the REG BANK as any other memory location).
While in “Transform” state (see Fig. 3), when each such field is
altered by the CPU, the decoded write address from the
memory subsystem is matched against each field address and
sets its respective flag. At the end of the state, the active triplet
(user data before interaction) is copied to the transformed
triplet (user data after interaction) address space, updating at
the same time only the fields that were actually changed by the
CPU. Using this relatively simple write-detection approach, the
need of accessing individual fields when writing the triplet is
avoided, preserving the low area footprint of the HAoS
memories writing logic, but also minimizing the required user
accesses to enable the write-back of the interaction result.

SCH1 SCH2 FUNCTION ADDR

SCH1-BYTE-ARRAY

0 2 4 8 10 18 26 34 40

TEMPL-BIN-SCH2 TEMPL-TER-SCH2

SCH2-BYTE-ARRAY

SYS1

TEMPL-BIN-SCH1 TEMPL-TER-SCH1

0

TRANSFORMATION

FUNCTION
SYS2

ACTIVE

SCOPE

ADDR

ACTIVE

CONTEXT

ADDR

40 44 84 86 88

ACTIVE TRIPLET

READ-ONLY USER DATA

CONTROL UNIT

&

LOCAL

MEMORIES

TRANSFORMED TRIPLET

READ-WRITE USER DATA

CPU

INTERFACE

REG

BANK

HAoS

WRITE-DETECTION

LOGIC
Write Addr Flags

Figure 5. Revised Triplet Memory Map and Write-Detection Mechanism.

Upper part: the revised registers organization for each system in a triplet is

shown along with the sizes (in bytes) for each field. Fields (left to right): data

system schemata 1 & 2, transformation function, system address, binary and
ternary parts for each schemata of a context share the same address space with

a byte-array formatted version of the respective schemata of a data system. All

fields (with a dot) have an associated write-detection flag, set when a field is

modified. Middle part: the two systems, the active interaction function and the

scope and context addresses form the user data. Bottom part: when writing-

back the transformed triplet, the write address from the CPU is used to update
only those fields that have actually been changed while the rest are copied

over from the local copy (active triplet), minimizing CPU I/O operations.

SOLUTION 3.3: Array-formatted and byte-aligned schematas

In order to further minimize user effort while manipulating
the HAoS user data, taking into consideration that each, 16-bit
in this implementation, SC schema may be used as a whole
(e.g. a 16-bit number) or as a bit-array (e.g. a 16-element
chromosome), each schema can be accessed (read/written) in
both modes (2-byte value or 16-byte array with one effective
bit for each byte). This saves time-consuming bit-manipulation

through bit-masking by operating on an array and also avoids
bit-to-byte conversions, now handled by hardware. Moreover,
parts of a compressed template of a context were rearranged to
get a more compact memory utilization while their respective
registers in the REG BANK were also re-arranged to account
for any compiler byte-alignment restrictions.

ISSUE 4: Lack of programmability

Ease of programmability is imperative for any computing
platform. The initial design, being a hardware prototype, lacked
any software tools of a practical programming platform. This
section describes the enhancements which provide HAoS
programmers with all the necessary tools to easily develop SC
models. This software framework enables quick model
verification using a high-level language, efficient debugging
and a comprehensive API, abstracting low-level details. Here
we approach the challenge of programmability gradually. We
answer to the needs of a HAoS programmer trying to simulate
his first SC model.

SOLUTION 4.1: Ease model functionality verification

Since the SC programming language, defined in [1], and the
SC compiler are in place, the model can be written and
compiled. The programmer should have a tool to quickly verify
its functional behavior, a debugger. Thus, in order to avoid
time-consuming low-level system simulations and expedite SC
models development, a software-based HAoS simulator
functionally equivalent to our platform was built. It provides a
software interface for the programmer to develop abstract high-
level interaction behaviors, similar to the (C/C++) plug-in
approach in [2].

