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Abstract 

 

The role of self-organisation in biological evolution has received an increasing amount of 

attention in recent years. This work suggests that biological order is the result of the coupling of 

natural selection and self-organisation. Such a change in perspective has the potential to 

profoundly affect our view of evolutionary adaptation. However, to date there has been little 

emphasis placed on the consequences of self-organisation in artificial evolution. This thesis 

focuses on one such consequence; the generation of neutrality in the mapping from genotype to 

phenotype. Self-organisation results in large sets of genotypes that produce the same phenotype 

which can form neutral networks that percolate throughout genotype space. An evolving 

population is able to continually discover new phenotypes through neutral drift on these 

networks. Such a process may therefore be an important component of evolutionary creativity. 

  

The aim of this work is to develop artificial genotype-phenotype mappings that enhance 

evolutionary search by introducing beneficial neutrality into the search space. Self-organising 

mappings are developed that are based on abstractions of natural processes and their properties 

are analysed in depth to determine whether they can provide any performance enhancement over 

a more traditional direct encoding. The work is then extended to tackle a real-world problem 

involving the evolutionary design of telecommunication networks. Domain knowledge in the 

form of network planning rules is used to “grow” a network in the context of its simulated 

environment. The parameters of this growth process are encoded in the genotype allowing 

evolution to tune its dynamics and the impact of this approach is determined through exhaustive 

enumeration of the resulting search space. Subsequent comparison to a direct encoding on more 

challenging problems reveals that the approach expedites evolutionary progress and scales well to 

larger and more complex problems. 
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Chapter 1 

 

Introduction 

 

 

1.1 Artificial evolution and self-organisation 

The creative power of evolution is evident throughout the biological world. Examples abound of 

ingenious solutions to problems posed by the environment in which an organism must survive. 

This creative potential has been well recognised by human designers and it is thus no surprise 

that there have been numerous attempts to harness the power of evolution over the last 40 years 

for a diversity of applications that range from the evolution of artificial life forms to evolutionary 

art work [18,19]. In common with many new ideas and concepts, artificial evolution was 

independently developed on several occasions. The 1960’s saw the birth of two similar 

techniques, Evolutionary Strategies [30] and Evolutionary Programming [47]. The former was 

originally developed to optimise manufactured shapes including the bends in pipe work and the 

structure of nozzles, the latter to produce machine intelligence through use of finite state 

machines. More recently, the genetic algorithm was developed which more closely resembles 

biological evolution and has subsequently become the most widely used evolutionary algorithm 

[39]. It has also spawned genetic programming which was explicitly designed to evolve computer 

programs [40].  

  

As the underlying inspiration for all these techniques is biological evolution, it is inevitable that 

they inherit the dominant biological theories of their age. Since the rediscovery of Mendel’s 

particular inheritance first published in 1865 [27], the inheritable particles or genes that encode 

the information required to construct an organism have come to assume a central role in theories 

of biological evolution. It is the genes that are passed from generation to generation with novelty 

introduced through random genetic mutations and potentially sexual recombination. Darwin’s 

incredibly influential theory of natural selection [8] provides the mechanism by which the 

organism and hence the associated genotype becomes better adapted to its environment. This is 

the biological background from which artificial evolution was born and thus the typical 

evolutionary algorithm operates in a very similar way. The free variables of the problem are 

encoded into an artificial genotype and one or more genotypes are maintained within the 

evolutionary algorithm. The fitness of a genotype is assessed by determining how well the 

associated solutions solve the given problem. Genotypes that yield higher quality solutions are 

preferentially selected as the basis of the next generation and novelty introduced through genetic 

operators such as mutation and sexual recombination. In this way, generation after generation, the 

quality of the encoded solutions gradually increases. 
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This methodology has met with considerable success. However its biological foundations, which 

view biological order as the sole product of natural selection operating on the genes, have come 

under increasing question in recent years. It has been argued that natural selection alone is not 

sufficient to provide a full account of biological order. Rather, it must be viewed in the context of 

a biological system’s natural dynamics which cause the system to self-organise into stereotypical 

patterns of activity [6,111]. Such processes provide a natural source of order that must be 

respected by natural selection. In this view, the creative solutions found in the biological world 

are a product of both natural selection and self-organisation. Given that self-organisation may be 

fundamentally important to biological evolution it may also be necessary to give it due 

consideration in artificial evolution for it to more fully emulate the power of its natural 

counterpart. This hypothesis is the overriding theme of this work. 

 

1.2 Neutral networks 

Self-organisation is evident at many levels in biological systems, from the spontaneous folding of 

a biopolymer into an intricate three-dimensional structure to the coordinated activity of many 

such molecules during biological development. One consequence of this self-organisation is that 

many different initial states of the system give rise to the same system behaviour i.e. many 

different genotypes give rise to the same phenotype. It becomes possible, therefore, to modify the 

genotype without affecting the resulting phenotype. It has been proposed that the majority of 

biological mutations equate to such neutral modifications [53]. The presence of large-scale 

neutrality changes the picture of evolutionary adaptation on which artificial evolution was based. 

In addition to genetic changes that result in a different fitness value, an evolving population can 

also engage in neutral drift via a series of neutral modifications. This has the potential of 

alleviating an ongoing problem with artificial evolution and indeed many other search 

algorithms; local optima. If no immediate adaptive modifications to the genotype are possible 

then evolutionary progress will ordinarily halt. However, neutral mutations have the potential to 

“set the scene” for subsequent adaptive modifications and hence continuing evolutionary 

progress. 

 

The characteristics and impact of neutrality has been studied in great detail in the context of the 

folding of biopolymers such as RNA and protein. These studies, reviewed in the following 

chapter, revealed a number of desirable properties suggesting that molecular self-organisation 

produces a very amenable evolutionary search space that is largely untroubled by the presence of 

local optima. Large sets of genotypes produced the same molecular structure or phenotype and 

were connected by single genetic mutations forming neutral networks [85]. It was discovered that 

drift on these networks allowed for the constant discovery of new phenotypes and thus greatly 

diminished the probability of becoming trapped at local optima [65]. Encouraging similar 
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properties in to artificial evolutionary search spaces through appropriate use of self-organisation 

is a principle concern of this thesis.  

 

1.3 Aim s and objectives 

The primary objective of this thesis is to determine whether the efficacy of an evolutionary 

algorithm can be enhanced through the coupling of self-organisation and evolution. There are two 

main components to this objective. Firstly, to determine whether self-organising genotype-

phenotype mappings can be developed that result in search spaces with similar properties to those 

found in natural search spaces as evidenced by biopolymer folding. Secondly, to determine 

whether the use of such mappings within an evolutionary algorithm provides any advantage over 

more traditional encodings that directly represent the free variables of the problem in the 

genotype. A further objective is to address these questions in the context of a specific real-world 

application; the evolutionary design of telecommunication networks.  

 

This work focuses on one aspect of the use of self-organisation within artificial genotype-

phenotype mappings; the impact of neutrality. Are neutral networks created and what are their 

characteristics? Does drift on a neutral network enable the discovery of new phenotypes that 

would otherwise have been impossible? Does neutral drift allow the discovery of higher fitness 

phenotypes? Can local optima be removed from the search space? Does neutrality introduce any 

biases into the search space? These are some of the questions that are addressed on route to the 

primary objectives. 

 

1.4 Original contributions 

This work makes a number of original contributions to the field that are summarised below: 

• The development of self-organising genotype-phenotype mappings that are based on 

abstractions of natural processes. These mappings are based on a cellular automaton and 

a random Boolean network both of which are widely used to model natural self-

organising processes. 

• Demonstration that these abstract genotype-phenotype mappings result in expansive 

neutral networks that allow for the constant innovation of new phenotypes. 

• Demonstration that the increased accessibility of new phenotypes afforded by the 

abstract mappings can alleviate the problem of local optima in the context of 

challenging search spaces. 

• The development of a novel approach to the evolutionary design of telecommunication 

networks. Rather than directly encode the network within the genotype, this approach 

encodes the instructions for generating that network which are interpreted in the context 

of its simulated environment. 
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• Demonstration that this approach can create a search space that shares key properties of 

natural search spaces and contains no local optima.  

• Demonstration that a key aspect of the use of self-organisation within artificial evolution 

is to bias the search space in favour of high quality phenotypes. This effect allowed high 

quality network designs to be discovered much more rapidly through use of a self-

organising mapping in comparison to a direct encoding.  

• Demonstration that this approach is better able to scale to larger and more complex 

problems than a direct encoding.  

 

1.5 Thesis overview 

In the following chapter, the underlying motivation for this work is expanded on. The concept of 

self-organisation is introduced and it is shown how self-organising processes are inherent to the 

physiochemical foundations of biological systems. In addition, examples are given that suggest a 

crucial role for self-organisation in current biological systems and indeed the origin of life itself. 

Chapter 2 also draws out the effect of self-organisation on an evolutionary search space; the 

concept of neutral networks is expanded on and the potential impact on evolution is highlighted. 

One of the most thorough studies of the impact of neutral networks has focussed on RNA folding. 

These studies are a primary influence for this work and are reviewed in detail at the close of the 

chapter. 

 

Chapter 3 reviews existing work within artificial evolution that has considered the impact of 

neutrality. It is highlighted that neutrality is likely to have played an implicit and unintended role 

in many artificial evolutionary experiments. Recently however, there have been a number of 

explicit studies which are reviewed in detail. The majority of these studies introduce neutrality 

into a genotype-phenotype mapping by allowing for segments of the genotype that are currently 

unexpressed in the phenotype. While this approach has met with initial success, it is argued that 

the order arising from a self-organising process must be exploited to gain full advantage of 

neutrality. 

 

The fourth chapter introduces two self-organising genotype-phenotype mappings. These 

mappings are based on a cellular automaton which have been widely used to model natural self-

organising processes and a random Boolean network which were initially developed as abstract 

models of genetic regulatory networks. The properties of the mappings are extensively analysed 

to determine whether their use within an evolutionary algorithm can alleviate the problem of 

local optima. The effect of the mappings is ascertained using example search spaces that are 

shown to be problematic for a traditional direct encoding. It is demonstrated that both mappings 

can substantially improve the performance of a hill-climbing search algorithm in comparison to a 

direct encoding. It is argued, however, that these results would not scale to more realistic 

problems. 
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Chapter 5 uses the knowledge gained during the study of the abstract mappings to develop a 

novel approach to the evolutionary design of telecommunication networks. Rather than directly 

encode a network design in a genotype, this approach encodes the instructions for generating a 

network design. These instructions are interpreted in the context of the network’s simulated 

environment in order to “grow” a network through use of a self-organising process. This 

approach is applied to a simplified version of a real problem, the growth of the UK’s data 

communications network. The resulting search space is exhaustively enumerated in order to 

precisely determine the impact of the approach. It is shown how seemingly innocuous design 

choices can have detrimental effects on the search space and how the design of the growth 

process can be modified to remove these effects. The end result is a search space that is heavily 

biased in favour of high quality network designs and that does not contain any local optima. 

 

This approach is extended in chapter 6 to larger scale and more complex network design 

problems. The overall aim of this chapter is to compare the network growth process with a more 

traditional direct encoding in which the exact network structure is represented in the genotype. It 

is shown that the biases introduced into the search space through use of the growth process allow 

a search algorithm to very quickly discover high quality network designs. On relatively small-

scale and low complexity problems the direct encoding eventually allows better network designs 

to be discovered. However, it is shown that performance using the direct encoding does not scale 

as well to larger, more complex problems. 

 

The final chapter summarises and discusses the results with a view to determining how well the 

objectives were met. In addition, suggestions for future work are given. 
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Chapter 2 

 

Self-Organisation and Neutral Networks 

 
 
 

2.1 Introduction   

Against a background of ever increasing entropy, biological organisms stand out as remarkable 

sources of order. The second law of thermodynamics teaches us that the natural tendency of a 

system is to move towards its most disorderly state, yet the natural world is ripe with systems that 

maintain an orderly state that is exceptionally well adapted to its environment. The source of this 

order has been eternally puzzling for mankind. However, since the seminal contributions of 

Darwin [8], the theory of natural selection has become the accepted view in the biological 

community. In this view, the organisms we see around us today are the accumulation of 

innumerable random modifications to the first persistent systems that were capable of 

reproduction. The systems that are better able to sustain themselves and reproduce in a 

competitive environment pass their favourable designs on to their offspring and as a result, 

generation after generation, the species becomes better adapted to its environment.  

 

With the discovery of the structure of DNA [37], the mechanism of information transfer between 

generations became clear. Biological information is encoded into strings of chemical bases called 

nucleotides and a particular trait is encoded as a subset of nucleotides called a gene. Natural 

selection operates on the genes, which are passed from parent to offspring untouched by the 

adaptations of the organism during its lifetime. This theory has had enormous success in 

explaining the order in the biological world and there is no shortage of persuasive arguments to 

support it [92,93]. As a result, the biological spotlight has largely focussed on the nature of genes 

and the organism has become to be seen as little more than a carrier of genetic information that 

can be arbitrarily moulded to ensure this information is not lost.  

 

Despite the success of Darwin’s theory and the dominance of the view outlined above, it has not 

been universally accepted as the sole source of biological order. As early as 1917, D’Arcy 

Thompson eloquently argued that biological order reflected deep physical and mathematical laws 

and provided a number of examples of the biological expression of these laws [11]. His claim 

was not that Darwinian evolution was false but rather that it need not labour alone in crafting 

biological order. Biological systems are built on physical and chemical foundations that naturally 

exhibit pattern and order that can be exploited by, and likely constrain, evolution. In the context 

of the burgeoning interest in Darwinian evolution his arguments did not find widespread 

acceptance. However, in recent years this view has received renewed interest. An extreme 
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example is the work of Brian Goodwin who views phenomena such as these as the primary 

source of biological order, reserving only a minor role for natural selection [6]. While few agree 

with this extreme position, evidence mounts that the order resulting from natural system 

dynamics has played a significant role in crafting biological systems and may deserve greater 

attention from the biological community [86,94,111,112]. Such a change in emphasis has the 

potential to profoundly affect our understanding of evolution. 

