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Abstract—Systemic Computation is an unconventional paradigm 

which defines a model of natural behavior and implies a 

massively parallel computer architecture. It is designed to be a 

computational paradigm for natural systems and processes 

modeling. Existing software implementations have been too 

limited in terms of performance, flexibility and programmability. 

This paper solves key problems that remained in earlier work, 

introduced towards the first practical hardware Systemic 

Computation implementation using FPGAs. This is achieved by 

making various optimizations and software additions, resulting in 

a complete and efficient SC programming platform. 
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I.  INTRODUCTION 

In the past century, continuous advancements in the fields 
of electronics and computer science have made modern 
computers extremely powerful computing machines. The vast 
majority of their architectures are loyal to the conventional von 
Neumann design which has now reached well over half a 
century in age. Unfortunately, nature is organized in an 
inherently different manner, without any sense of program or 
data memory and certainly without a sequential state machine 
traversing through well-defined states. In order to more 
efficiently model natural systems, the serial, deterministic and 
centralized design of conventional computers should be 
replaced with a parallel, stochastic and distributed architecture. 

Systemic Computation [1] (SC) addresses this problem by 
defining any natural model as a pool of systems, leaving the 
level of abstraction to the user, acknowledging the importance 
of the interactions among systems in modeling their behavior. 
It uses the notion of scope to constrain and organize stochastic 
interacting systems, mirroring the dynamics and hierarchical 
organization of nature.   

A proof-of-concept software implementation is provided in 
[1] along with introducing SC. The functionality of the 
paradigm was extensively investigated in [2], where a more 
high-level approach was used to model a genetic algorithm, 
artificial neural networks and artificial organisms to exploit SC 
properties as self-adaptation, fault-tolerance, self-organization. 
These first implementations had a crucial role validating SC 
but were not designed to take performance into consideration. 

They were simulating a systemic computer and any notion of 
parallelism. To address this, a GPU-based implementation was 
presented in [3], taking advantage of the parallel resources of a 
commercial GPU resulting in great performance gains. Yet, 
this implementation was too limited as its functionality was 
restricted to the demonstrated applications, since it supported 
only hardcoded software extensions. However, using a GPU 
revealed the potential of a design with a hardware constituent, 
overcoming the limited parallelism provided by modern CPUs.  

Combining the desirable performance gains due to its 
inherent parallelism with the flexibility of designing a custom 
architecture, the core of a hardware SC implementation based 
on an FPGA was introduced in [4]. This so-called Hardware 
Architecture of Systemic computation (HAoS) supports a 
limited instruction set through dedicated hardware resources. It 
was also suggested that the instruction set may be expanded, 
depending on the user applications requirements, through high-
level user-defined plugins to run on an optional CPU. An 
investigation on the implementation of the HAoS-CPU 
communication interface is given in [5]. 

However, in order to provide a practical SC programming 
platform, four key issues still need to be addressed:  

 efficient random selection 

 efficient schemata matching  

 efficient I/O  

 good programmability  

These problems are not unique to HAoS - most bio-inspired 
hardware architectures (whether based on the cell, evolution, or 
neural networks) will also face similar problems as parallel, 
stochastic computation inevitably involves one of the 
operations: random selection, string matching, high-speed I/O 
and tools to ensure ease of programming. This paper uses SC 
as the exemplar for optimizations for these key problems.  

By addressing these issues, this paper presents the evolution 
of HAoS to a practical programming platform. Section II 
provides additional background, section III gives an overview 
of SC while section IV outlines our novel architecture, as it was 
introduced in [4] and [5]. Section V details the enhancements 
to our initial design and section VI suggests an intuitive HAoS 
programming methodology. Section VII discusses our results 
while section VIII concludes the paper. 

This work is sponsored by the EPSRC and Toumaz UK Limited.  



II. BACKGROUND 

SC was inspired by natural behavior and addresses the 
problem of modeling natural systems efficiently attempting to 
become a gateway to Natural Computation [6]. An extended 
overview of alternative paradigms tackling the same problem is 
given in [7]. Indicative examples are Constrained Generating 
Procedures (CGPs) [8] (finite state machines that analyze 
complex systems by reducing them in mechanisms and 
constraints of interactions), π-calculus [9] (a process calculus 
adapted for biological systems simulation) and Petri nets [10] 
(a graphical tool and mathematical theory for concurrent 
processes). Moreover, alternative novel architectures attempt to 
inherently support natural properties. Examples of such 
unconventional architectures are the Perplexus platform [11], a 
computing substrate made of reconfigurable devices endowed 
with bio-inspired capabilities, RALA [12] based on a lattice of 
reconfigurable logic automata cells asynchronously passing 
state tokens corresponding to physicals resources and 
spiNNaker [13] featuring a vast number of independent ARM-
based multiprocessors to simulate real-time neuron activity. 