SOLUTION 4.2: Minimize program loading time

Once the model is verified, it should be loaded to HAoS. A
post-compiler tool was developed to reduce the assembly code
to binary format, minimizing the amount of data to be
transferred to HAoS and the processing time during program
loading. The programmer then uses a storage device to transfer
the binary file into HAoS. The Compact Flash Card (a common
feature for FPGA development boards) was selected for this
purpose, rather than the on-chip Block RAM or the off-chip
RAM, in order to make HAoS a standalone platform. The CF
card, when FAT-formatted, it can support a basic file system
using the XilFatfs library [20].

SOLUTION 4.3: Enable efficient logging

During the SC program execution, the programmer will
also need to access log runtime information. Conveniently, the
CF card can be used for this efficiently. Although access to a
real-time console is possible during live hardware debugging,
just the data-logging overhead can account for the majority of
the run time as all text is communicated to a computer though a
high-latency UART channel. Storing log data locally
drastically reduces runtime.

SOLUTION 4.4: A driver handles low-level functionality
while the programmer is provided with a comprehensive API

The programmer will also require a CPU to execute his
high-level sequential functions. As the available development
board was the Xilinx ML605, selecting the MicroBlaze
processor was a natural choice, due to its compatibility with the

design tools. An operating system would probably be a useful
tool for the programmer. However, all SC high-level
interaction processing runs as a bare-metal application, as an
operating system would heavily impact performance.
Therefore, a low-level driver was developed to handle HAoS-
MicroBlaze communication. The driver works as follows: at
first, it resets HAoS, initializes the communication interfaces
and loads the program. When program execution starts, it waits
for an interrupt, by constantly reading a predetermined HAoS
status register, to either pass control to the user code to perform
some high-level interaction or halt the program in case no
further interactions can or need to be executed. In the end, it
also optionally gives some useful statistics. All these processes
are transparent to the programmer, who only has to define the
transformation functions in the SC source code to be executed
on the CPU. However, he/she will need an interface between
the driver and his SC “application”. Thus the driver is
complemented by a basic but comprehensive API, in order to
enhance the flexibility of the platform and the accessibility of
the programmer to the internal state of HAoS. The features of
the API include optimized access to any HAoS memory-
mapped control register, the local memories and a high-
precision (±10ns) real-time counter. The programmer is now
equipped with a complete software programming framework.

VI. A PRACTICAL SC PROGRAMMING PLATFORM

Having presented solutions to the key problems of our
initial design, this section completes the revised HAoS
architecture and combines it with the developed software
framework to suggest a programming methodology and result
in the first practical hardware-based Systemic Computation
prototype and standalone programming platform.

A. The Complete Platform

Since the soft CPU (MicroBlaze) and the communication
interface (AXI4) were selected, the platform was completed
with some other useful peripherals (64KB local Block-RAM
instruction and data memories, 512MB of external DDR3
memory and other common embedded IP cores). From the
processor point of view, HAoS is used just as another
peripheral in terms of connectivity and accessibility. A slight
modification was required to the IP interconnect (IPIC) logic as
the Xilinx AXI4-Lite interface natively supports up to 32 4-
byte registers. In order to waive this restriction, the
multiplexer-based read/write logic (an input bus with a set bit
at the position of the register to be read/written is decoded to
get the position of the register) and the simple register-array
was replaced by an interface providing the exact access
address. This address is then encoded to give access to any set
of registers, depending on the size of the data to be accessed.

B. HAoS Programming Methodology

Further focusing on the practical aspect of using the
platform, a programming methodology, for developing natural
models targeting HAoS, is suggested below and illustrated in
Fig. 6 with layers, to separate the distinct development phases.