 

2.2 Self-Organisation 

The emergence of structure in a system in the absence of explicit external control has become 

known as self-organisation. The structure emerges as a result of the interactions between the 

internal components of the system, which effectively place constraints on the forms that the 

system can take. Self-organisation is a common occurrence in physical and chemical systems and 

there are many familiar examples, from the complex symmetrical form of a snowflake to the 

water vortexes that are formed when bath tubs are drained. A slightly less familiar but widely 

studied example is the formation of Bénard cells in a layer of fluid that is driven away from 

equilibrium through uniform heating as show in Figure 2.1 [56]. 

 

 

Figure 2.1: Bénard cells in a layer of liquid that is driven away from equilibrium through 
uniform heating. Liquid rises at the centre of the cells and falls towards their edges. This 
large-scale structure spontaneously arises when a sufficient temperature gradient exists 
between the top and bottom of the layer of liquid.  

 

At equilibrium, a layer of fluid is uniform and symmetrical containing no large scale structure. 

However, if the liquid is heated from below a temperature gradient is created between the top and 

bottom of the layer. For low differentials the temperature is adequately dissipated through 

conduction. However, as the gradient increases conduction is no longer sufficient and the liquid 

suddenly and spontaneously adopts a different form. The lower layer of liquid tends to rise due to 

its increased temperature while the upper layer tends to fall. The two layers cannot pass through 

each other and thus convection rolls are formed as the liquid circulates. It is these convection 

rolls that have become known as Bénard cells. As the liquid is driven further from equilibrium 

different large-scale structures emerge such as parallel rolls, spirals and target patterns. Each of 
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these patterns is formed through the coordinated activity of hundreds of billions of molecules 

without any explicit external control. The heat gradient does not contain any code or information 

dictating the form of the pattern, rather the pattern emerges spontaneously in response to the 

constraints imposed by the heat gradient. 

 

Another commonly cited example of self-organisation is the Belousov-Zhabotinsky (BZ) 

chemical reaction, named after the scientists that discovered it in the 1950’s. While performing 

unrelated chemical experiments Belousov serendipitously discovered that a particular mixture of 

organic and inorganic chemicals generated chemical oscillations, a phenomenon thought to be 

impossible at the time. When a homogeneous layer of the solution is left undisturbed, various 

geometric patterns spontaneously emerge and propagate across the medium. These patterns, such 

as concentric circles and spirals, oscillate in space and time. They are shown in Figure 2.2. 

 

 

Figure 2.2: Dynamic patterns in the Belousov-Zhabotinsky reaction, spiral patterns are 
shown to the left of the figure and concentric circles to the right. These patterns 
spontaneously emerge from a homogeneous layer of a solution containing certain organic 
and inorganic chemicals. 

 

The BZ reaction is an example of a reaction-diffusion system and relies upon the chemical 

process of catalysis in which a chemical compound speeds up the rate of a chemical reaction 

without itself being altered in the process. In particular the reaction involves autocatalysis in 

which the catalytic reactions make their own catalysts. Left unchecked this positive feedback 

loop would run out of control and all available reactants would quickly be used. However, the 

reaction also generates a side-product which in sufficient quantities enables a competing process 

that inhibits the autocatalytic reaction. The oscillatory nature of the reaction is a result of the 

competition between these processes. When the autocatalytic reaction is occurring it generates a 

set of products which diffuse through the medium, when it is inhibited a different set of products 

is formed. Left undisturbed the chemical system will eventually reach equilibrium, however, if a 

flow is established in which reactants are continually replaced and the products removed the 

system will maintain its non-equilibrium pattern forming state. The B-Z reaction is thus a 

chemical example of the ability of a system to spontaneously exhibit complex, ordered behaviour 

in the absence of explicit external control.  
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The spontaneous order seen in the examples given above are not isolated cases, rather pattern 

formation is at the heart of nature [86]. Given the propensity of the physical and chemical 

foundations of biological systems to generate patterns we might expect to see examples of similar 

phenomenon in biology. This chapter highlights examples of pattern formation that may be 

important components of current biological systems as well as fundamental to the origins of life 

itself. Firstly however, several important features of self-organising systems are drawn out that 

will provide context for later work. 

 

State space – an abstract space in which each location uniquely and completely describes the 

condition of the system. Each variable within the system defines a dimension in state space and 

the current value of the variables gives a location in that space. As an example, consider a 

reaction-diffusion system consisting of 100 chemicals that can be in one of two states; present or 

absent. The state space of this system would be a Boolean hypercube of 100 dimensions with a 

total of 2100 locations or system states.  

 

Attractor – a preferred behavioural pattern that the system naturally progresses towards. The 

simplest form of attractor is a fixed point in which the system progresses to a single location in 

state space and remains there until further perturbed. In a chemically reactive system this would 

correspond to chemical equilibrium. A more complex attractor is the limit cycle in which the 

system continuously cycles through a subset of states as in the B-Z reaction patterns shown 

above. More complex still are strange attractors in which the system adopts a chaotic behavioural 

pattern. The presence of attractors forces the system into a subset of its potential states and thus 

causes a contraction in effective state space volume. 

 

Basin of Attraction – the region of state space from which the system progresses to a given 

attractor. Attractors are said to drain areas of state space, these areas correspond to the initial 

states of the system from which it naturally progresses to that attractor. The drainage areas define 

the basin of attraction. 

  

Dissipative structures – self-organisation typically occurs in systems that are away from 

thermodynamic equilibrium and open to the flux of matter and energy. The examples above 

reveal the possibility of such dissipative systems to generate stable structures such as the Bénard 

cell and the spiral patterns of the B-Z reaction. These structures are called dissipative structures - 

a term widely attributed to Prigogine [23]. 

 

Interacting components – self-organisation occurs as a result of non-linear interactions between 

components of the system. There are typically, but not necessarily, many such components. It is 

often possible to obtain the same behavioural patterns with very different components if the same 

rules of interaction are adhered to.  
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2.3 The Origins of Life 

The Darwinian process relies on entities that exhibit the properties of multiplication, variation 

and heredity. That is they must be able to reproduce with heritable modifications. Today’s 

genetic material takes the form of DNA that is replicated by virtue of homologous base pairing. 

However, DNA is not able to replicate independently but requires a complex system of chemicals 

to do so. A key requirement is the availability of complex biological catalysts or enzymes. For 

these reasons it is highly unlikely that DNA was the first example of genetic material. The 

dominant view is that the first genetic material took the form of ribonucleic acids or RNA, which 

are able to replicate in a similar way to DNA by virtue of homologous base pairing [42]. 

However, they also have the ability to act as a catalyst and thus the replication of RNA could 

potentially be catalysed by other RNA molecules. This hypothesis is further supported by the 

successful evolution of RNA molecules in a test-tube environment. However, this replication also 

requires the use of complex enzymes that could not possibly have been present in pre-biotic 

earth. The replication of RNA using more simple molecules remains an unsolved problem.  

 

Today, natural replication always occurs in the context of a living cell that contains not only the 

DNA but all the supporting molecular machinery. The Darwinian perspective is that this 

molecular machinery was gradually gathered around the nude, replicating molecules driven by 

natural selection. However, the difficulties of producing suitable catalysts and the fact that all 

free living cells seem to have a minimum level of complexity has led some to question the RNA 

hypothesis and indeed whether homologous base pairing is a requirement for life at all [111,112]. 

Their alternative view is that complex systems of interacting chemicals emerged whole with the 

ability to sustain themselves and that the complexity of today’s cells is not a result of the gradual 

accumulation of a supporting cast for the first replicating molecules but an inherent feature of 

living systems. The emergence of such a chemical system relies on the phenomenon of catalysis 

that was discussed in the previous section. As with the B-Z reaction the key process is 

autocatalysis that enables the formation of sets of chemicals that have the ability to catalyse their 

own reproduction. Such a chemical system is called an autocatalytic set and forms the basis of 

this alternative view of the origin of life. 

 

Figure 2.3 shows a simple autocatalytic set containing two molecules. The important feature is 

that all the reactions in the set are catalysed by products of other reactions from within the same 

set and hence it exhibits the property of catalytic closure. Thus, given a supply of ‘food’ 

molecules from the environment all the products of the set can be manufactured by catalysed 

reactions and the chemical system is able to sustain itself. A feature of autocatalytic sets is one 

shared by all living organisms; metabolism. That is, molecules are consumed from the 

environment and used to build chemical compounds. In the process energy is dissipated during 

chemical reactions for example. Autocatalytic sets can thus also be categorised as a form of open 

thermodynamic system in which energy is constantly being exchanged with the environment. 

This is an important feature as it allows complex but ordered patterns of activity to be maintained 



 11

away from chemical equilibrium as was seen with the B-Z reaction in the previous section. This 

is a property of all free-living cells for whom chemical equilibrium corresponds to death.  

 

 

Figure 2.3: A simple autocatalytic set. Molecules A and B react to form AB and BA, which 
in turn catalyse the reactions that form each other. This chemical system is self-sustaining 
given a supply of molecules A and B [112]. 

 

The ability of autocatalytic sets to metabolise and sustain themselves makes them a candidate to 

act as a substrate for Darwinian evolution. However, before such a process can take hold these 

sets must have the ability to reproduce with variations that can be inherited by their progeny. 

Before reproduction can take place autocatalytic sets must grow. That is, the constituents of the 

chemical system must be duplicated such that division can occur leaving copies of all the 

chemical constituents in both resulting systems. This is a natural result of autocatalysis. In the 

chemical system shown in Figure 2.3, as the compounds AB and BA are formed they will 

catalyze the formation of yet more AB and BA, the number of catalysts are increased and hence a 

positive feedback cycle is formed. Thus, with a sufficient supply of molecules A and B all the 

constituents of the chemical system will increase in volume thus allowing division into two 

separate systems that can grow individually. Such a scenario also allows for the inheritance of 

variations. For more complicated chemical systems, the division may result in slight differences 

to molecular constituents of the separated systems. The resulting systems may still exhibit 

collective catalysis but with slightly different properties to the original system.  

 

A prominent proponent of this viewpoint is Stuart Kauffman who has studied mathematical 

abstractions of systems of this kind. An intriguing result of this work is that as molecular 

diversity and complexity increases the emergence of autocatalytic sets is a probable rather that 

unlikely outcome [111]. Thus, rather than the vastly improbable accumulation of catalysts to 

support RNA replication the first living systems may have been a probable outcome of the 

chemically complex primordial soup. Autocatalytic chemical systems may have spontaneously 

A 

B 

BA 
AB 
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emerged which grew in complexity and were eventually refined into today’s organisms. While 

this is an enticing idea, it is not without its difficulties. Autocatalytic sets must replicate as a 

whole i.e. there is no encoding of the information and thus the heredity is limited. In order to 

allow unlimited heredity the information must be compressed as in RNA or DNA molecules [42]. 

However, it is possible that autocatalytic sets may have contained RNA molecules whose role 

could subsequently be modified into information encoders. It has also been suggested that 

autocatalytic sets could have been “invaded” by RNA molecules to allow their replication much 

like today’s viruses [22].  

 

Autocatalytic sets have the potential of exhibiting all the properties required of the first living 

systems. They are persistently displaced from equilibrium by the flow of molecules and energy 

through them, energy that is dissipated in order for the system to sustain itself. As we have seen, 

a feature of such dissipative systems is their propensity to spontaneously exhibit ordered patterns 

of activity and thus in this view such spontaneous order is the foundation on which biological 

organisms are built, an order that must be respected by natural selection.  

 

2.4 Developm ental Biology 

Today’s biological organisms are the expressions of intricate developmental processes that 

transform a single cell into a complex dynamical form. Understanding this process is a 

formidable task and is the subject of much biological research. It is possible to decompose 

development into four sub-processes; pattern formation, morphogenesis, cell differentiation and 

growth [48]. Much of the research into these processes focuses on the specific details of a 

particular system and this work has shed much light on the mechanisms of development. A 

common view is that the developmental process is under tight genetic control and that the order 

within an organism is largely specified by the genes. However just as in physics and chemistry, 

developmental systems may also be influenced by the spontaneous emergence of order in self-

organising systems. This is a concept that is expanded on in this section. 

 

2.4.1 Pattern Form ation 
 
Following fertilisation, an egg undergoes a period of rapid cell division that produces a number 

of identical cells. The formation of a pattern from this homogenous state is an important 

component of development. A seminal contributor to the understanding of this process was Alan 

Turing who was interested in biological patterns such as the spots on a butterfly’s wings and the 

stripes of a Zebra. Turing investigated how such spatially ordered patterns could be generated 

from an initially homogeneous state and postulated that the fundamental process behind these 

patterns was a reaction-diffusion chemical system such as the B-Z reaction [5]. 
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Consider the simplest example of such a chemical system consisting of two chemicals A and B 

that are able to diffuse through some medium. Chemical A is an “activator” as it catalyses the 

formation of both chemicals and chemical B is an “inhibitor” as it inhibits the formation of both 

chemicals. Starting from an initially homogeneous state, a perturbation may occur in which a 

small amount of chemical A is added. The addition of this chemical will activate the production 

of both chemicals and hence a local peak in concentration will develop. A higher concentration of 

chemical A will be present due to the initial perturbation, a difference which may be exaggerated 

by chemical A being a more efficient auto-catalyst than a catalyst of chemical B. Consider the 

case in which chemical B diffuses more quickly than chemical A. Chemical B will quickly 

diffuse away from the local peak and inhibit the formation of A, thus creating an isolated peak of 

chemical A surrounded by relatively high concentrations of chemical B. This process can be 

repeated in other areas of the medium which are away from the influence of the inhibitor. This 

reaction-diffusion system thus has the ability to spontaneously create regular, stationary patterns 

of chemical concentrations from an initially homogeneous state. Turing’s initial work focussed 

on abstract models however the effect has subsequently been created in real chemical systems 

confirming the ability of such systems to generate patterns often witnessed in biological systems 

[87]. 