There is also literature that relates to the four issues 
addressed in this paper. Random selection logic (RSL) is used 
to randomly select a candidate out of a qualifying subset of a 
pool of options, e.g. parent selection in genetic algorithm 
implementations [14] or register shuffling for cryptographic 
applications [15]. Schemata (or similarly template) matching 
has been previously used in the design of adaptive systems [16] 
for FPGA context switching (comparing the contents of a shift 
register with sequentially retrieved templates from a RAM) and 
also in hardware Artificial Immune Systems matching nonself 
strings [17]. Efficient on-chip communication is extensively 
discussed in [18] and the authors conclude that the use of 
FIFO-based computing nodes is preferred for point-to-point 
communication. The AXI4 protocol is suggested as the most 
preferable solution in [19] for memory-mapped register-based 
control interface, and for this reason is adopted in HAoS. 
Finally, [19] suggests a programming methodology which is 
used in numerous embedded applications [20]. In our work this 
is combined with the HAoS software framework and the 
updated hardware design to result in the first practical SC 
programming platform. 

III. SYSTEMIC COMPUTATION OVERVIEW 

SC emphasizes the dynamics among the elements of a 
system and its environment in the form of systemic interactions 
and thus uses a holistic approach to their modeling. In contrast 
with the conventional sequence of instructions executed in a 
CPU, SC relies on events (interactions) occurring in a parallel 
and stochastic fashion and defines a set of conventions [1] for 
every natural model: (a) everything is a system, (b) systems 
may comprise or share other nested systems, (c) systems can be 
transformed but never destroyed or created from nothing, (d) 
interaction between systems may cause transformation of those 
systems according to a contextual system, (e) all systems can 
potentially act as context and interact in some context, (f) the 
transformation of systems is constrained by the scope of 
systems, and finally (g) computation is transformation. 

Each system is represented as a binary string with three 
parts, two “schemata” and one function. Inspired by nature, the 

notion of scope is used in [1], to define the interaction bounds 
of a system. Interactions between two systems are defined by a 
third “contextual” system (or context) which sets the 
transformation of any, none or both the interacting systems 
through the interaction (see Fig. 1c). This pair of systems along 
with the interaction-defining context form a valid interacting 
triplet. The context through its two schemata provides 
templates which are matched against all systems, in the scope it 
belongs to, to define a valid triplet. This implies the two main 
tasks involved in any SC interaction: (1) finding valid triplets 
(context and two randomly-chosen systems matching its 
templates in a shared scope) and (2) updating the two 
interacting systems according to the transformation function of 
the context. SC is further detailed in [1]. 

The graphical representation of a system in SC is illustrated 
in Fig. 1a. The two receptors of a system hold its two schemata 
while the transformation function is given in the middle. Three 
types of systems are supported: data systems, which do not 
define interactions hence their transformation function is 
always zero, context systems, defining interactions between 
data systems, and context adapters which define 
transformations between contexts or contexts and data systems. 
Fig. 1d illustrates an accumulator SC program using graphical 
notations. Given a pool of data systems and a context which 
places the sum of the data of the two interacting systems to one 
of them and zeroes the other one, and given enough time, only 
one non-zero system will hold the sum of all data values while 
the rest will be zero.   
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Figure 1.  Graphical SC notation: (a) a data system revealing its binary 

contents; its transformation function is zero (b) alternative notation for a data 

system called SYS (c) Systems S1 and S2 interact according to the function of 

the context C; the notation may optionally include the resulting systems S1' 
and S2' (d) Sum operation on a pool of data systems (NOP: No Operation)  

IV. THE HARDWARE ARCHITECTURE OF SYSTEMIC 

COMPUTATION (HAOS) 

The design of our Hardware Architecture of Systemic 
computation (HAoS) was presented in [4] and [5], and we 
showed in simulation that it can form the basis for an FPGA-
based platform that can outperform prior SC implementations 
(software and GPU-based). An overview of the design follows. 

A. HAoS Base Architecture 

The HAoS base architecture [4] is shown in Fig. 2. The 
CORE contains the various memories to hold the SC program 
binary information and logic to support the parallel schemata 
matching (see next section). The Control Unit (CU), named in 
a conventional way, handles the execution of the SC program 
and the communication with the optional CPU. The REG 
BANK includes configuration and data registers which form a 
control and debug interface between HAoS and the CPU. Basic 



 

CU FU

REG BANK

CONF/DATA 

REGS

CONF/DATA

REGS

CONTROL

FSM
PROCESSING

UNITS

CPU 

INTERFACE

CONF/DATA

REGS

FPGA

EMBEDDED

CPU

EXTERNAL 

CPU

CORE
SCOPETABLE

TCAM

L

O

G

I

C

COUNTONES L

F

S

R
DIVIDER

BITPOSSEL

RANDOM SELECTION 

LOGIC

M

U

XSCOPES

CONTEXTS

SCH1

BINARY

RAM

TERNARY

RAM

SCH2

 
Figure 2.  The base SC Hardware Architecture 

local processing is provided by the Functional Unit (FU) as a 
limited instruction set is supported to minimize data transfers 
between the REG BANK and the CPU.  