Assuming that an existing natural system or process needs
to be simulated, it is important to first understand its behavioral

dynamics and identify its quantitative characteristics in order to
conceptualize it (Conceptual Layer). This will aid the systemic
analysis which is used to identify the interacting systems, the
interactions among them (any contextual behavior defining
their transformation function) and their organization (scopes).
The SC calculus notation [2], can be used to describe the
interactions, while the SC model may be visualized using the
SC graphical notation (see Fig. 1). Each element in the SC
graph should correspond directly to a specific part of the SC
source code. This fact implies that source code extraction from
SC graphs can be automated in the future, enabling building SC
models by using a high-level SC graph tool. This direct
mapping also extends in the SC calculus notation making the
transition from the Conceptual Layer to the Application Layer
fully automated once these SC high-level tools are developed.
The Application and Link Layers form the HAoS software
framework. In the Application Layer, the SC source code is
translated to SC human-readable assembly code. This may then
be used as input to the functionally equivalent to HAoS
software program, along with the high-level processing plugins
(implied by transformation functions not supported natively by
HAoS) until the model behaves as expected. The Link Layer is
the back-end phase were the SC binary is generated by the
post-compiler and the user code is linked with the HAoS driver
(using the Xilinx Software Development Kit) to generate the
bare-metal executable to run on the MicroBlaze.

Model Conception

A

B

C

D

E

G

F
H

SC Graphical Notation

Identify Interactions,

Contexts & Maximum

Number of Systems

 A}-C-{B E D

B}-D-{E G F

F}-H-{G E B

SC Calculus Notation

SC source

(model.sc)
Compiler

SC human readable

assembly (model.scp)

//number of

3

//number of

#function H

9

//scopetabl

100000000

Functionally

Equivalent

HAoS

Program
Context Transformation

Functions Plugins

C/C++

Select One of the Available HAoS Configuration Bitstreams Based on Number of Systems

Post-Compiler

Binary Generator

+

Executable

(model.elf)

CF

model.scb

model.log

HAoS.bit

+
model.elf

Control &

Debug I/O

C
o

n
c
e

p
tu

a
l

L
a

y
e

r
A

p
p

lic
a

ti
o

n

L
a

y
e

r

P
h

y
s
ic

a
l

L
a

y
e

r

L
in

k

L
a

y
e

r

*

*

*
*

*

*
#systemic st

#function C

#function D

#function H

#label X

#label Y

#scope S1

User Code

C/C++

Driver

C/C++

HAoS Binary

(model.scb)

001011010010

100100011001

001011101100

110101011110

000111011101

010101110010

*
Figure 6. HAoS suggested programming methodology (* implies user input)

At the Physical Layer, the program is loaded to the CF card
and HAoS is implemented on the target FPGA board. Based on
the number of systems of the SC model, the appropriate
configuration bitstream should be selected and combined with
the output executable from the Link Layer to form the final
bitstream to program the FPGA. A hardware reset starts the
simulation. The CF card acts as the storage unit of the platform,
storing the HAoS binary program and runtime log information.
The whole process is fairly automated. User input is required
mainly on the tasks with an asterisk (*) in Fig. 6.

VII. EVALUATION

A. Scalability in the Single-Chip Implementation

Depending on the number of systems required for an SC
model, HAoS can be easily scaled to accommodate any number
of systems as long as the design can fit on the selected device
(assuming a single-FPGA implementation). HAoS has been
written in highly-parameterizable VHDL code. Thus, scaling
the design is a matter of setting a single parameter, which is
proportional to the number of maximum supported systems. In
this way, the size of the SC model in terms of systems, is
limited solely by the size of the available FPGA. Moreover, the
Xilinx ML605 board, features a Virtex-6 LX240T FPGA
which is a mid-range 40-nm device, while high-end 28-nm
devices can offer nearly 10 times more reprogrammable fabric
real estate and significant performance potential. Table I shows
the implementation statistics of available variations of the
complete HAoS platform, in agreement with the initial
estimates in [4]. It is interesting to note that the size of the
design scales linearly as the number of systems is doubled, as
illustrated in Fig. 7. This implies that, assuming availability
(and affordability) of the largest modern FPGA device (Virtex-
7 2000T with 305400 slices), SC models with up to 8196
systems may be efficiently modeled with a single FPGA.