 
Of course, the ability of Turing patterns to form biological patterns does not necessarily mean 

that these patterns are actually created via such a mechanism in real biological systems. In reality 

a number of different mechanisms are likely to be at work which may not involve such 

spontaneous pattern formation. One example is the ability of cells to acquire information that is 

related to their position along some developmental axis. This is achieved by use of a diffusing 

chemical or morphogen that is emitted at one end of the axis and reduces in concentration as it 

diffuses away from the source. Cells along the axis will thus be subjected to different 

concentrations of the chemical depending on their position and the concentration has the ability 

to alter the expression of genes within the cell. Such a mechanism plays an important role in the 

well-studied development of the fruit fly Drosophila [26].  

 

Whether Turing patterns complement mechanisms such as this in biological development remains 

an open question. Concrete proof will require identification of the specific chemicals involved, 

which has yet to be achieved. However, there are a number of examples that are very suggestive 

of the formation of Turing patterns. One such example is the angelfish [104], which has a parallel 

striped body pattern. However, these stripes are not laid down at an early stage of development as 

with the patterning of the Drosophila body pattern. As the fish grows the stripes widen as would 

be expected. However, as its size passes a threshold the pattern spontaneously changes and new 

stripes appear in between the old stripes. This strongly suggests that a chemical reaction-diffusion 

system is ongoing and that spontaneous pattern formation is one tool used within biological 

development. 
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2.4.2 M orphogenesis 
 
Morphogenesis literally means the creation of form and involves the generation of a complex 

three-dimensional shape from a collection of cells. In the embryo, cells are held together by 

specific cell adhesion molecules. Changes in the shape of the embryo and cell migration are due 

to changes in cell adhesion and the forces generated by the cell, which are the result of the 

expression of different genes. As in early pattern formation, positional information derived from 

chemical gradients is likely to be an important component in influencing the changes in gene 

expression required for morphogenesis. However as with pattern formation, morphogenesis may 

also be influenced by spontaneous pattern formation.  

 

It has been postulated that structuring of the body plan is influenced by spontaneous instabilities 

much like those that arise in chemical Turing patterns [35]. The diffusing chemicals cause certain 

types of cells to clump together and hence exert a force on the surrounding medium. These forces 

cause instabilities that may result in discontinuities that could account for limb patterns as well as 

other patterns such as the polygonal patterning of bird’s feathers and reptile scales. The 

mathematical model is a form of reaction-diffusion system in which the interactions are between 

mechanical and chemical properties of the system rather than chemical interactions alone.  

 

Another example of such a “mechanochemical” model is of the algae acetabularia acetabulum, 

whose morphogenesis has been studied in some detail [6,7].  The organism is more commonly 

known as the Mermaid’s cap due to its structure consisting of a short stalk terminated by a cap of 

detailed structure. The Mermaid’s cap is a single-celled organism containing four main 

components – the cell wall, the nucleus, the cytoplasm and a large fluid filled chamber called the 

vacuole, which exerts pressure on the cell wall to maintain its shape. The studies revealed that the 

cytoplasm, utilising products from the nucleus, was responsible for orchestrating the construction 

of several rings of leaf like structures called whorls. One important feature of the generation of 

this form is the calcium concentration within the cytoplasm. This concentration affects the 

cytoplasm’s mechanical state and its resistance to deformation. Variances in calcium 

concentration can thus result in changes to the shape of the cell. In turn, a change in mechanical 

state of the cytoplasm also affects the calcium concentration. The interactions between these two 

features of the developing organism can be modelled in the same way as the interactions between 

chemicals in the BZ reaction, for example. Such a model allows the patterns that emerge through 

the interactions of calcium concentration and mechanical state to be investigated. These studies 

suggested that just as spiral patterns and concentric circles are patterns that are spontaneously 

generated in the BZ reaction, the whorl in the Mermaid’s cap is a similar pattern that 

spontaneously emerges from the interactions between calcium concentration and mechanical 

state. 

 
An intriguing example of the role of self-organisation in morphogenesis comes from an organism 

called the cellular slime mould which has a unique life cycle with two very distinct phases. When 
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the organism’s bacterial food is in good supply the slime mould operates as a collection of 

independent amoeba that move around their environment engulfing the bacteria. However, when 

the bacteria are in short supply a very different behaviour is triggered. Starving cells periodically 

emit a chemical that stimulates neighbouring cells to do two things. Firstly, they emit the same 

chemical and then move towards the origin of the received signal. A number of amoebae in the 

population may initiate such a process and thus the population as a whole begins to move towards 

one of a number of chemical emitting sources. This reaction-diffusion process results in patterns 

of activity that are very much like the patterns observed in the BZ reaction and is indeed 

mathematically equivalent. A Petri dish covered with a layer of starving amoeba would look very 

similar to a Petri dish covered with a layer of BZ solution even though the details of the 

substances are very different. The aggregated amoebae gather together and form a multi-cellular 

organism that becomes progressively more complicated in form. The resulting structure consists 

of a base, a stalk and a fruiting body that contains spores that are able to survive the difficult 

conditions. When conditions are more favourable the spores are released and the life cycle 

repeats. The chemical patterns that spontaneously occur in a reaction-diffusion system thus form 

an integral component of the cellular slime mould’s development. 

 
While these examples are suggestive of a role for self-organisation in morphogenesis, surface 

similarities between physiochemical and biological patterns do not necessarily imply a common 

cause. This point is highlighted by the example of the honeycomb structure of a beehive. This 

structure is exceptionally well optimised to minimise the amount of wax and labour required to 

build it. D’Arcy Thompson proposed that the structure did not arise due to progressive 

improvements of the bee’s manufacturing ability but rather was simply the hexagonal pattern that 

naturally arises in response to surface tension as bubbles are packed [11]. The bees may simply 

have been creating bubbles in the liquefied wax and letting self-organisation do its work. While 

this was an elegant solution, it turned out to be incorrect. Bees actually use a sophisticated set of 

genetically specified tools to perform this construction task.  

 

Construction of a beehive could not however be carried out without interactions between the 

individuals that make up the colony. No single bee co-ordinates the construction of the 

honeycomb or has any concept of the structure that it is contributing to. Rather each bee carries 

out a set of simple genetically coded actions. The overall result of the actions of thousands of co-

ordinated and interacting bees is the ordered honeycomb structure. Examples of such self-

organisation are common in colonies of social insects and indeed the survival of the colony 

depends on it. Regulation of temperature in a beehive, the construction of a termite’s nest and the 

foraging behaviour of ants are some of the many examples. 

 

2.4.3 Cell differentiation 
 
Cell differentiation leads to distinguishable cell types with specialised characteristics. The 

properties of each cell type are defined by different patterns of gene activity, which in turn 
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determine the proteins produced within the cell. Each cell manufactures a basic set of proteins 

that enable it to perform the basic cell functions. However, different cell types manufacture 

additional so-called “luxury” proteins that allow the cell to carry out specialised functions. The 

pattern of gene expression that allows the creation of these proteins may be influenced by 

external factors such as chemical gradients as we have already seen. Such external influences 

may cause a particular gene to be expressed or inhibited for example. However, the effect of such 

a change may not simply be the presence or absence of a single protein but be more wide-

ranging. 

 

Genes have the ability to regulate each other. In effect they can turn each other ‘on’ and ‘off’ by 

coding for transcription factors that bind to control regions defining whether or not a gene is 

expressed [20]. This effect allows the formation of complex regulatory networks. In the simplest 

case a sequence of DNA might encode two genes with the ability of inhibiting each other. Thus, 

in one cell type one of the genes may be active and in an alternative cell type the other gene may 

be active. Vastly more complex genetic circuits such as these are evident in the cell types of 

today’s organisms. Drosophila has approximately 15,000 active genes, an estimate that rises to 

anything between 30,000 and 120,000 for humans. Genomic systems of this size create vast 

interconnected genetic regulatory networks with their own intrinsic dynamics.  

 

It is possible to get a grasp on the nature of these dynamics using an abstract model called a 

Boolean network. This idealisation allows a genotype to be thought of as a network of nodes and 

directed edges. Each node represents a particular gene that can be either on or off and each edge 

represents a regulatory interaction. Thus, an arrow leading from one node to another indicates 

that the former either inhibits or promotes the expression of the latter. A given gene is typically 

regulated by a number of other genes, each of which can be in one of two states. Thus with L 

regulating inputs there are 2L possible input configurations, some of which will result in the 

expression of the gene and others will not. The rules governing this process can be generated 

using familiar Boolean logic. For example, an AND-rule could be used in which the gene is 

expressed if all the regulating inputs are present. The OR-rule could also be used in which the 

gene is expressed providing at least one of the inputs is present. A simple network of this type is 

shown in Figure 2.4. 
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Figure 2.4: A simple Boolean network. The formation of each of the 3 molecules is regulated 
by the other 2 molecules according to the given rule tables. The rule table of molecule 1 is 
the Boolean AND function whereas the rule table of molecules 2 and 3 is the Boolean OR 
function. The dynamics of this network can be captured by the state transition table shown 
on the right. From each state of the network at time t, this table gives the next state at time t 
+ 1.  

 
 
These Boolean networks are a discrete approximation to the dynamics of a genetic regulatory 

network. Each node is simultaneously updated and as a result the input configurations of each 

node may be altered. Iterative updates will therefore result in the network traversing a sequence 

of network states. The dynamics of the network can be captured in the form of the state transition 

table shown to the right of Figure 2.4. Starting in any of the 8 possible initial states the cycle of 

states the network passes through can be ascertained by consulting this table. The state cycles for 

this network are shown in Figure 2.5. 

 

 

Figure 2.5: State cycles for the Boolean network shown in Figure 2.4. All 8 initial states 
settle on to one of three final behaviours. Two of these are fixed points at 000 and 111, the 
third is a limit cycle endlessly cycling between two states. 

 
 

These state cycles reveal that there are only three possible final behaviours of the network. Two 

of which are fixed points, that is a single state at which the system remains unless further 
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perturbed and the third is a limit cycle, which is a subset of states that the system continually 

cycles between. In the two leftmost state cycles shown in Figure 2.5, any perturbations will result 

in the system being knocked in to a different state cycle and hence a different final behaviour. 

These state cycles are thus unstable. In contrast, the third state cycle reveals a far more stable 

behaviour that is characterised by the presence of an attractor. When the system is initialised in 

any of five possible states the natural dynamics result in the system converging on the fixed point 

attractor corresponding to the expression of all 3 genes. This attractor has a basin of attraction 

consisting of four states i.e. half the state space of the system and is thus relatively stable, 

changing any individual ‘1’ to a ‘0’ will perturb the system away from the attractor but not away 

from the basin of attraction and thus the system will quickly progress back towards the fixed 

point at which all genes are expressed.  

 

This network is very simplistic and its dynamics are heavily influenced by the specific rule tables 

and interactions that were chosen. It is possible, however, to study more generic properties of 

these systems by assigning the rule tables and interactions at random. Such a network is called a 

random Boolean network (RBN) [111] and forms the basis of one of the mappings developed in 

chapter 4 of this thesis. An RBN is characterised by two variables, N and K. The former indicates 

the number of nodes in the network and the latter the number of regulatory inputs per node. With 

K randomly chosen inputs there are 2K possible Boolean rule tables, one of which is chosen at 

random for each node. Such a system allows large numbers of different networks to be 

investigated with different settings of the N and K parameters.  

 

Extensive investigations of this type have revealed that the value of the K parameter is crucial in 

defining the nature of the systems state cycles [111]. When K = 1 and each gene is only regulated 

by a single input, small sub-networks of genes tend to form and the activity quickly settles into 

attractors consisting of a very small number of states. Many of these are fixed point attractors 

corresponding to chemical equilibrium and thus this class of network does not exhibit the more 

complex chemical patterns of interest. At the other extreme, when K = N and every gene is 

regulated by every other, the networks are maximally disordered. In effect, the next state of the 

network is a random choice among the 2N possible states. However, even in this case attractors 

are present. The number of attractors is approximately equal to N/e, where e is 2.7182 i.e. the 

base of natural logarithms. Thus, a system containing 80,000 genes would result in approximately 

30,000 attractors. However in contrast to K=1 networks, these attractors consist of very long state 

cycles that could not be completed in any reasonable time frame and are thus not biologically 

realistic.  

 

Thus, one extreme of the K parameter leads to an inflexible network that tends towards chemical 

equilibrium and the other extreme creates a maximally disordered network. However, interesting 

properties emerge when the K parameter is set to 2 causing each gene to be regulated by two 

other molecules. In this case the number of attractors is approximately equal to the square root of 
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the number of nodes, N. Thus, an 80,000 gene network would result in approximately 300 

attractors, far fewer than for K=N networks. In addition the cycle lengths of the attractors are 

relatively short; on average they are also approximately equal to the square root of N. Thus, there 

is very large contraction of the volume of state space that the system occupies – of the possible 

280,000 states the system is compressed into around 300.  

 

However, an important question remains - how likely is it that in real organisms genes have this 

few regulatory inputs? Developments in experimental biology allow us to examine patterns of 

gene regulation in real organisms. These investigations reveal that the number of regulatory 

inputs is typically relatively low but not necessarily 2. However, another important fact emerges. 

Regulated genes and many other biochemical processes are governed by canalising functions. 