The role of the CPU is to allow for more complex high-
level functions by letting the user define, when needed, new 
instructions. The SC compiler [1], translates SC source code in 
SC assembly. The CPU is also used to load the assembly into 
the memory elements of the CORE during initialization. 
Following the analysis in [5], it was concluded that an 
embedded soft CPU is sufficient in this prototype stage, as it 
can minimize communication latency and achieve adequate 
bandwidth. However, communicating data during CPU-
handled functions was handled in a naive way in our initial 
design. Thus, HAoS-CPU I/O handling is revised in this paper.   

B. HAoS Core 

Valid triplet generation was the main limitation of prior 
software-based implementations. Commonly, three systems 
(one of them being a context) were randomly selected in a 
given scope and then the operand systems were matched 
against the schemata of the context. Identifying valid triplet 
with this approach was quite inefficient, especially for SC 
programs with a big number of systems and a small number of 
valid triplets. HAoS identifies valid triplets using an inherently 
parallel  approach, using a Ternary Content Addressable 
Memory (TCAM) [21]. 

CAMs are essentially parallel comparators, providing all 
addresses that match their compare input in parallel. 
Furthermore, TCAMs can also perform ternary comparisons, 
identifying partial matches using “don't care” bits. This 
guarantees finding all, if any, systems matching the schemata 
of a context while a pseudo-random select circuit is used to 
nominate those to form valid triplets. Efficient schemata 
matching, and in extent the choice and implementation method 
of the TCAM, is vital for SC, being the mechanism identifying 
interacting systems. Thus, its design is refined in this paper as 
it has a great impact on the overall performance of HAoS. 

As seen in Fig. 2, apart from the TCAM, the CORE (further 
detailed in [4]) consists of the system memories (storing the 
binary and ternary parts of systems), the scopetable memories, 
various status registers and the Random Selection Logic (RSL). 
The RSL returns the address of a (pseudo-)randomly selected 
set bit of its input bus. Its inputs provide candidates for random 

selection during all the stages of the SC program (see next 
section). It consists of COUNTONES which counts the set bits 
of a bus, a maximal-length Linear Feedback Shift Register 
(LFSR) for pseudo-random number generation, a combinatorial 
divider and a module (BITPOSSEL) that given a bus and the 
rank of one of its set bits (the position of the set bit with rank 1 
is 2 in 01110101), it returns its position. The random selection 
works as follows: a random number, from the LFSR, is divided 
by the sum of the set bits of the bus (from COUNTONES). The 
remainder of this division is used as the rank of the random set 
bit that is given to BITPOSSEL in order to identify its position. 
The RSL, being mostly a combinatorial circuit in [4], is also 
refined here to increase the overall operating frequency. 

C. HAoS Control Flow 

The control flow of a typical SC program is shown and 
described in Fig. 3. Adhering to the law of conservation of 
energy in nature, systems are never destroyed but only 
transformed. This is reflected in the computation infinite loop, 
although the program may halt when no further interactions are 
possible, as the state of the system cannot further change.  
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Figure 3.  SC Program Control Flow : HAoS enters an infinite computation 

loop, after the SC program is loaded, which involves finding valid triplets and 

transforming the selected systems. A hard reset initializes the system and the 

program is loaded on HAoS memories. Each iteration comprises four main 
and an optional step. At first, a valid triplet is identified by randomly selecting 

a scope, a context in this scope and two systems matching the schemata of this 

context. Then, the selected systems are retrieved, they transform through their 
interaction and the changed systems are updated and stored back to local 

memory. Optionally, at the end, the user may pause execution to extract debug 

information. In the case of a context mismatch (any of its schemata does not 
match any system in the scope), it gets disabled to prevent future mismatches. 

Moreover, if a scope contains no valid contexts, it also gets disabled until a 

new system is added to it. The program halts if all scopes have been disabled. 

V. OPTIMIZATIONS AND ENHANCEMENTS 

The four key issues are addressed below with various 
solutions which are hardware optimizations and software 
enhancements made to the initial design to increase its 
performance and make it more user-friendly and flexible. 