TABLE I. HAOS PLATFORM IMPLEMENTATIONS STATISTICS FOR

DESIGNS SUPPORTING 64-1024 SYSTEMS BASED ON VIRTEX-6 LX240T

Maximum Systems 0
No HAoS

64 128 256 512 1024

Total

Used

(%)

Used

(%)
Used

(%)
Used

(%)
Used

(%)
Used

(%)

Slices 37680
6841
(18)

13492
(35)

15525
(41)

18269
(48)

24882
(66)

34522
(91)

Slice

LUTs
150720

14283

(9)

29972

(19)

34338

(22)

43146

(28)

61481

(40)

98511

(65)

Slice

Registers
301440

15061
(4)

25400
(8)

30818
(10)

41727
(13)

63768
(21)

108361
(35)

I/O

Blocks
600

193

(32)

193

(32)

193

(32)

193

(32)

193

(32)

193

(32)

RAMs 416
56

(13)
61

(14)
64

(15)
70

(16)
106
(25)

148
(35)

HAoS performance will be identical for configurations of
different sizes. However, fine-tuning the size of the design for a
particular application may permit more functions to be
hardware-accelerated, avoiding offloading all computation to
the CPU, further increasing overall performance (e.g. obtaining
here random numbers from the LFSR rather than the CPU).

The specification (number of maximum supported systems,
performance of the soft processor, operating frequency of the
HAoS subsystem) of the HAoS platform strongly depends on
the characteristics of the FPGA device it is implemented on.
Our prototype is merely an example of what a mid-range
device can accomplish. It is expected that as new FPGA
technologies emerge, HAoS, having been written in completely
vendor-agnostic fully-synthesizable code, can be adopted with
minimal effort to achieve greater performance.

B. Optimization Results

In order to quantify the performance improvements, the
genetic algorithm binary knapsack problem [5] (see Fig. 8a) is

Figure 7. Linearity on area utilization increasing the number of maximum

supported systems. Linear regression lines and corresponding determination

coefficients given for slices, LUTs, registers and RAMs

reused here as a benchmark. The performance of the HAoS
platform (supporting 64 systems and the MicroBlaze running at
200MHz) is measured in terms of the duration of the execution
of the program until a number of interactions has been reached.
The results our optimizations are given in Table II.

As shown below, the most beneficial optimizations are the
write-detection mechanism (solution 3.2) and the optimizations
on the RSL (solution 1.1) which allowed a higher operating
frequency. Furthermore, printing log information on an off-
board terminal (e.g. a laptop connected to the board through
USB), would heavily impact the performance of the system due
to the high latency of the UART. Disabling logging would
negatively impact the user experience. The solution of storing
real-time information locally on the CF card enables logging
with a minimal impact to performance.

TABLE II. BENCHMARK TIMING IMPROVEMENTS. RESULTS AVERAGED

OVER 10 RUNS. REPORTED TIMING IS OBTAINED FOR EACH ROW USING ALL

PRECEDING OPTIMIZATIONS. ON AVERAGE, THE CPU CONSUMES ~40MS FOR

TRANSFORMATION FUNCTIONS AND ~15MS FOR LOW-LEVEL DRIVER.

Optimization Description
Benchmark

Timing(ms)