That is, at least one of the regulatory inputs has a value that alone suffices to guarantee that the 

regulated gene will have a given value. For example if a given gene is regulated by two different 

molecules, the presence of one of the molecules may be sufficient to guarantee that the gene will 

be expressed independently of the other molecule. In the Boolean idealisation the OR function is 

an example of a canalising function. The presence of any of the inputs alone is sufficient to 

guarantee that the output will also be present. The significance of this is the effect canalising 

functions have on the dynamics of the genetic regulatory network and the random Boolean 

network model. When the rule tables governing the next state of a node are chosen to be 

canalising functions, the networks exhibit ordered behaviour. Thus even if the number of 

regulatory inputs is greater than 2, canalising functions force the network into an ordered state.  

 
While the idealisations made in the RBN model may limit its relevance to real chemical systems 

which exhibit graded rather than digital responses, it seems likely that the dynamics of self-

organising genetic regulatory networks impose some constraints on patterns of gene expression. 

Evolution may not have a free hand in tailoring genetic expression. Thus in cell differentiation, 

pattern formation and morphogenesis the same pattern emerges. Darwinian evolution may not be 

able to create arbitrary form, characteristic or behaviour but must work under the constraints 

imposed by the intrinsic dynamics of a self-organising process. This change in perspective has 

the potential of wide ranging impact on the biological sciences that may ultimately demand a new 

theory of biological order incorporating both natural selection and self-organisation. However, an 

immediate consequence is on our view of evolutionary dynamics. 

 

2.5 Evolutionary Dynam ics 

For many years the overriding metaphor used to visualise evolutionary dynamics has been the 

fitness landscape introduced by Sewall Wright [108]. In this metaphor, an evolving population is 

thought of as moving on a landscape that typically has a number of peaks and troughs. The peaks 

represent genotypes that are well adapted to their environments i.e. that have a high fitness, and 

the troughs represent genotypes of relatively low fitness. Each location in this abstract space 

represents a unique genotype and hence it is termed genotype space. Events such as mutation and 
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recombination modify the genotypes and hence change their location in the space. Changes that 

result in a genotype of higher fitness result in an up-hill movement and tend to be selected for and 

preserved in the population. The continual pressure of natural selection thus has the effect of 

pulling the population towards the peaks.  

 

This metaphor has been very successful in aiding our understanding of evolution. However, an 

evolutionary process operating on such a landscape suffers from a major drawback – the presence 

of local optima. Under the influence of natural selection, a population will climb any hill in its 

vicinity. However, it may turn out to be a foot hill rather than a mountain and the population can 

become isolated in these locally optimal but globally sub-optimal regions of the landscape. A 

landscape containing such local optima is shown in Figure 2.6. As the population climbs the hill 

it converges into a small area of genotype space resulting in a population of very similar 

genotypes. Sexual recombination thus has little effect, producing a genotype that also resides in 

this isolated area of genotype space. Mutations allow small changes to the genetic constitution of 

the population but every step leads downhill from the local optimum. A higher mutation rate 

allows larger jumps to be made in the landscape, which may allow small valleys to be negotiated 

but large hopeful leaps are unlikely to find genotypes of higher fitness. In addition, as the 

mutation rate increases further the disruption becomes too large for natural selection to withstand 

and the population loses its current optima due to the onset of an error catastrophe [52]. 

 

 

Figure 2.6: An example fitness landscape containing local optima. Even numbered 
genotypes are locally optimal but only genotypes 0 and 16 are also globally optimal.  

 
 

Local optima thus have the potential to result in an end to evolutionary innovation, an outcome 

which does not resonate with the seemingly boundless creativity of natural evolution. The above 

metaphor is of course a simplification. One major omission is the fact that a biological species 

never evolves in isolation on a static landscape but in the context of a complex ecosystem. Each 
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species within this ecosystem is attempting to climb its own hill and in so doing deforms the 

landscapes of the other species. Such co-evolution fundamentally changes the picture of adaptive, 

hill-climbing walks on fitness landscapes. However, even without such complications the 

emerging appreciation of self-organisation suggests that the fitness landscape metaphor may be 

incomplete. 

 

2.6 Neutrality 

The fitness landscape metaphor outlined above maps a fitness value directly to the genotype, a 

process that intentionally disguises the complexities of the intermediary processes. The overall 

genotype-fitness mapping can be decomposed into two separate mappings; the genotype-

phenotype mapping and the phenotype-fitness mapping as shown in Figure 2.7. This separation 

recognises the fact the genotype is expressed in a phenotype, which in turn is subject to natural 

selection. Thus, it is the phenotype that is assigned a fitness that may be a measure of its 

reproductive success for example. Both these intermediary processes have the potential of 

introducing their own particular properties into the overall genotype-fitness mapping. One of 

these properties is neutrality, which arises due to the fact that some changes to the genotype may 

have little effect on the phenotype or that some phenotypic changes may not effect its survival or 

reproductive success and hence fitness.  

 

Figure 2.7: The decomposition of the mapping from genotype to a fitness value into two 
separate mappings; the genotype-phenotype mapping and the phenotype-fitness mapping.  
Both of these processes may introduce properties to the overall mapping, one such property 
is neutrality. 

 
 
At a genetic level, neutrality is common in biological organisms. The genotypes of many 

organisms contain large amounts of DNA that is not transcribed and plays no obvious role in 

encoding proteins; it has thus been termed junk DNA. Whether this is truly “junk” is an open 

question, it may play some structural role for example. However, much of this DNA has become 

far removed from the regions of DNA that code for proteins. The possibility of it affecting the 

phenotype and its fitness by generating proteins is thus often remote. The genetic code itself also 

exhibits neutrality; the amino acids making up a protein are specified by codons composed of 

three nucleotides that can be one of four types. There are thus 43=64 possible codons, 61 of which 
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code for amino acids. However, there are only 20 different amino acids and thus some codon 

mutations are neutral as they do not change the amino acid or resulting protein. Larger scale 

neutrality, however, arises at a higher level than the genetic code. The neutral theory of molecular 

evolution proposes that the majority of changes at the molecular level are the result of the random 

drift of genotypes as opposed to changes that have been selected for [53]. Many natural amino 

acid replacements are neutral with respect to the function of the protein. In addition, such changes 

need not be strictly neutral in that they have absolutely no effect on fitness, rather they must be 

neutral with respect to natural selection in a dynamic environment. Ohta claimed that small 

differences in fitness are not visible to selective pressures and thus a band of fitness’s around the 

current optimum are effectively neutral [114]. 

 

However, the potential scale of neutrality in biological systems becomes apparent with the 

consideration of self-organisation. In this chapter we have seen a number of examples that 

suggest a role for self-organisation at many different levels in biological systems. In these 

systems many different initial states give rise to the same system behaviour. For example, many 

different genetic configurations in the random Boolean network give rise to the same pattern of 

gene expression. Changes to the genotype influence the dynamics of the self-organising process 

but many changes may not be sufficient to perturb the system away from the basin of attraction 

associated with the current attractor. The attractors define the observable behaviour of the system, 

i.e. the phenotype, and thus the basin of attraction defines a set of genotypes that give rise to the 

same phenotype. An effect of self-organisation is thus to introduce large-scale neutrality into the 

genotype-phenotype mapping.  

 

In many cases neutrality is also a feature of the mapping of these phenotypes to fitness values as 

different phenotypic features may not lead to an appreciable difference in an organism’s survival 

or reproductive prospects. Despite these many potential sources of neutrality, it is not currently 

emphasised in the dominant models and theories of evolution. Nonetheless, its consequences 

have the potential to be wide ranging. In the following section one such consequence is 

highlighted that has the potential of alleviating the problem of local optima; neutral networks. 

 

2.7 Neutral Networks 

The presence of large sets of genotypes that map onto the same phenotype and ultimately the 

same fitness adds a new dimension to the fitness landscape metaphor. In addition to climbing or 

descending a fitness gradient, a population also has the ability to drift at the same fitness level. 

Such neutral drift opens up the possibility for an evolving population to escape areas of genotype 

space from which no immediate progress is possible. Rather than become trapped at local optima, 

the population may be able to drift to new areas of the landscape that allow continued progress. 

In order to increase the probability of such an occurrence it would be beneficial to allow extended 

periods of neutral drift. Isolated neutral mutations allow small movement in genotype space but 

in many cases this may not sufficiently increase the probability of finding higher-fitness 
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phenotypes. However, a series of neutral changes allows access to far larger areas of genotype 

space which increases the probability of discovering areas from which new fitness peaks may be 

reached.  

 

Maynard-Smith analogised this process with a popular word game in which one word is 

transformed into another via a series of individual letter changes that leave a valid word at each 

stage [43]. For example, WORD can be transformed into GENE by the series of transformations 

WORD – WORE – GORE – GONE – GENE. Valid words can be thought of as functional 

proteins and the letters as the constituent amino acids, which are ultimately genetically defined. 

Thus if each replacement were neutral i.e. if each protein was functionally equivalent, then 

significant movement would be possible in genotype space without changing the fitness. All the 

genetic primitives have been changed but the functional phenotype is unaltered. In order to allow 

neutral drift such as this therefore, it is not only important for the phenotypes to be represented by 

sets of genotypes but also that these sets are connected by neutral genetic changes forming so-

called neutral networks [85]. 

 

 

Figure 2.8: The formation of a giant component in genotype space. Shaded circles represent 
the genotypes within a neutral set and the edges represent neutral transitions between 
genotypes. When the ratio of edges to vertices is low (left of figure) the genotypes are 
isolated into small subsets. However as this ratio increases beyond 0.5, random graph 
theory predicts the formation of a giant connected component that contains the majority of 
the genotypes (right of figure). This component corresponds to a neutral network that can 
percolate throughout genotype space. 

 

 

The likelihood of the formation of connected networks such as these can be investigated through 

the use of mathematical models derived from random graph theory. A mathematical graph is 

composed of a set of vertices that are connected by edges. In this case, each vertex can be thought 

of as one of the genotypes in a particular neutral set and edges can be thought of as representing 

neutral transitions between genotypes. Thus, subsets of vertices are formed that are composed of 

genotypes reachable from each other via neutral genetic modifications i.e. that represent neutral 

networks. Studies of these abstract graphs have revealed that as the ratio of edges to vertices 

passes a threshold of 0.5, a giant component is formed that includes a large majority of the 



 24

vertices [71]. Equivalently, as the average number of neutral transitions per genotype passes 0.5 

the number of genotypes in the largest subset rapidly increases from a relatively small number to 

encompass a large majority of the genotypes in the neutral set. With sufficient neutrality 

therefore, large neutral networks are formed that percolate throughout genotype space. This 

process is visualised in Figure 2.8. 

 

The percolation of neutral networks allows a population to move extensively through genotype 

space. Such extended movement greatly increases the number of accessible phenotypes and thus 

may be an important component in allowing continued evolutionary innovation. The diffusion of 

a population of a neutral network is visualised in Figure 2.9. The figure depicts genotype space 

sub-divided into a number of neutral networks. At stage 1, the population has recently discovered 

a new neutral network which it gradually drifts along until at stage 8 it comes within proximity of 

a neutral network of higher fitness. A single individual discovers this neutral network at stage 9 

and the pressures of natural selection quickly establish the population there. 

 

 

Figure 2.9: Visualisation of a population’s diffusion on a neutral network. At stage 1, the 
population has recently discovered a higher fitness neutral network (shaded). The 
population gradually drifts along this network until at stage 8 it comes within proximity of 
a neutral network of higher fitness. This neutral network is first discovered at stage 9 and 
the population is quickly established there. 

 

 

In this view therefore rather than continuous gradual increases in fitness, evolutionary dynamics 

are dominated by periods of little or no gain as a population moves along a neutral network 

punctuated by rapid gains as a neutral network of higher fitness is discovered. These punctuated 

equilibrium dynamics were first proposed to describe sudden morphological changes in the 

palaeontology record [106]. While the validity of this punctuated equilibrium theory remains in 

question, the associated evolutionary dynamics are commonly observed. Examples include the 

evolution of bacterial colonies [101] and the evolution of biopolymers.  The latter have been 

widely studied and the impact of neutral networks on the evolution of biopolymers analysed in 
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depth. While some of this work has involved the study of protein molecules [2,3,82], the primary 

focus has been RNA molecules and is described in detail in the following section. 

 

2.8 RNA Folding 

RNA molecules are biopolymers composed of four units called nucleotides. These units are the 

four different bases – A for adenine, U for uracil, C for cytosine and G for guanine. The bases are 

subject to similar base-pairing rules as were discovered by Watson and Crick for DNA 

molecules, adenine pairs with uracil (A-U) and guanine with cytosine (G-C). The base pairs 

allow segments of a sequence to bind with other segments within the same sequence, which in 

turn causes the molecule to fold back on itself into a three-dimensional structure. This structure 

defines the chemical interactions of the molecule and hence its functional role. RNA molecules 

are highly evolved and crucial components of today’s organisms playing a wide variety of 

functional roles. Their evolution, however, need not take place exclusively within an organism 

but can also take place in isolated environments. Such in vitro evolution aims to produce RNA 

molecules that play certain functional roles. It is possible as the base-pairing also allows RNA 

molecules to replicate via a complementary negative sequence in a similar way to DNA. Thus, in 

these isolated environments the RNA molecule can act as both genotype and phenotype. 

 

In this scenario the genotype-phenotype mapping reduces to the folding of an RNA molecule 

from its primary nucleotide sequence into a specific structure. This structure can be observed at 

different levels of resolution. The final structure of the molecule, called the tertiary structure, is 

geometrically defined in terms of distances and coordinates. However, it can be decomposed into 

secondary structures that provide the scaffolding for the tertiary structure. These secondary 

structures refer to the topology of contacts that arise from specific base-pairing as shown in 

Figure 2.10. 

 

 

Figure 2.10: Several building blocks of RNA secondary structures. The secondary structure 
defines the topology of contacts that arise through specific base-pairing within the primary 
nucleotide sequence. 