ISSUE 1:  The Random Selection Logic is too slow 

Like many nature-inspired architectures, randomness is 
fundamental to SC. The random selection logic is in the critical 
path of the base design. Improving the efficiency of the RSL 
would therefore be a tremendous advantage. Here we describe 



optimizations designed to increase the overall operating 
frequency by 4 times, by carefully balanced pipelining and 
decrease the area utilization by sharing resources. 

SOLUTION 1.1:  Resource sharing  

The BITPOSSEL module of the RSL, combined a parallel 
bit count with a branchless selection method. The bit count is 
used to provide partial sums which are then appropriately 
masked and passed through a barrel-shifter. As a result, we 
obtain the position of a bit with a given rank in the input bus. 
As seen in Fig. 4, the COUTNONES and BITPOSSEL 
modules of the RSL are now merged. The parallel sum-of-bits 
counter in COUNTONES is reused for the generation of the 
partial sums during the identification of the position of the 
selected bit.  

SOLUTION 1.2:  Design a constant-latency barrel-shifter  

The length of the barrel shifter is equal to the size of the 
longest input bus to the RSL, which is in turn equal to the 
number of maximum supported systems. Thus, when this 
number is increased, the number of logic levels required for the 
barrel shifter implementation have a considerable impact to the 
delay along the critical path. For this reason, the conventional 
barrel shifter is replaced with a parallelized and pipelined 
version. This instead uses an array of multiplexers with 
registered pre-shifted (by the required pre-calculated number of 
bits) versions of only the possible subset of shifting 
combinations of the input buses. While this results in a slightly 
higher resource utilization as the number of maximum 
supported systems increases, it provides the ability to minimize 
its latency and moreover make it independent of the maximum 
number of systems, resulting in deterministic performance. 

SOLUTION 1.3:  Balanced pipelining 

Moreover, rather than registering the inputs of the RSL or 
the output of the input selection multiplexer (Fig. 4), the output 
of the adder-tree that counts the set bits is registered, reducing 
the number of registers required to pipeline this stage from 
Number of RSL Input Buses x Input Bus Length to the length of 
the maximum sum of set bits (for 1024 maximum supported 
systems : from 5x1024=5120 registers down to just 11).  
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Figure 4.  The Revised RSL module. P is a pipeline register. COUNTONES 

and BITPOSSEL modules have been merged to share the adder tree. The RSL 

has been pipelined where the data buses have minimim length having in mind 
the trade-off between minimizing latency and excessive resource utilization. 

The module with the higher impact in the critical path delay 
of the RSL, however, is the combinatorial divider. Thus, the 
divider is now pipelined (one-level deep with registered input 
and outputs). The level of pipelining throughout the RSL was 
fine-tuned to match the critical path outside the RSL and it was 
decided that a latency of 20ns (50MHz) was adequate for the 
prototype, as deeper pipelining, although possible, would 
require considerable changes in the control logic and would 
affect resource utilization in order to achieve timing closure. 

ISSUE 2:  The schemata-matching logic latency is high 

Nature-based hardware architectures have commonly used 
CAMs for efficient string-matching [17]. The performance of 
the schemata-matching logic is crucial for HAoS as well. The 
TCAM of our initial architecture had a high latency when 
being written. Here, we revise its design to always have a 
single-clock latency. 

SOLUTION 2.1:  Select a TCAM design with one clock latency 

Standard FPGA CAM design techniques include registered-
based,  RAM-based and Look-Up Table based approaches [21]. 
Moreover, Xilinx provides an reference design which combines 
the LUT technique with the optimized shift-register blocks 
(SRL16E) found in its FPGAs [21]. Although RAM-based 
CAMs are the most efficient in terms of resource utilization 
[21],  they do not support the ternary mode required for partial 
schemata matching in SC. The initial HAoS design used the 
suggested by Xilinx SRL16E-based approach which, according 
to [21], provides efficiency in terms of the trade-off between 
required area and operating frequency. However, since this 
design was effectively constructed by a chain of parallel 16-bit 
shift registers, that implied that each write operation, shifting 
data in, one bit at a time, required 16 clock cycles. It was 
noticed, that as the number of entries for the TCAM increased, 
reflecting the number of supported systems, for deep TCAM 
implementations (>128 entries) the area footprint was 
comparable to the one of the simple register-based design (5%-
15% area overhead depending on size) with similar operating 
frequency. Since the TCAM is written every time a system is 
altered during an interaction, replacing the SRL16E-based 
TCAM with an array of registers and comparators, provided 
single-clock read and write operation, saving 15 or 30 clock 
cycles for interactions changing one or both systems. 