No Optimization - Writing logging information (20

ASCII characters) to off-board terminal through UART
768.213

CPU Writes Back the Triplet - Writing logging

information (20 ASCII characters) to on-board CF card
186.315

CPU Writes the Triplet to HAoS Registers -
HAoS then writes it back to memories

176.613

Minimized CPU writes with Hardware Write-Detection 135.928

HAoS offers byte-aligned schematas in software-aware

array-formatted registers for optimized CPU access
121.428

Enable hardware random numbers from the LFSR instead

of using standard PRNG software functions
109.431

Optimized read/write data access functions 105.877

Updated TCAM design to have single-clock latency 101.704

Using constant-latency parallel & pipelined barrel-shifter 98.704

Resource-sharing and balanced pipelining in the RSL

increased operating frequency from 12.5MHz to 50MHz
82.934

C. Evaluation of Time Complexity for Schemata Matching

We performed experiments for all size-variations of the
hardware platform with the genetic algorithm problem (only
simulated in [5]). The results are given in Fig. 8b and confirm
the initial estimates in [5]. HAoS easily outperforms previous
implementations (500x over [1] and 8x the over [3] for 512
systems on the GA problem). In addition to the comparison of
overall performance for this problem, the complexity of the
schemata matching mechanism can also be estimated. As the
number of system increases, the sequential implementation
struggles to find matching triplets due to its inefficient loop-
based schemata matching mechanism which is of O(n

2
) time

complexity, while the GPU version, by utilizing multiple
stream processors, parallelizes part of this loop and achieves to
decrease it in O(n) [3]. The truly parallel nature of the TCAM
is the differentiating feature for HAoS since schemata matching
is executed in constant time (one clock cycle ‒ implying O(1)),
clearly shown in Fig. 8b. Moreover, it should be noted that
these results do not only apply in the problem class of genetic
algorithms, but they can be generalized to any SC model due to
the importance of the schemata matching mechanism.

Figure 8. (a) Genetic Algorithm binary knapsack problem: Maximize the

sum of the weighted values in the knapsack, keeping the sum of their weights

under a threshold. Here in SC graphical notation [3]: Non-initialized solutions
are initialized by the initializer context and added into the computation scope.

There, they are transformed through crossover and mutation genetic operators.

If a fitter solution is produced, the output context copies it to the final solution
(b) Experimental results across a range of numbers of maximum systems

comparing the sequential[1], GPU-based[3] and HAoS implementations

VIII. CONCLUSION

In this paper, four key issues are identified in the initial
HAoS design. These issues, which involve the efficiency of
random selection, schemata matching and CPU I/O access, and
the programmability of the resulting architecture, are addressed
here to provide a complete SC programming platform.
Optimizations include a write-detection mechanism, a random
selection circuit incorporating balanced pipelining and resource
sharing and the latency-aware implementation of a TCAM
which can execute schemata matching in constant time. A
software framework completes our platform while a formal SC
model development methodology is also suggested to assist
prospective SC programmers. Experimental results confirm
that using 512 systems HAoS can outperform previous SC
implementations between 8x and 500x.

REFERENCES

[1] P. J. Bentley, “Systemic computation: A model of interacting systems
with natural characteristics,” International journal of parallel, emergent
and distributed systems, vol. 22, no. 2, pp. 103–121, 2007.

[2] E. Le Martelot, “Investigating and Analysing Natural Properties Enabled
by Systemic Computation within Nature-inspired Computer Models,”.
EngD Thesis, Department of Electrical & Electronic Engineering, UCL,
London, p. 363, 2010.

[3] M. Rouhipour, P. J. Bentley, and H. Shayani, “Systemic Computation
using Graphics Processors,” in Proc. of 9th International Conference on
Evolvable Systems - From Biology to Hardware, 2010.

[4] C. Sakellariou and P. Bentley, “Introducing the FPGA-Based Hardware
Architecture of Systemic Computation (HAoS),” in Mathematical and
Engineering Methods in Computer Science, vol. 7119, Z. Kotásek, J.
Bouda, I. Cerná, L. Sekanina, T. Vojnar, and D. Antoš, Eds. Springer
Berlin / Heidelberg, 2012, pp. 179–190.

[5] C. Sakellariou and P. Bentley, “Describing the FPGA-Based Hardware
Architecture of Systemic Computation (HAoS),” Computing And
Informatics, vol. 31, no. 3, pp. 485–505, 2012.

[6] L. N. de Castro, “Fundamentals of natural computing: an overview,”
Physics of Life Reviews, vol. 4, no. 1, pp. 1–36, 2007.