 

Not only is the secondary structure very useful for interpreting molecular function, selection 

pressures also become observable at this level of resolution in terms of conserved base pairs. For 

these reasons the secondary structure can be usefully considered as a phenotype. An important 

consequence of this choice is the fact that the phenotype is computable from the nucleotide 

G 

C 
U 

C 

A 

Hairpin loop 

A C 

U G 

Stacking pair 



 26

sequence. Algorithms have been developed that allow the rapid computation of the secondary 

structures [34] that can also be implemented in parallel [32]. These algorithms allow extensive 

studies to be made that reveal a number of properties of the genotype-phenotype mapping, many 

of which are independent of the particular algorithm that is used [57].  

 
One study of this kind involved the exhaustive folding of all G-C and A-U sequences up to a 

chain length of 30 [135]. This gave a complete picture of the genotype-phenotype mapping for 

sequences of this type. This data was compared to that derived from analytical techniques in 

which random graph theory was used to model the mapping [9,10] and that from the statistics of 

large samples derived by folding random sequences of fixed chain length [85]. In all these cases a 

number of common properties emerged which are highlighted below [66,79-81,83,84,133,134]: 

 

2.8.1  Large scale neutrality  

The primary nucleotide sequence is made up of chains of one of four bases, these chains can 

become relatively long and thus the size of genotype space becomes very large. For a chain 

length of 30 the number of sequences and hence the size of genotype space is 430 or 

approximately 1018. However the number of secondary structures that each sequence maps onto is 

very much smaller. The analysis revealed that an upper bound to the number of secondary 

structure shapes is given by [9,33]: 

 

Sn = 1.48 x n
-3/2(1.85)n  Equation 2.1 

 
Where n is the length of the nucleotide sequence and Sn is the number of shapes. Thus, for a chain 

length of 30 the number of shapes is approximately 917,665 - a vastly smaller number than the 

number of sequences. On average approximately 1012 sequences map onto each shape and there 

is thus very large scale neutrality. 

 

2.8.2 Com m on structures 

The sets of sequences folding into each possible shape are not of equal size - the sequences 

forming some shapes occur very much more frequently than others in genotype space. These 

shapes are termed common structures, which can be straightforwardly defined as those that are 

represented by a greater or equal number of sequences than the average shape. Thus for the 4 

base alphabet and chain length of 30 described above, common structures are those that are 

represented by at least 1012 genotypes. An exhaustive analysis of restricted sequences consisting 

of only G and C bases revealed the extent of this skew in distribution [135]. For 2 base sequences 

of length 30 a total of 218,820 different shapes are produced. Only around 10% of these are 

common structures, however, over 93% of sequences folded into one of these common structures 

leaving only around 7% of genotype space for the rare structures. As the chain length increases 

these differences are further emphasised as the number of common structures decreases but the 

fraction of sequences forming those structures tends to unity. Thus, with sufficiently large chains 
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almost all sequences fold into a small number of secondary structures. From these results it is 

clear to see that the evolution of RNA molecules is dominated by the common structures and the 

rare structures play little role.  

 

2.8.3 Neutral netw orks 

As was described earlier, neutral networks are formed by sets of genotypes that are connected by 

neutral genetic modifications. In this case, RNA molecules replicate asexually and thus the 

neutral neighbourhood is defined solely by mutation events. The analysis focuses on the most 

probable of these - single-point neutral mutations. The common structures were found to have a 

high fraction of neutral neighbours i.e. many mutations of a sequence folding into a common 

structure would result in a sequence that also folded into the same structure. The random graph 

models predicted a critical threshold of neutral neighbours at which the neutral set would be fully 

connected [9], this is shown below: 

 
* = 1 –� 1/1- �  Equation 2.2 

 

Where  is the number of bases in the alphabet and * is the threshold of neutral neighbours at 

which a fully connected neutral set emerges. Thus for a 2-base alphabet such as the study 

involving only G and C bases, the threshold of neutral neighbours is 0.5. As the alphabet grows 

to the 4-bases of natural RNA molecules, the threshold drops to 0.37. This requirement is 

satisfied by all common structures and thus large, fully-connected neutral networks are formed 

that percolate throughout genotype space. An evolving population is thus able to move very large 

distances in genotype space through neutral drift. In contrast, the rare structures do not meet these 

requirements and the neutral networks associated with them are small, fragmented and isolated.  

 

2.8.4 Shape space covering 

An important consideration when an evolving population is drifting along a neutral network is the 

likelihood of encountering the neutral networks associated with other, potentially higher fitness, 

phenotypes. That is, the accessibility between the neutral networks associated with each of the 

common structures. In the RNA mappings, it was found that each of the common structures could 

be found within a small radius of any arbitrarily chosen sequence [132]. Thus, from any location 

in genotype space only a relatively small distance needed to be travelled along a neutral network 

in order to encounter each of the common structures. This is visualised in Figure 2.11. 
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Figure 2.11: Shape space covering in the RNA folding landscapes. A very large number of 
genotypes fold into each common secondary structure. From any arbitrary location in 
genotype space only a small fraction of the space needs to be searched in order to find 
sequences that fold into each of the common structures.  

 

The radius from any arbitrary sequence within which all common structures are discovered was 

termed the covering radius. For a sequence of length 30 the covering radius was found to be 4. 

That is, all common structures were within 4 mutations of any arbitrary sequence. For sequence 

lengths of 100 the covering radius rose to 15 mutations. These statistics suggest that new 

common structures would be readily found as a population drifted along a neutral network. This 

hypothesis has been supported by performing random neutral walks [65]. These experiments 

simulated an individual drifting along a neutral network and assessed its single-point mutation 

neighbourhood along the way. The number of different secondary structures discovered in this 

neighbourhood gave a measure of the accessibility between neutral networks. The results 

revealed that the number of secondary structures discovered increased linearly; every neutral 

mutation gave access to similar number of new structures. In addition, the innovation of new 

secondary structures did not show signs of slowing but continued for the 1000 neutral steps that 

were taken.  

 

The results suggest therefore that long periods of neutral drift are not required before 

encountering previously undiscovered phenotypes but rather that there is a constant innovation of 

phenotypes along the neutral walk. Consequently, neutral drift does increase the probability of 

discovering higher fitness phenotypes. This probability may be further increased when a 

population rather than an individual inhabits the neutral network. Not only does this increase the 

effective neighbourhood that is being assessed but the population tends to split into a number of 

sub-populations that diffuse independently along the network. These so-called molecular quasi-

species thus allow different regions of the neutral network to be explored by the same population 

[64]. 

 

Genotype space Phenotype space 
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2.9 Sum m ary 

In this chapter, the background and motivation for subsequent work has been described. The key 

points are highlighted below: 

 

• Natural systems have a propensity to self-organise and evolution may have always 

worked within the context of such self-organisation. Evidence was presented that 

suggests a role for self-organisation in the origins of life as well as current 

developmental biology. 

• Self-organisation constrains evolution. From a large number of initial states, a self-

organising system naturally converges towards one of a relatively small number of 

preferred behaviours. Evolution cannot create arbitrary form, characteristic or behaviour 

but must work within these constraints. 

• The coupling of self-organisation and evolution changes our perception of evolutionary 

adaptation. Many genotypes result in the same phenotype and thus many genetic 

changes are neutral. Evolutionary dynamics are dominated by periods of stasis 

punctuated by rapid gains. 

• With sufficient neutrality, the sets of genotypes mapping onto a given phenotype are 

connected into neutral networks that percolate throughout genotype space. Neutral drift 

on these networks allows a population to escape from locally optimal but globally sub-

optimal regions of the fitness landscape. 

• Extensive studies of the fitness landscapes arising in the evolution of RNA molecules 

reveal that such neutral drift allows constant innovation of new phenotypes. 

 

A primary aim of this work is to design self-organising genotype-phenotype mappings that share 

the key properties of natural genotype-phenotype mappings as evidenced by RNA molecules. 

This work is described in later chapters. Firstly however, the following chapter reviews work 

within artificial evolution that has investigated the effects of neutrality. 
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Chapter 3 

 

Neutrality in Artificial Evolution 

 
 

3.1 Introduction 

A common practice in artificial evolution is to encode potential solutions in such a way that 

changes to the genotype directly affect the current phenotype or solution. As an example, 

consider the problem of evolving the topology of a network together with the locations of its 

constituent nodes. In this example there are a fixed number of nodes that may be placed 

anywhere on a two-dimensional grid and may be connected by a fixed number of links. A typical 

encoding would specify the coordinates of each node together with indexes to the two nodes that 

each link connects as shown in Figure 3.1. 

 

 

Figure 3.1: An example of a direct encoding. The phenotype consists of a number of nodes 
connected by links. The genotype directly specifies the location of each node together with 
link indexes and thus every genetic change results in a phenotypic change. 

 

Thus in this example, the network can be fully specified by a series of variables and a change to 

any one of the variables generates a corresponding change in the network. The prevalence of 

direct encodings such as these in artificial evolution is a natural consequence of the dominant 

view of evolution that has been inherited from biology. This view is epitomised by the fitness 

landscape metaphor introduced in the previous chapter in which each genotype is directly 

assigned a fitness value and the intermediary genotype-phenotype and phenotype-fitness 

mappings are deemphasised. This lack of emphasis has also been a feature of artificial evolution. 

This thesis adds to the work that is beginning to change this situation. 
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As was seen in the previous chapter, a common feature of biological mappings is the presence of 

large scale neutrality. Over recent years this knowledge has begun to filter through to the 

artificial evolutionary community and several studies have been performed to assess the impact 

of neutrality. These studies are the subject of this chapter. Although much of this work is 

relatively recent, neutrality has been a feature of artificial evolution since its inception. One 

reason for this is that many encodings that are not explicitly designed to contain neutrality do so 

implicitly. 

 

3.2 Im plicit Neutrality 

The encoding shown in Figure 3.1 was presented as an example of a direct encoding, however, 

closer inspection reveals that the encoding results in significant neutrality. Given that the nodes 

and links are equivalent they can be exchanged without affecting the phenotype. For example, 

node 1 could be exchanged with any of the other nodes in the network without affecting the 

overall network design. Such an exchange would result in a shuffling of the genetic information 

and hence different genotypes that represent the same phenotype as shown in Figure 3.2. 

 

Figure 3.2: Implicit neutrality in the encoding introduced in Figure 3.1. (a) The original 
network and associated genotype. (b) Nodes 1 and 3 have been exchanged resulting in an 
equivalent network but a different genotype, the modifications are indicated in italics. 
Equivalent networks such as these result in significant neutrality in this encoding.  

 

In addition to node substitutions, each of the links can also be exchanged with one another 

without affecting the overall phenotype. In total there are 4! = 24 neutral node configurations 
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each of which has 4! = 24 neutral link configurations. Thus, 24*24 = 576 genotypes represent the 

same phenotype. Further neutrality may result from the choice of fitness function, which defines 

the phenotype-fitness mapping. As an example, consider a fitness function that calculates the 

inverse of the maximum distance that any of the locations within the grid are away from their 

nearest node. This may be done so that the geographical coverage of the network can be 

maximised for example. One way to approximate this distance would be to sum the horizontal 

and vertical distance between one location and another. Thus, the network shown in Figure 3.1 

would have a fitness of 1/4 as each corner of the grid is a distance of 4 away from the nearest 

node and no other locations are at a greater distance. However, there are a number of other 

networks that also produce the same fitness. For example if the locations of nodes 2 and 4 are 

held constant, there is relative freedom in the placement of nodes 1 and 3 in order to maintain the 

same fitness.  

 

It can be seen therefore that typical choices of encoding and fitness function can result in the 

introduction of significant neutrality and thus without intention neutrality is likely to have been a 

feature of many artificial evolution experiments. However, neutrality alone is not sufficient to 

allow the beneficial properties highlighted in the previous chapter in which the discovery of new 

phenotypes was allowed for through neutral drift. This can be seen by considering the neutrality 

in the genotype-phenotype mapping of this example. As we have seen, 576 genotypes encode for 

the phenotype shown in Figure 3.1. However, these do not form a connected neutral network that 

would allow neutral drift and the discovery of new phenotypes. Exchanging nodes 1 and 3 

required two simultaneous changes to the genotype and other exchanges would require even more 

improbable events. An exchange of nodes 1 and 4 for example would require 4 simultaneous 

changes to the genotype. These networks would thus tend to be represented in genotype space as 

a number of single, isolated genotypes that do not form neutral networks. Higher mutation rates 

may allow some connectivity within the neutral set but the connectivity would likely remain 

sparse.  

 

In contrast, the implicit neutrality resulting from the phenotype-fitness mapping does have the 

potential to allow beneficial neutral drift as shown in Figure 3.3. Considering only single changes 

to the genotype, no immediate increase in fitness is possible from the phenotype shown in Figure 

3.3(a). However, the neutrality resulting from the phenotype-fitness mapping allows a stage-

setting neutral mutation to be made and a subsequent adaptive mutation that generates the higher 

fitness phenotype shown in Figure 3.3(c). This neutrality exhibits two properties that enable it to 

play a beneficial role. Firstly, the neutral genotypes are connected by probable changes to the 

genotype. In this case, single-point mutation was the only genetic operator considered. However, 

other genetic operators may result in different neighbourhood relationships between the neutral 

genotypes. Secondly, neutral drift increases the probability of the discovery of new phenotypes. 

In this case, the neutral mutation moved the genotype to within a single mutation of a higher 

fitness phenotype whereas previously two simultaneous mutations were required. 
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Figure 3.3: An example of neutral mutation allowing a higher fitness phenotype to be 
discovered. The fitness is calculated as the inverse of the maximum summed horizontal and 
vertical distance from any point in the grid to the nearest node (a) Each corner of the grid is 
a distance of 5 away from the nearest node and thus the network’s fitness is 1/5 (b) Single 
changes to the original phenotype cannot increase its fitness, however, a neutral change is 
made to node 2 resulting in only the bottom left and right corners being a distance of 5 
away from the nearest node (c) The previous neutral change allows a subsequent change to 
node 4 that results in a higher fitness phenotype.  