ISSUE 3:  CPU I/O is inefficient 

Hi-speed I/O is vital for any modern computing system. 
Based on latency and bandwidth, the investigation in [5] 
suggested that on-chip interconnect is preferable to alternatives, 
as it accomplishes data transfers at wire speed. However, 
HAoS initially did not fully exploit this fact. Here, we present 
various optimizations which minimize communication and 
enable faster and fewer CPU (read and write) data accesses. 

SOLUTION 3.1:  Hardware handles interaction result writing 

HAoS makes available to the user all the fields of an active 
triplet since those that will be used during an interaction 
depend on the transformation function. In the initial design all 
this user data are read from and written back to HAoS directly 
by the CPU. Looking for a more efficient way, in order to 
avoid the extra overhead on the software side, the CPU would 
directly just write the changed systems to HAoS registers and 
writing the memories would be handled efficiently in hardware. 
However, since writing a triplet to the memories is performed 
in one clock cycle, to reduce latency, all user data would have 
to be updated when a change was made. Enabling the option of 
independently writing parts of the triplet would greatly increase 
the control logic complexity and the required area footprint.  

SOLUTION 3.2:  Write-detection minimizes CPU writes 

To address this issue, a write-detection mechanism was 
devised, inspired by the “dirty-bit” scheme commonly used in 



page replacement and data cache design [22]. As mentioned 
above, since all user data are available in the beginning of an 
interaction, the user may read only the parts of the triplet that 
are going to be used in his custom function. The great 
enhancement comes when writing back the transformed triplet. 

Each field of the transformed triplet is now associated with 
a write-detection flag. This flag array is reset when an 
interaction is assigned to the CPU. The address of the registers 
that hold each individual field of the transformed triplet (see 
Fig. 5) is already given in the predetermined memory map of 
the CPU (the memory management subsystem of the CPU 
accesses the REG BANK as any other memory location). 
While in “Transform” state (see Fig. 3), when each such field is 
altered by the CPU, the decoded write address from the 
memory subsystem is matched against each field address and 
sets its respective flag. At the end of the state, the active triplet 
(user data before interaction) is copied to the transformed 
triplet (user data after interaction) address space, updating at 
the same time only the fields that were actually changed by the 
CPU. Using this relatively simple write-detection approach, the 
need of accessing individual fields when writing the triplet is 
avoided, preserving the low area footprint of the HAoS 
memories writing logic, but also minimizing the required user 
accesses to enable the write-back of the interaction result. 
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Figure 5.  Revised Triplet Memory Map and Write-Detection Mechanism. 

Upper part: the revised registers organization for each system in a triplet is 

shown along with the sizes (in bytes) for each field. Fields (left to right): data 

system schemata 1 & 2, transformation function, system address, binary and 
ternary parts for each schemata of a context share the same address space with 

a byte-array formatted version of the respective schemata of a data system. All 

fields (with a dot) have an associated write-detection flag,  set when a field is 

modified. Middle part: the two systems, the active interaction function and the 

scope and context addresses form the user data. Bottom part: when writing-

back the transformed triplet, the write address from the CPU is used to update 
only those fields that have actually been changed while the rest are copied 

over from the local copy (active triplet), minimizing CPU I/O operations. 

SOLUTION 3.3:  Array-formatted and byte-aligned schematas 

In order to further minimize user effort while manipulating 
the HAoS user data, taking into consideration that each, 16-bit 
in this implementation, SC schema may be used as a whole 
(e.g. a 16-bit number) or as a bit-array (e.g. a 16-element 
chromosome), each schema can be accessed (read/written) in 
both modes (2-byte value or 16-byte array with one effective 
bit for each byte). This saves time-consuming bit-manipulation 

through bit-masking by operating on an array and also avoids 
bit-to-byte conversions, now handled by hardware. Moreover, 
parts of a compressed template of a context were rearranged to 
get a more compact memory utilization while their respective 
registers in the REG BANK were also re-arranged to account 
for any compiler byte-alignment restrictions.  

ISSUE 4:  Lack of programmability 

Ease of programmability is imperative for any computing 
platform. The initial design, being a hardware prototype, lacked 
any software tools of a practical programming platform. This 
section describes the enhancements which provide HAoS 
programmers with all the necessary tools to easily develop SC 
models. This software framework enables quick model 
verification using a high-level language, efficient debugging 
and a comprehensive API, abstracting low-level details. Here 
we approach the challenge of programmability gradually. We 
answer to the needs of a HAoS programmer trying to simulate 
his first SC model.  

SOLUTION 4.1:  Ease model functionality verification 

Since the SC programming language, defined in [1], and the 
SC compiler are in place, the model can be written and 
compiled. The programmer should have a tool to quickly verify 
its functional behavior, a debugger. Thus, in order to avoid 
time-consuming low-level system simulations and expedite SC 
models development, a software-based HAoS simulator 
functionally equivalent to our platform was built. It provides a 
software interface for the programmer to develop abstract high-
level interaction behaviors, similar to the (C/C++) plug-in 
approach in [2].  