[7] L. Kari and G. Rozenberg, “The many facets of natural computing,”
Communications of the ACM, vol. 51, no. 10, pp. 72–83, 2008.

[8] J. H. Holland, Emergence: From Chaos to Order. Oxford University
Press, 2000.

[9] R. Milner, “The Polyadic pi-Calculus: A Tutorial.” Technical Report,
Laboratory for Foundations of Computer Science, Computer Science
Department, University of Edinburgh, 1991.

[10] C. A. Petri, “Communication with Automata.” Applied Data Research
Inc, Princeton NJ, 1966.

[11] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, J.
Madrenas, and G. Sassatelli, “The perplexus bio-inspired hardware
platform: A flexible and modular approach,” International Journal of
Knowledge-based and Intelligent Engineering Systems, vol. 12, no. 3,
pp. 201–212, 2008.

[12] N. Gershenfeld, D. Dalrymple, K. Chen, A. Knaian, F. Green, E. D.
Demaine et al. “Reconfigurable asynchronous logic automata: (RALA),”
SIGPLAN Not., vol. 45, no. 1, pp. 1–6, Jan. 2010.

[13] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: Mapping neural networks onto a massively-
parallel chip multiprocessor,” in Neural Networks, 2008. IEEE
International Joint Conference on, 2008, pp. 2849–2856.

[14] B. Shackleford, G. Snider, R. J. Carter, E. Okushi, M. Yasuda, K. Seo,
and H. Yasuura, “A High-Performance, Pipelined, FPGA-Based Genetic
Algorithm Machine,” Genetic Programming and Evolvable Machines,
vol. 2, no. 1, pp. 33–60, 2001.

[15] D. May, H. Muller, and N. Smart, “Random Register Renaming to Foil
DPA,” in Cryptographic Hardware and Embedded Systems — CHES
2001, vol. 2162, Ç. Koç, D. Naccache, and C. Paar, Eds. Springer Berlin
/ Heidelberg, 2001, pp. 28–38.

[16] J. Torresen, “Reconfigurable logic applied for designing adaptive
hardware systems,” in Proc. of the International Conference on
Advances in Infrastructure for e-Business, e-Education, e-Science, and
e-Medicine on the Internet (SSGRR 2002W), 2002.

[17] D. Bradley and A. Tyrrell, “A hardware immune system for benchmark
state machine error detection,” in Evolutionary Computation, 2002.
Proceedings of the 2002 Congress on, 2002, vol. 1, pp. 813–818.

[18] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow,
“A Scalable FPGA-based Multiprocessor,” in Field-Programmable
Custom Computing Machines, 2006. FCCM ’06. 14th Annual IEEE
Symposium on, 2006, pp. 111–120.

[19] Xilinx, “EDK Concepts, Tools and Techniques,” UG683(v13.4), 2012.

[20] N. Sulaiman, Z. A. Obaid, M. H. Marhaban, and M. N. Hamidon,
“Design and Implementation of FPGA-Based Systems-A Review,”
Australian Journal of Basic and Applied Sciences, vol. 3, no. 4, pp.
3575–3596, 2009.

[21] K. Locke, “Parameterizable Content-Addressable Memory.” Xilinx
Application Note XAPP1151, 2011.

[22] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: problems
and solutions in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71,
1997.

(a) (b)

	I. Introduction
	II. Background
	III. Systemic Computation Overview
	IV. The Hardware Architecture of Systemic computation (HAoS)
	A. HAoS Base Architecture
	B. HAoS Core
	C. HAoS Control Flow

	V. Optimizations and Enhancements
	VI. A Practical SC Programming Platform
	A. The Complete Platform
	B. HAoS Programming Methodology

	VII. Evaluation
	A. Scalability in the Single-Chip Implementation
	B. Optimization Results
	C. Evaluation of Time Complexity for Schemata Matching

	VIII. Conclusion
	References