 
 
As evidenced by this example, beneficial neutrality may have been an inherent part of many 

artificial evolutionary systems and some of the work reviewed later in this chapter aims to assess 

the extent to which this is true. Firstly however, another method of implicitly introducing 

neutrality into artificial evolutionary systems is discussed; self-adaptation. 

 

3.3 Self-adaptation 

A common feature of many evolutionary algorithms is the ability to self-adapt the genetic 

operators such as mutation and recombination [76]. A given mutation or recombination rate may 

be appropriate for the specific characteristics of one problem but may be less appropriate for 

alternative problems. In addition, it may be desirable to modify these rates during a single 

evolutionary run – a technique that is used to good effect in the simulated annealing algorithm 

[103]. In order to achieve this, the parameters controlling the genetic operators can be encoded in 

the genotype along with the solution representation. In this way, the genetic operators themselves 

are subject to the same selection pressures as the solution and thus beneficial operators are 

evolved along with the solution. This technique is an inherent part of evolutionary strategies in 

which a number of strategy parameters are encoded that control the mutation rate [28]. Although 

this is the most prominent example, such self-adaptation has also been employed in all the other 

main paradigms of evolutionary computation. For example, the self-adaptation of both mutation 

probabilities [115] and crossover operators [36] has been explored in genetic algorithms and self-

adaptive crossover operators have been explored in genetic programming [77].  
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A feature of such self-adaptation is that changes to the encoded operator parameters are neutral 

with respect to the phenotype. These parameters have no direct effect on the phenotype but alter 

the dynamics of the search, which may in turn contribute to the discovery of new phenotypes. 

This point was emphasised by Toussaint and Igel who claim that this is the main advantage of 

neutral encodings [60]. As an example, consider a self-adaptive mutation-based evolutionary 

algorithm in which a single mutation per genotype is performed for each mutation event. The 

evolutionary algorithm may quickly become isolated at a local optimum where every single 

mutation leads to a less fit phenotype. However a mutation to the parameter controlling the 

mutation rate could lead to the number of mutations per genotype being increased, which may 

allow the local optima to be escaped as larger steps could then be made in genotype space.  

 

Neutral mutations to the operator parameter effectively change the neighbourhood relationships 

in genotype space. In some respects this is similar to the effect of drift on neutral networks, which 

allows the effective neighbourhood of a genotype to become the neighbourhood of the neutral 

network on which it resides rather the neighbourhood of the individual genotype. With self-

adaptive parameters the neighbourhood of a genotype could potentially become the entire 

genotype space as the mutation rate can be increased to such an extent that any genotype can 

theoretically be reached from any other. However, there is an important distinction between these 

two effects. A neutral genotype-phenotype mapping can fundamentally change the nature of the 

landscape. This was seen in the RNA landscapes discussed in the previous chapter. Not all 

possible phenotypes played a role in evolution; rather genotype space was primarily divided into 

a number of neutral networks that represented the common molecular structures. These networks 

percolated throughout genotype space and as a result all were accessible within a relatively small 

distance of any arbitrary genotype. Thus, the neutrality fundamentally biased the search space in 

favour of certain phenotypes. An increased mutation rate may allow small valleys to be 

negotiated but does not produce an equivalent biasing effect. 

 

In biology, evolution has been able to build on whatever the most probable molecular structures 

happen to be in the context of the laws of chemistry and physics. A challenge in artificial 

evolution is to design the mappings in such a way as to ensure that the most probable phenotypes 

and hence the percolating neutral networks represent solutions of high fitness. Addressing this 

challenge is a major theme of this work. 

 

3.4 Hardware Evolution 

3.4.1 O n-chip evolution  

One of the first analyses of the impact of neutrality on artificial evolution resulted from the on-

chip evolution of electronic circuits [31]. In this work the configuration of a Field Programmable 

Gate Array (FPGA) was evolved in order to perform a tone-discrimination task [4]. The FPGA 
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consisted of an array of 64 x 64 reconfigurable cells each of which was connected to its four 

immediate neighbours; north, east, south and west. The function unit of each cell took up to three 

inputs that could be sourced from any of these neighbours. This unit could be configured to 

implement any Boolean function on two inputs or multiplexer function on three inputs. Each cell 

also produced four outputs in each direction. These outputs could be driven from either the output 

of the function unit or directly from one of the neighbours. Thus, a cell could directly ‘route’ an 

input to an output and hence connect two of its neighbours together or place the result of its 

logical operation on that output. The chip was supplied with a single input and a single output 

whose locations were fixed throughout. 

 

The task chosen for this experiment was to discriminate between two tones of differing 

frequencies; 1 KHz and 10 KHz. Thus, when one of these frequencies was presented at the input 

to the array of cells the circuit’s task was to indicate which of the frequencies was present by 

changing the voltage at its output. Ideally, one of the frequencies would generate a minimum 

voltage output and the other a maximum voltage output. In conventional electronics this is a 

trivial task; however, it was made difficult in this case as the circuit was not given access to a 

clock by which the period of the input could be timed and thus a continuous-time recurrent 

arrangement of cells needed to be evolved. Potential solutions were evaluated by supplying test 

tones at each frequency and calculating the average difference between the output voltages 

generated for each frequency, a circuit was rewarded for maximising this difference.  

 

The configuration of the FPGA was controlled by the bits held in an on-chip memory, which 

could be written from software running a host computer. Not all of the cells were used in the 

experiment, only a 10 x 10 corner was under evolutionary control and the remainder of the cells 

were held at constant values. The configuration of these 100 cells was directly encoded in a linear 

bit-string genotype. Each cell required 18 bits to determine its four outputs and its logical 

function unit and thus the length of the genotype was 1800 bits.  

 

Analysis of successfully evolved circuits revealed that only a relatively small subset of the 

components available to evolution was actually used in the final functioning circuit. 

Approximately two-thirds of the FPGA cells did not affect the circuit’s performance and thus up 

to 1200 of the 1800 bits could be mutated without affecting fitness. It was hypothesised that the 

large-scale neutrality inherent to the phenotype-fitness mapping may have been of use in the 

evolutionary history of the circuit and an important factor in allowing evolution to discover the 

final configuration. This hypothesis was supported by calculating the variance of each gene 

within the population over a number of generations. As would be expected, areas of the genotype 

corresponding to the functional part of the circuit showed low variance indicating that selection 

pressure had held them relatively constant. In contrast, much of the neutral areas showed high 

variance indicating that they had been free to vary and under little selection pressure. However, 

some neutral areas showed relatively low variance indicating that they had been held constant for 
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significant periods and hence were likely to have formed part of the functioning circuit at some 

point during its evolutionary history. 

 

This is an important feature of neutrality, for it to be of use it must have the potential of forming 

part of the functional phenotype at some point during evolution. It need not be used in the final 

functional phenotype but must have the ability to form part of a functional phenotype that may 

provide a bridge to a fitter phenotype that was previously inaccessible. The analysis suggested 

that the allowance of many more components than were necessary for the final circuit did create 

this type of neutrality in this example. However, in some cases the probability of a cell forming 

part of the phenotype would be very low. Each cell connected only to its nearest neighbours and 

it would thus be unlikely for cells that were a relatively large distance away from the currently 

functional part of the circuit to become an integral part of the circuit. In these experiments, the 

functional part of the circuit inevitably tended to form around the cells that received input and 

provided output. The integration of cells away from this area would also require the integration of 

a number of intermediary cells and would thus become more unlikely as the distance away from 

the functional area grew. Although the amount of neutrality was relatively high in this example, 

that with the potential of being beneficial was likely very much smaller. In this thesis it is argued 

that self-organisation produces a more fundamental restructuring of the landscape that can 

provide further enhancements to evolutionary search. 

 

3.4.2 Sim ulated chip evolution 

An alternative approach was taken in another example of hardware evolution in which potential 

solutions were assessed in simulation rather than on the actual hardware [127,129-131]. This 

work also used an array of cells that could be configured to perform Boolean logic functions on 

two inputs or multiplexer functions on three inputs. However, the fact that the experiments were 

conducted in simulation allowed the configuration of the cellular array to be more flexibly 

specified. The connectivity between the cells within the array was no longer restricted to nearest 

neighbours thus alleviating the problems of isolated non-functional areas of the circuit having 

little chance of becoming part of the functional circuit. In addition, a larger number of inputs and 

outputs were specifiable and could connect to a greater number of cells within the array. 

 

The aim of the work was the evolutionary design of combinational circuits and particularly 

multipliers. These circuits were composed of atomic function building blocks such as the basic 

logic gates and one-bit multipliers. However, alternative approaches were also explored in which 

these building blocks were instead small sub-circuits that were inferred from other evolved 

designs [125]. In other experiments the initial population of genotypes was seeded with 

conventionally designed solutions that were then further optimised by evolution [126]. This 

approach resulted in a three-bit multiplier that was 23% more efficient than the conventional 

design in terms of the number of gates that were used [128]. 
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In this case, a single row of 35 cells was used in which a directed graph was established that 

disallowed any recurrent connections. Thus, the inputs to each cell could be drawn from one of 

the 6 external inputs or from the output of cells from earlier in the graph. Within these constraints 

arbitrary connectivity was possible. Similarly, the 6 external outputs could be driven from any of 

the cells from within the array or directly from any input. The configuration of the array was 

encoded into a genotype that consisted of a linear string of integers representing two different 

types of gene. These genes defined the cells functionality and connectivity. Thus each cell was 

encoded by a maximum of four integers, three defining the inputs to a cell (one of which was not 

used in this example) and one defining the logical function of the cell. In addition, each output 

was encoded by a separate integer defining the cell or input to which it was connected. Thus, a 35 

cell array with 6 outputs was fully specified by a genotype of 146 integers.  

 

Although this encoding directly specified the configuration of the circuit there were a number of 

sources of neutrality; input redundancy resulting from inputs to the cell that were not used by the 

defined logical unit, cell redundancy resulting from cells that were disconnected from the 

functional circuit and equivalency resulting from circuits or sub-circuits that can be substituted 

with a logically equivalent alternative that has the same number of gates. Input redundancy was 

not a source of potentially useful redundancy in this case. The logic gates were restricted to two-

inputs and thus the spare third input could never form part of the functional phenotype. In 

addition, equivalency suffers from a similar problem to the evolution of network topologies 

discussed in section 3.2. Although several logically equivalent examples of a given circuit may 

be possible they are likely to be significantly different from each other and transition between 

them would be difficult through neutral modifications to the genotype. The different examples 

would thus be isolated in genotype space rather than form neutral networks that allow potentially 

beneficial neutral drift. 

 

Thus, it is likely that the most significant source of neutrality resulted from cell redundancy as 

with the on-chip experiment highlighted in the previous section. Indeed, analysis of the different 

sources of neutrality suggested that the majority of neutral drift took place on the neutral 

networks resulting from cell redundancy [127]. Evidence was also presented that suggested this 

neutral drift played a beneficial role. Neutral mutations were turned ‘off’ by disallowing any 

neutral moves in genotype space and the fitness of the final circuit compared to that of an 

equivalent process in which neutral moves were allowed. The average fitness of the circuit 

obtained after a given number of generations was found to be significantly higher in the latter 

case. These results were not conclusive as disallowing neutral moves opened up the possibility of 

disallowing any exploration of the space in a given generation and hence effectively resulted in 

fewer generations being used for the non-neutral case. Although this effect may have influenced 

the final fitness attained the results remain very suggestive of a beneficial role for drift on the 

neutral networks resulting from cell redundancy. 
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3.5 Robot Control System s 

3.5.1 Khepera robot sim ulations 

Another area in which the impact of neutrality has been investigated in artificial evolution is the 

evolutionary design of control systems for mobile robots. The first example of this work 

concerned the evolution of a neural network for a Khepera mobile robot engaged in a simulated 

navigation task [113]. The Khepera robot has 8 proximity sensors around its circular periphery 

together with 2 motor-driven wheels. The task of the neural network was to take input from these 

sensors and drive the motors in such a way as to allow the robot to circumnavigate a corridor 

without collision with the walls. Neutrality was explicitly introduced into the neural network 

through the adoption of regulatory genes. A tree based genotype was used containing both 

regulatory and coding genes that specified the properties of neurones within the network. When a 

regulatory gene was activated the coding genes beneath it in the tree were expressed in the final 

neural network. When inactive, the coding genes lay dormant and hence any mutations to them 

were neutral. Thus, the possibility was open for dormant areas of the genotype to accumulate 

modifications that would prove beneficial when they were expressed in the final neural network 

through mutation to the regulatory gene. Evidence was presented suggesting that this possibility 

proved beneficial to the evolutionary process. Over a series of 30 trials, successful controllers 

were evolved in all but one case when regulatory genes were employed. In contrast, only 7 trials 

were successful when all neurones were expressed at all times.  

 

The role of regulatory genes in this example is quite different from their role in biological genetic 

systems. In biological systems large numbers of genes within a cell are involved in complex 

networks of regulation. The dynamics of these genetic regulatory networks result in different 

patterns of gene expression within different cells as described in the previous chapter. Genes that 

are not expressed in one cell type do not lie dormant but are likely to be expressed within other 

cell types and are thus not free from selection pressure. Regulation does not have the effect of 

switching out areas of the genotype that are free to undergo arbitrary neutral modifications, rather 

it has the effect of creating a dynamic in which different patterns of gene expression can be 

manifested. The utility of switching out areas of the genotype must thus be questioned. Genes 

that are entirely free from selection pressure can be mutated arbitrarily without affecting fitness. 