SOLUTION 4.2:  Minimize program loading time 

Once the model is verified, it should be loaded to HAoS. A 
post-compiler tool was developed to reduce the assembly code 
to binary format, minimizing the amount of data to be 
transferred to HAoS and the processing time during program 
loading. The programmer then uses a storage device to transfer 
the binary file into HAoS. The Compact Flash Card (a common 
feature for FPGA development boards) was selected for this 
purpose, rather than the on-chip Block RAM or the off-chip 
RAM, in order to make HAoS a standalone platform. The CF 
card, when FAT-formatted, it can support a basic file system 
using the XilFatfs library [20].  

SOLUTION 4.3:  Enable efficient logging 

During the SC program execution, the programmer will 
also need to access log runtime information. Conveniently, the 
CF card can be used for this efficiently. Although access to a 
real-time console is possible during live hardware debugging, 
just the data-logging overhead can account for the majority of 
the run time as all text is communicated to a computer though a 
high-latency UART channel. Storing log data locally 
drastically reduces runtime.    

SOLUTION 4.4:  A driver handles low-level functionality 
while the programmer is provided with a comprehensive API 

The programmer will also require a CPU to execute his 
high-level sequential functions. As the available development 
board was the Xilinx ML605, selecting the MicroBlaze 
processor was a natural choice, due to its compatibility with the 



design tools. An operating system would probably be a useful 
tool for the programmer. However, all SC high-level 
interaction processing runs as a bare-metal application,  as an 
operating system would heavily impact performance. 
Therefore, a low-level driver was developed to handle HAoS-
MicroBlaze communication. The driver works as follows: at 
first, it resets HAoS, initializes the communication interfaces 
and loads the program. When program execution starts, it waits 
for an interrupt, by constantly reading a predetermined HAoS 
status register, to either pass control to the user code to perform 
some high-level interaction or halt the program in case no 
further interactions can or need to be executed. In the end, it 
also optionally gives some useful statistics. All these processes 
are transparent to the programmer, who only has to define the 
transformation functions in the SC source code to be executed 
on the CPU. However, he/she will need an interface between 
the driver and his SC “application”. Thus the driver is 
complemented by a basic but comprehensive API, in order to 
enhance the flexibility of the platform and the accessibility of 
the programmer to the internal state of HAoS. The features of 
the API include optimized access to any HAoS memory-
mapped control register, the local memories and a high-
precision (±10ns) real-time counter. The programmer is now 
equipped with a complete software programming framework.  

VI. A PRACTICAL SC PROGRAMMING PLATFORM 

Having presented solutions to the key problems of our 
initial design, this section completes the revised HAoS 
architecture and combines it with the developed software 
framework to suggest a programming methodology and result 
in the first practical hardware-based Systemic Computation 
prototype and standalone programming platform. 

A. The Complete Platform 

Since the soft CPU (MicroBlaze) and the communication 
interface (AXI4) were selected, the platform was completed 
with some other useful peripherals (64KB local Block-RAM 
instruction and data memories, 512MB of external DDR3 
memory and other common embedded IP cores). From the 
processor point of view, HAoS is used just as another 
peripheral in terms of connectivity and accessibility. A slight 
modification was required to the IP interconnect (IPIC) logic as 
the Xilinx AXI4-Lite interface natively supports up to 32 4-
byte registers. In order to waive this restriction, the 
multiplexer-based read/write logic (an input bus with a set bit 
at the position of the register to be read/written is decoded to 
get the position of the register) and the simple register-array 
was replaced by an interface providing the exact access 
address. This address is then encoded to give access to any set 
of registers, depending on the size of the data to be accessed. 

B. HAoS Programming Methodology 

Further focusing on the practical aspect of using the 
platform, a programming methodology, for developing natural 
models targeting HAoS, is suggested below and illustrated in 
Fig. 6 with layers, to separate the distinct development phases.  