The possibility of these mutations producing a sub-component that can then be usefully 

integrated into the phenotype is equivalent to the probability of random search discovering such a 

sub-component. This may be possible in some cases when the number of unexpressed genes is 

relatively low; however, as the number of unexpressed genes increases the probability of such an 

occurrence rapidly diminishes. This is a difficulty that will be discussed further later in this 

chapter. 
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The Khepera robot used in the above example was also the subject of another investigation in 

which neural network control systems were evolved to allow the robot to navigate a maze using 

cues received from its environment [95]. In this work the robot was tasked with making a left or 

right turn at a T-junction depending on the position of a light in the approaching corridor. If the 

light was detected on the left of the corridor the robot should turn left and vice versa. In order to 

achieve this, the robot could not rely on purely reactive behaviour as the position of the light 

needed to be memorised and used at the appropriate time. 

 

Relatively small neural networks were evolved to perform this function. These networks 

consisted of only 10 neurones each with 3 links that could be arbitrarily connected to any of the 

neurones in the network. Neutrality was not explicitly introduced through the addition of 

regulatory genes, however, genotypes representing successful controllers were found to contain 

significant amounts of neutrality. Up to 60% of the genotype could be mutated without effect to 

fitness. Analysis was again performed that suggested this neutrality played an important role. The 

genotypes of successful controllers were pruned such that the remaining genotype specified only 

the functional controller i.e. the redundancy in the genotype was removed. When evolution was 

attempted with these reduced size genotypes, successful controllers were far less readily found. 

With the full complement of available neurones successful controllers were discovered in 90% of 

cases, this figure dropped to 30% for the smallest of the pruned genotypes. 

 

As with the hardware evolution examples, the neutrality in this case resulted from an over-

specification of phenotypic components that were not all part of the functional phenotype at any 

one time. Although an explicit switch was not used to prevent genes from being expressed, the 

non-functional components were effectively switched out by the evolved wiring of the network. 

An equivalent problem to the use of an explicit switch therefore also arises when the switch is 

implicit in the configuration of the phenotype. Random search must produce a sub-component 

that can subsequently be integrated into the functional phenotype. 

 

3.5.2 G asNets 

Both the above examples used relatively standard neural networks to implement the robot control 

system. A more complex neural network has recently been developed that employs an analogue 

of chemical signalling between neurones in addition to the electrical signalling resulting from 

synaptic connectivity. These networks mimic the diffusion of Nitric Oxide in real brains, 

neurones are able to emit gases that diffuse over a given radius and are able to change the 

behaviour of other neurones in a concentration dependent fashion [75]. Networks of this type 

have been successfully evolved to act as control systems for mobile robots in a number of 

different tasks and the gas signalling mechanism appears to not only increase the speed of 

evolution but also allow the evolution of more complex behaviours than are possible with more 

traditional networks [116]. 
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A more complex genotype-phenotype mapping was required for this network that not only 

specified the electrical connectivity of the network but also parameters relating to the gas release 

and diffusion. It was used to generate networks that existed on a conceptual two-dimensional 

Euclidean plane with each neurone occupying a genetically determined coordinate. Rather than 

exactly specify the connectivity of the network, the genotype encoded a range for each neurone 

and connections were established with any other neurones that fell within that range. This 

technique was less direct than the previous mappings and opened up the possibility of beneficial 

neutral modifications to the range parameters. For example, in situations where the range 

parameter could not be immediately mutated in such a way as to beneficially alter network 

connectivity, a neutral modification may have been possible which changed the range such that 

subsequent beneficial modifications were possible. Similarly, the radius of gas emission could be 

modified to change the set of neurones that the emissions from a given node would affect. 

 

These parameters were crucial in forming the functional phenotype and thus could not be mutated 

arbitrarily as would be the case for unexpressed genetic information. The fact that the parameters 

were always under the influence of selection pressure prevented random changes from modifying 

them to such an extent that the probability of them subsequently playing a functional role was 

diminished. Neutrality resulting from an over-specification of neurones was however also 

possible in this network and indeed some mutations resulted in the addition or removal of 

neurones thus opening up the possibility of self-adaptation of this form of neutrality.  

 

The presence of neutrality in this genotype-phenotype mapping prompted analysis to determine 

whether this was a source of the observed increased evolvability of the networks [119,120]. A 

neutral phase in the successful evolution of a mobile robot that performed a visual shape 

discrimination task was identified and the dynamics of the population were analysed during this 

period. It was discovered that the population moved considerably through genotype space and 

genetic divergence increased, thus indicating exploration of neutral networks. However, this 

neutral drift did not appear to increase the probability of discovery of fitter phenotypes right up to 

the point at which a fitter phenotype was actually discovered. The authors thus concluded that 

nothing useful was occurring during the neutral phase, the population was moving but not to an 

area of genotype space that resulted in a significantly increased probability of the discovery of 

higher fitness phenotypes. This analysis was restricted to a single evolutionary run and thus the 

conclusions can not be generalised. However, this work again highlights the important point that 

neutrality alone is not sufficient to provide a beneficial role in evolutionary optimisation; it must 

be introduced carefully to yield beneficial properties on the search space. 

 

Subsequent work modified the genotype-phenotype mapping and the gas diffusion mechanism in 

particular, with an explicit intention of increasing beneficial neutrality [117]. In the original 
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model the gas concentration decayed exponentially over the radius of its effect and thus different 

concentrations were present at each point. Any modifications to parameters such as the radius 

would therefore be likely to affect the concentration of the gas at all the nodes that were under its 

influence. This reduced the probability of mutations to these parameters being neutral. In order to 

increase this probability, a new mechanism was introduced that replaced the decaying 

exponential function with a uniform model such that any point within the gas’s radius of effect 

would be influenced by an equal gas concentration. Changes to the radius would therefore not 

affect the concentrations at any of the influenced nodes and hence would more likely be neutral. 

In addition, a further modification was made that allowed the centre of the gas diffusion cloud to 

lie anywhere on the plane as opposed to being restricted to the nodes position. This dispersed 

model thus reduced the coupling between the two forms of signalling mechanism; electrical and 

gaseous connectivity were determined by entirely different mechanisms. 

 

Experiments were performed in order to determine whether these modifications increased the 

speed of evolution as measured by the average number of generations required to discover a 

successful controller. It was found that neither the uniform model nor the dispersed model 

individually resulted in significantly improved performance. However, when both mechanisms 

were introduced together the speed of evolution was significantly faster. The authors thus 

concluded that both the neutrality resulting from the uniform diffusion and the decreased 

landscape ruggedness resulting from the dispersed diffusion was necessary to yield a beneficial 

effect. 

 

While the interplay between ruggedness and neutrality is undoubtedly important, this may not 

have been the sole cause of this effect. The dispersed model not only reduced the coupling 

between the two signalling mechanisms but also had the potential of introducing a new source of 

neutrality. A change to the position of the centre of a gas cloud may not have affected the set of 

neurones that come under the gases influence. Nonetheless, with the original decaying diffusion 

mechanism it is unlikely that such a change would be neutral as the neurones would experience a 

different concentration of gas. However, if the dispersion is combined with a uniform gas 

concentration then such changes would be neutral. Thus the combination of effects had the 

potential of increasing the degree of potentially beneficial neutrality, which may have been an 

alterative cause of the results presented by the authors. This example highlights the need for 

techniques that that allow the neutrality as well as the ruggedness of a landscape to be measured 

and initial progress has been made in this direction by the same authors [118,121]. 

 

3.6 Pre-adaptation 

A pre-adaptation is a characteristic evolved by an ancestral species or population that serves an 

adaptive though different function in a descendant species or population [102]. Such pre-

adaptations were the focus of another study that explored the role of neutrality in artificial 

evolution [70]. In this work, artificial agents were evolved that inhabited a virtual grid 
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environment containing a zone in which food was plentiful together with two landmarks that 

could be used by the agents to guide themselves to this zone. The genotype specified instructions 

for the growth of a neural network that was formed via an analogue to axonal branching, which is 

a feature of the development of real nervous systems. The networks contained three different 

types of neurones, sensory neurones to allow the agents to assess the current environmental state, 

motor neurones to allow actions to be taken and intermediary neurones to allow additional 

processing. Agents were evolved to maximise their fitness by increasing the amount of time they 

spent in the food zone during a given run. 

 

Neutrality was present at a number of different levels within this system. Firstly, at the genetic 

level as some areas of the genotype were not expressed in the final neural network. Secondly, at 

the phenotypic level as the nature of the growth process resulted in parts of the neural network 

that played no functional role in the agent’s behaviour. Thirdly, a behavioural level of 

organisation was identified. A given neural network defined the set of possible behaviours that an 

agent could perform. However, in the context of its environment only a subset of this behaviour 

could ever used by the agent i.e. the agent may not experience the full range of sensory stimuli 

that are possible and thus may not engage in its full range of behaviour. Thus a further level of 

neutrality was introduced; different networks may yield a different set of possible behaviours but 

in the context of the current environment the same subset of behaviour may actually be used.  

Finally, two different behaviours had the potential of resulting in the same fitness. This system 

thus resulted in a hierarchical organisation consisting of four levels; genetic, phenotypic, 

behaviour and fitness all of which were a potential source of neutrality.  

 

In order to assess the impact of mutation on this system the lineage of the best individual was 

identified and each parent/offspring pair examined. It was found that almost all offspring were 

genetically distinct from their parents. However, the probability of such a distinction gradually 

decreased at higher levels of organisation. Thus, each level of organisation was masking the 

effect of a proportion of mutations and only a small fraction remained that actually affected 

fitness. Evidence was presented suggesting that the remaining neutral mutations while not 

immediately beneficial did allow subsequent transition to functional networks of higher fitness. 

 

The link to pre-adaptation in this study is questionable as the transition to a higher fitness 

network was not due to a prior adaptation that was subsequently modified to perform a different 

role but rather a previously neutral area that became functional. Nonetheless, it was an interesting 

example of the role of the neutrality and in particular of its effect on mutational robustness. 

Studies of molecular evolution have suggested that evolution naturally produces molecules that 

exhibit high degrees of mutational robustness [15]. In the previous chapter we saw that high 

degrees of neutrality also allow the formation of neutral networks and thus neutrality has the 

potential of playing a dual role; buffering phenotypes against the effect of deleterious mutation 
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while allowing constant evolutionary innovation along a neutral network. It is the later that is 

primarily of interest in this thesis.  

 

3.7 Genetic Program m ing 

Genetic programming (GP) was first introduced by Koza as a variant of a genetic algorithm in 

which functional computer programs are the target of evolution [44]. In GP, the program is 

represented by a hierarchical tree of nodes representing the functions and terminals of the 

program. The latter equate to leaf nodes and can represent the programs constants and variables, 

the former take input from a number of other nodes and perform some operation on this data. 

Some of these inputs may lead to further functions and thus a hierarchical parse tree can be 

formed that defines a program which can subsequently be created and executed. Genetic 

operators act on the trees in order to create variations by for example mutating the function a 

given node performs or recombining sub-trees in order to generate novel combinations of existing 

trees. Each candidate program is evaluated by providing input data and assessing the algorithmic 

output. Genetic programming has become one of the major sub-sets of evolutionary computation 

and has also resulted in several studies relating to neutrality. This work is highlighted below. 

 

3.7.1 Constraint handling 

As the phenotype within GP is a functional computer program it must obey the grammatical 

constraints inherent to the chosen programming language. Such constrained optimisation 

problems are common in artificial evolution and a number of constraint handling techniques can 

be employed [124]. One possibility is to penalise constraint violating solutions and hence exert an 

added selection pressure such that they are removed from an evolving population. Harder 

constraints can also be imposed that prevent such solutions from occurring or forcibly correct 

them. However, these techniques have the potential of introducing undesirable features to the 

landscape and could for example exacerbate the problem of local optima by restricting movement 

in genotype space. In order to combat these problems, an approach has been suggested that 

employs a neutral genotype-phenotype mapping within GP enabling arbitrary movement within 

genotype space [136]. 

 

In this approach, the genotype takes the form of a binary string that encodes a set of functions and 

terminals. The genetic operators arbitrarily modify this string without regard for the grammatical 

constraints of the programming language. These constraints are instead implemented within the 

genotype-phenotype mapping which produces the nearest feasible solution for any string that 

would otherwise generate an infeasible solution. In this way, previously inaccessible regions of 

genotype space are replaced with neutral sets of genotypes and detrimental effects on the 

landscape may be minimised as neutral drift can allow continued movement in genotype space. 

Initial experimentation with this system proved that it was capable of generating solutions to 
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simple mathematical problems. However, no direct comparison was made with a non-neutral 

system to ascertain whether the neutrality had played a beneficial role. A potential problem with 

this approach is that the neutrality is defined by the constraints of the problem. Neutral sets are 

guaranteed to be formed for any constrained problem but these sets may not be connected into 

neutral networks allowing exploration of the space and hence discovery of phenotypes that would 

otherwise not have been possible. In order to create an opportunity of ensuring this, greater 

control over the introduction of neutrality would be desirable and thus a looser coupling between 

genotype and phenotype may be required.  

 

3.7.2 Cartesian genetic program m ing 

The standard GP representation implicitly contains two forms of neutrality; functional 

redundancy and introns. The former refers to the fact that a given function can be implemented in 

a number of different ways and the latter refers to functions that are semantically redundant to the 

programs behaviour i.e. functions that are executed but would not change the outcome of the 

program if they were removed. An alternative representation has recently been proposed that 

adds a third source of neutrality resulting from unexpressed genes; this approach has been termed 

Cartesian Genetic Programming (CGP) [38] and was originally developed to evolve electronic 

circuits as described in section 3.4. 