Assuming that an existing natural system or process needs 
to be simulated, it is important to first understand its behavioral 

dynamics and identify its quantitative characteristics in order to 
conceptualize it (Conceptual Layer). This will aid the systemic 
analysis which is used to identify the interacting systems, the 
interactions among them (any contextual behavior defining 
their transformation function) and their organization (scopes). 
The SC calculus notation [2], can be used to describe the 
interactions, while the SC model may be visualized using the 
SC graphical notation (see Fig. 1). Each element in the SC 
graph should correspond directly to a specific part of the SC 
source code. This fact implies that source code extraction from 
SC graphs can be automated in the future, enabling building SC 
models by using a high-level SC graph tool. This direct 
mapping also extends in the SC calculus notation making the 
transition from the Conceptual Layer to the Application Layer 
fully automated once these SC high-level tools are developed. 
The Application and Link Layers form the HAoS software 
framework. In the Application Layer, the SC source code is 
translated to SC human-readable assembly code. This may then 
be used as input to the functionally equivalent to HAoS 
software program, along with the high-level processing plugins 
(implied by transformation functions not supported natively by 
HAoS) until the model behaves as expected. The Link Layer is 
the back-end phase were the SC binary is generated by the 
post-compiler and the user code is linked with the HAoS driver 
(using the Xilinx Software Development Kit) to generate the 
bare-metal executable to run on the MicroBlaze. 
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Figure 6.  HAoS suggested programming methodology (* implies user input) 

At the Physical Layer, the program is loaded to the CF card 
and HAoS is implemented on the target FPGA board. Based on 
the number of systems of the SC model, the appropriate 
configuration bitstream should be selected and combined with 
the output executable from the Link Layer to form the final 
bitstream to program the FPGA. A hardware reset starts the 
simulation. The CF card acts as the storage unit of the platform, 
storing the HAoS binary program and runtime log information. 
The whole process is fairly automated. User input is required 
mainly on the tasks with an asterisk (*) in Fig. 6.  



VII. EVALUATION 

A. Scalability in the Single-Chip Implementation 

Depending on the number of systems required for an SC 
model, HAoS can be easily scaled to accommodate any number 
of systems as long as the design can fit on the selected device 
(assuming a single-FPGA implementation).  HAoS has been 
written in highly-parameterizable VHDL code. Thus, scaling 
the design is a matter of setting a single parameter, which is 
proportional to the number of maximum supported systems. In 
this way, the size of the SC model in terms of systems, is 
limited solely by the size of the available FPGA. Moreover, the 
Xilinx ML605 board, features a Virtex-6 LX240T FPGA 
which is a mid-range 40-nm device, while high-end 28-nm 
devices can offer nearly 10 times more reprogrammable fabric 
real estate and significant performance potential. Table I shows 
the implementation statistics of  available variations of the 
complete HAoS platform, in agreement with the initial 
estimates in [4]. It is interesting to note that the size of the 
design scales linearly as the number of systems is doubled, as 
illustrated in Fig. 7. This implies that, assuming availability 
(and affordability) of the largest modern FPGA device (Virtex-
7 2000T with 305400 slices), SC models with up to 8196 
systems may be efficiently modeled with a single FPGA.  

TABLE I.  HAOS PLATFORM IMPLEMENTATIONS STATISTICS FOR 

DESIGNS SUPPORTING 64-1024 SYSTEMS BASED ON VIRTEX-6 LX240T  

Maximum Systems 0 
No HAoS 

64 128 256 512 1024 

 
Total 

Used 

(%) 

Used 

(%) 
Used 

(%) 
Used 

(%) 
Used 

(%) 
Used 

(%) 

Slices 37680 
6841 
(18) 

13492 
(35) 

15525 
(41) 

18269 
(48) 

24882 
(66) 

34522 
(91) 

Slice 

LUTs 
150720 

14283 

(9) 

29972 

(19) 

34338 

(22) 

43146 

(28) 

61481 

(40) 

98511 

(65) 

Slice 

Registers 
301440 

15061 
(4) 

25400 
(8) 

30818 
(10) 

41727 
(13) 

63768 
(21) 

108361 
(35) 

I/O 

Blocks 
600 

193 

(32) 

193 

(32) 

193 

(32) 

193 

(32) 

193 

(32) 

193 

(32) 

RAMs 416 
56 

(13) 
61 

(14) 
64 

(15) 
70 

(16) 
106 
(25) 

148 
(35) 

 

HAoS performance will be identical for configurations of 
different sizes. However, fine-tuning the size of the design for a 
particular application may permit more functions to be 
hardware-accelerated, avoiding offloading all computation to 
the CPU, further increasing overall performance (e.g. obtaining 
here random numbers from the LFSR rather than the CPU). 

The specification (number of maximum supported systems, 
performance of the soft processor, operating frequency of the 
HAoS subsystem) of the HAoS platform strongly depends on 
the characteristics of the FPGA device it is implemented on. 
Our prototype is merely an example of what a mid-range 
device can accomplish. It is expected that as new FPGA 
technologies emerge, HAoS, having been written in completely 
vendor-agnostic fully-synthesizable code, can be adopted with 
minimal effort to achieve greater performance.  

B. Optimization Results 

In order to quantify the performance improvements, the 
genetic algorithm binary knapsack problem [5] (see Fig. 8a) is  

 

    
Figure 7.  Linearity on area utilization increasing the number of maximum 

supported systems. Linear regression lines and corresponding determination 

coefficients given for slices, LUTs, registers and RAMs  

reused here as a benchmark. The performance of the HAoS 
platform (supporting 64 systems and the MicroBlaze running at 
200MHz) is measured in terms of the duration of the execution 
of the program until a number of interactions has been reached. 
The results our optimizations are given in Table II. 

As shown below, the most beneficial optimizations are the 
write-detection mechanism (solution 3.2) and the optimizations 
on the RSL (solution 1.1) which allowed a higher operating 
frequency. Furthermore, printing log information on an off-
board terminal (e.g. a laptop connected to the board through 
USB), would heavily impact the performance of the system due 
to the high latency of the UART. Disabling logging would 
negatively impact the user experience. The solution of storing 
real-time information locally on the CF card enables logging 
with a minimal impact to performance.   

TABLE II.  BENCHMARK TIMING IMPROVEMENTS. RESULTS AVERAGED 

OVER 10 RUNS. REPORTED TIMING IS OBTAINED FOR EACH ROW USING ALL 

PRECEDING OPTIMIZATIONS. ON AVERAGE, THE CPU CONSUMES ~40MS FOR 

TRANSFORMATION FUNCTIONS AND ~15MS FOR LOW-LEVEL DRIVER.     

Optimization Description 
Benchmark 

Timing(ms) 

No Optimization - Writing logging information (20 

ASCII characters) to off-board terminal through UART  
768.213 

CPU Writes Back the Triplet - Writing logging 

information (20 ASCII characters) to on-board CF card 
186.315 

CPU Writes the Triplet to HAoS Registers -  
HAoS then writes it back to memories 

176.613 

Minimized CPU writes with Hardware Write-Detection 135.928 

HAoS offers byte-aligned schematas in software-aware 

array-formatted registers for optimized CPU access 
121.428 

Enable hardware random numbers from the LFSR instead 

of using standard PRNG software functions 
109.431 

Optimized read/write data access functions  105.877 

Updated TCAM design to have single-clock latency 101.704 

Using constant-latency parallel & pipelined barrel-shifter  98.704 

Resource-sharing and balanced pipelining in the RSL 

increased operating frequency from 12.5MHz to 50MHz  
82.934 



C. Evaluation of Time Complexity for Schemata Matching 

We performed experiments for all size-variations of the 
hardware platform with the genetic algorithm problem (only 
simulated in [5]). The results are given in Fig. 8b and confirm 
the initial estimates in [5]. HAoS easily outperforms previous 
implementations (500x over [1] and 8x the over [3] for 512 
systems on the GA problem). In addition to the comparison of 
overall performance for this problem, the complexity of the 
schemata matching mechanism can also be estimated. As the 
number of system increases, the sequential implementation 
struggles to find matching triplets due to its inefficient loop-
based schemata matching mechanism which is of O(n

2
) time 

complexity, while the GPU version, by utilizing multiple 
stream processors, parallelizes part of this loop and achieves to 
decrease it in O(n) [3]. The truly parallel nature of the TCAM 
is the differentiating feature for HAoS since schemata matching 
is executed in constant time (one clock cycle ‒ implying O(1)), 
clearly shown in Fig. 8b. Moreover, it should be noted that 
these results do not only apply in the problem class of genetic 
algorithms, but they can be generalized to any SC model due to 
the importance of the schemata matching mechanism. 

    
Figure 8.  (a) Genetic Algorithm binary knapsack problem: Maximize the 

sum of the weighted values in the knapsack, keeping the sum of their weights 

under a threshold.  Here in SC graphical notation [3]: Non-initialized solutions 
are initialized by the initializer context and added into the computation scope. 

There, they are transformed through crossover and mutation genetic operators. 

If a fitter solution is produced, the output context copies it to the final solution                                               
(b) Experimental results across a range of numbers of maximum systems 

comparing the sequential[1],  GPU-based[3] and HAoS implementations 

VIII. CONCLUSION 

In this paper, four key issues are identified in the initial 
HAoS design. These issues, which involve the efficiency of 
random selection, schemata matching and CPU I/O access, and 
the programmability of the resulting architecture, are addressed 
here to provide a complete SC programming platform. 
Optimizations include a write-detection mechanism, a random 
selection circuit incorporating balanced pipelining and resource 
sharing and the latency-aware implementation of a TCAM 
which can execute schemata matching in constant time. A 
software framework completes our platform while a formal SC 
model development methodology is also suggested to assist 
prospective SC programmers. Experimental results confirm 
that using 512 systems HAoS can outperform previous SC 
implementations between 8x and 500x. 
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