 

In CGP, a program is represented as a directed, acyclic graph. Nodes represent functions whose 

outputs can from part of the input of subsequent nodes in the graph. However in contrast to the 

standard parse tree representation, a graph allows its nodes to be unconnected from any other 

nodes i.e. their outputs do not form an input for any of the other nodes in the graph. These 

unconnected nodes are therefore neutral with respect to the programs behaviour. An instructive 

analysis of the effect of neutrality in CGP was carried out in the context of the evolution of a 

simple even-3-parity program i.e. a Boolean function that takes 3 inputs and returns true iff an 

even number of its inputs are true [123]. This program was evolved using a function set 

consisting of four 2-bit Boolean logic gates and a terminal set consisting of the three Boolean 

inputs. The graph consisted of 100 nodes each of which was represented by 3 genes defining the 

type of the function together with its inputs. There are 256 possible Boolean functions that define 

an output for each of the 23=8 possible states of the inputs, which correspond to the possible 

functional phenotypes and thus with 300 genes operating with a large alphabet there was very 

large scale neutrality in the genotype-phenotype mapping. 

 

Fitness was determined by calculating the number of correct outputs for all 8 combinations of the 

three inputs and was thus quantised to be any integer value between 0 and 8. The most common 

phenotype was of fitness 4 and phenotypes of higher fitness became progressively less common. 

The 9 fitness values resulted in 9 neutral networks in genotype space and analysis was carried out 



 45

that studied the likelihood of evolution finding transition points between these networks with 

different mutation rates and different degrees of restriction on neutral drift. The latter was 

enforced by placing limits on the number of different genes between the genotype at which a new 

fitness was first discovered and any subsequent genotype produced by neutral drift. The analysis 

revealed a correlation between the permissible range of neutral drift and the probability of 

success. At the most common fitness levels i.e. fitness 4 and 5, transitions were relatively easy to 

discover. However, as fitness increased the probability of success reduced in line with the 

permissible range of neutral drift. Indeed, the final transition to fitness 8 was only discovered in 

100% of cases when the amount of neutral drift was allowed to approach that of the genotype 

length i.e. when the majority of genes could be modified during neutral drift. 

 

An interesting effect of mutation rate was also discovered. Higher mutation rates allowed 

evolution to compensate for restricted neutral drift at low fitness levels, however as fitness 

increased, a higher mutation rate was not able to make such compensation. This suggests that 

evolutionary innovations along a neutral network could not be replicated by simply remaining in 

the same area of genotype space and increasing the mutation rate in this case.  

 

These results provide further evidence of the benefit of allowing evolution access to more 

components than are necessary in the final phenotype. However, the relative lack of success of 

experiments with reduced neutral drift may have been influenced by the experimental design. 

Neutral drift was restricted by disallowing neutral modifications that resulted in the threshold of 

genetic variance being exceeded. However, with such an occurrence it was possible for an entire 

evolutionary generation to effectively be lost. At the limit of neutral drift, if all mutations were 

neutral then there was no movement in genotype space and with high levels of neutrality the 

probability of such an occurrence was relatively high. Thus, introducing neutrality into the search 

space but disallowing neutral mutations may have hampered the search process by artificially 

restricting exploration of genotype space. A fairer comparison may have been to compare CGP 

with an alternative encoding that did not contain any neutrality; however, the design of such an 

encoding is a difficult task in itself. Despite this potential effect, these results remain strongly 

suggestive of a beneficial role for the neutrality within CGP. 

 

3.8 NK Fitness Landscapes 

In addition to the studies exploring the role of neutrality in the evolution of artefacts outlined 

above, studies have also been performed in the context of more abstract fitness landscapes based 

on the NK model introduced by Kaufmann [111,112]. This model is intended to capture the 

essence of real genetic systems such that the characteristics of the resulting fitness landscapes can 

be explored. The model consists of N loci that can be thought of as representing the traits of an 

organism or at a lower level, individual genes. Each locus can be in one of a number of states, 
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which might represent the different alleles of a gene for example. In addition each locus interacts 

with K other loci, which are typically chosen at random. These interactions can be thought of as 

representing epistatic interactions. Each locus makes a contribution to fitness that is dependent 

not only on the state of that locus but the states of each of the K neighbouring loci. Defining the 

number of possible states of the loci as A, there are AK+1 possible fitness contributions for each 

loci and the fitness of the genotype is given by the average contribution over all loci. 

 

In order to study generic properties of systems of this kind, Kaufmann chose to assign the 

fitness’s at random with each of the NAK+1 possible fitness contributions randomly assigned a 

number between 0 and 1. As each fitness contribution is given by a random number that is almost 

certainly unique, the standard NK landscapes do not contain any neutrality; the modification of 

any locus is almost guaranteed to affect fitness. However, several extensions of the model have 

been proposed that introduce neutrality into the model such that generic properties of neutral 

landscapes and the dynamics of evolving populations on such landscapes can be studied.  

 

Two different methods of creating neutral NK models have been proposed; NKp landscapes 

[49,50] and NKf landscapes [55]. The former introduces a new parameter, p, that varies in the 

range 0 to 1 and represents the probability of a given fitness contribution being 0. Thus, when p is 

1 all fitness contributions are zero and the landscape reduces to a single neutral network of zero 

fitness and when p is 0 the landscape is identical to the standard NK model. Intermediate values 

of p introduce variable degrees of neutrality into the landscape thus allowing it to be tuned. The 

latter model takes a different approach, the fitness contributions are quantised into a set of f 

discrete levels that are integers within the range 0 to f-1. The overall fitness is then scaled by a 

factor of 1/N(f - 1) in order to bring it within the range 0 to 1. This quantisation again allows the 

probability of neutral mutation to be tuned. When f is low it is much more likely that a change at 

a given locus will result in an equivalent fitness contribution as these contributions are drawn 

from a small set. As f��, the model becomes equivalent to the standard NK model. 

 

The differences between these approaches are reflected in differences of the fitness distributions 

within the corresponding landscapes [68], however certain generic features emerge that have 

strong parallels with features of the RNA landscapes highlighted in the previous chapter. The 

NKf landscapes revealed an equivalent phenomenon to that of common RNA structures. That is, 

there were a relatively small number of common phenotypes that were represented by the 

majority of genotypes. The common phenotypes thus dominated the evolutionary dynamics. In 

addition, it was shown that higher degrees of neutrality typically resulted in the achievement of 

higher fitness values. Another important property emerged from studies of the NKp landscapes in 

which evolving populations were shown to diverge in genotype space during periods of neutral 

drift. This allowed the continual innovation of new phenotypes i.e. each neutral step gave access 

to a constant number of new phenotypes. This constant innovation property was also observed in 

the RNA landscapes. 
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The studies of these abstract landscapes suggest that the properties discovered in RNA landscapes 

may be general features of highly neutral mappings. However, a challenge within artificial 

evolution is to ensure that designed mappings introduce similar properties to a landscape. There 

are a number of design choices that must be made in the construction of such mappings, many of 

which are dependent on the nature of the particular problem at hand. Any one of these decisions 

could result in the introduction of landscape features that are undesirable from the point of view 

of neutrality. Thus, while the knowledge gained from abstract landscapes is instructive they can 

give little guidance in the construction of mappings for real problems within artificial evolution. 

Making progress in this direction is a principle aim of this thesis. 

 

3.9 Optim ising Neutral Evolution 

In designing an artificial evolutionary system there are a number of decisions that must be made. 

In addition to the nature of the encoding, features such as population size, mutation rate and 

selection strategy must be chosen. These choices remain something of a black art within the field 

and the presence of neutrality further complicates the issue. In order to address these problems 

several studies have been undertaken that aim to mathematically analyse evolutionary dynamics 

on abstract neutral landscapes. The lessons learnt from such analyses have the potential of 

allowing the various parameters of an evolutionary algorithm to be optimised for different 

problems. This work is the subject of this section.   

 

3.9.1 The royal road 

The first study of this kind focussed on so-called royal road fitness functions, which capture 

many of the features of neutral evolution while remaining mathematically tractable [16]. The 

royal road consists of N blocks of K bits such that the total length of the bit string is L = NK. Each 

of the N blocks has a particular desired configuration and when the block is in that configuration 

it makes a contribution to the overall fitness of the genotype. Thus, fitness increases in a step-

wise manner with each step equating to the discovery of a new aligned block. Maximum fitness is 

achieved by only a single configuration when all blocks are individually aligned. The royal road 

thus provides a simple example of a neutral mapping; many mutations will be neutral as they do 

not change whether or not a block is aligned. Evolutionary dynamics on the royal road are 

characterised by periods of stasis, termed epochs, in which these neutral mutations occur 

followed by rapid gains as a new aligned block is discovered.   

 

Their theoretical approach was termed statistical dynamics with analogy to classical statistical 

mechanics. Rather than focus on the distributions of individuals within a population, this 

approach focused on the distribution of fitnesses in the population. Thus, the fitness landscape 

was coarse-grained into a set of neutral networks equating to each of the (N+1) possible fitness 
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values. The fine-grained details were removed from the analysis by making a maximum entropy 

approximation. That is, in the limit of infinite populations any one of the possible fine-grained 

states is equally likely for a given fitness value. Thus, under this approximation the evolutionary 

system can be deterministically and self-consistently described in terms of macro variables, 

which equate to the percentage of individuals at each possible fitness level. The resulting state 

space is thus much more manageable, consisting of only (N+1) variables. This is equivalent to 

the use of macroscopic variables such as temperature, pressure and volume in physics. 

 

Given this knowledge of the state space, full knowledge of the evolutionary system dynamics can 

be ascertained by deriving equations that describe the system trajectories within this space. These 

trajectories are defined by the genetic operators and selection scheme that is used. In this case, 

analysis was performed in the context of a mutation-based evolutionary algorithm with a fitness-

proportional selection scheme. Given this system level knowledge, a number of quantities were 

mathematically derived including the expected duration and stability of an epoch and the 

expected time between evolutionary innovations. Thus, this powerful approach allows insight to 

be gained into the likely performance of different algorithms on certain classes of problems. 

 

3.9.2 The royal staircase 

This work was built on in a subsequent study that modified the landscape to form the so-called 

royal staircase fitness function [14]. As with the royal road, this function consists of N blocks of 

K bits each of which has a desired configuration. However, in this case an aligned block only 

makes a contribution to fitness if all previous blocks are also aligned. Thus, the genotype is read 

from left to right and the fitness equates to the consecutive number of aligned blocks. This 

landscape was chosen to implement the intuitive idea that the proportion of genotypes in a neutral 

network falls exponentially with increasing fitness i.e. good solutions are very much more rare 

than poor solutions. 

 

The same statistical dynamics approach was used to study this landscape, which allowed the 

average number of fitness function evaluations to reach the global optimum to be determined as a 

function of mutation rate. Given this data, it was straightforward to determine the optimal 

mutation rate for landscapes of this type. Further analysis was also performed that took into 

account the effect of finite population sizes and thus allowed the average number of fitness 

function evaluations to be determined as a function of both mutation rate and population size 

[13]. These results suggested that the population size should be as low as possible as individuals 

did not explore neutral networks individually but were genetically correlated and thus high 

population size wasted computational resources without yielding any beneficial effect.  

 



 49

While plausible, these results do not resonate with the observed population dynamics in the 

studies of RNA evolution explored in the previous chapter. These studies suggested that 

genetically diverse quasi-species tended to form on a neutral network thus allowing different 

areas of a neutral network to be simultaneously explored [64]. However, the results were 

supported by a similar mathematical study that focused on landscapes with several realistic and 

plausible assumptions; namely that the probability of a point-mutation taking a sequence to a 

higher fitness neutral network is very small compared to the probability of it being neutral or 

deleterious and that the only non-negligible fitness increasing mutations are those to the next 

highest network [51]. This work also suggested that the optimal evolutionary search strategy was 

to use a single individual that engaged in hill climbing with neutral drift. 

 

Analyses of this nature promise to yield very useful insights into the dynamics of evolution on 

stereotypical landscapes. These insights will lead to a more general and quantitative 

understanding of evolution that will allow considered choices to be made in the design of an 

evolutionary algorithm. However, as with any mathematical analyses they depend on certain 

assumptions. In this case the assumptions regard the nature of the landscape on which a 

population is evolving. In particular, they assume the presence of connected and percolating 

neutral networks with access points between them that allow the global optimum to found 

through a series of transitions between networks. While this is the kind of landscape that is 

witnessed in studies such as RNA folding and is the kind of landscape that would be desirable in 

artificial evolution, it is by no means guaranteed. It is relatively straightforward to define abstract 

landscapes that implement the desired properties but it is much less straightforward to do so when 

evolving artefacts. The mapping between genotype and phenotype and subsequently fitness is 

crucial in creating landscapes of the type studied in these mathematical analyses and thus a 

greater understanding of the consequences of the choices made in these mappings would be 

highly desirable. Gaining such an understanding is a theme of this thesis. 

 

3.10 Discussion 

Neutrality is likely to have played a role in artificial evolution since its inception as the nature of 

many encodings implicitly results in the presence of neutrality in the search space. However, 

there is an increasing realisation that the principled introduction of neutrality may yield 

significant advantage to the evolutionary process and a number of examples of such work have 

been highlighted above. A very common approach is to allow areas of the genotype that are 

unexpressed, that is they play no functional role in the phenotype and are thus free from selection 

pressure. This may result from the provision of an explicit evolutionary switch that controls 

whether regions of the genotype are expressed in the phenotype or implicitly in the architecture 

of the phenotype i.e. the connectivity of phenotypic components is such that subsets of these 

components do not form part of the functional phenotype. 
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A substantial amount of evidence has been presented above that suggests this is a fruitful 

approach and allows the evolution of phenotypes more reliably or more quickly than would 

otherwise have been possible. However, this use of neutrality is quite different from the neutrality 

that has been studied in biological systems such as RNA molecules or that arises in models of 

genetic regulatory networks such as the random Boolean network. In these systems, the natural 

self-organising dynamics result in the presence of attractors or preferred states of the system. The 

neutrality results from many initial states resulting in the same attractor. Although the precise 

state of each individual gene may not be crucial, these genes remain an integral part of the 

dynamical process. For example, genes that are not expressed in one cell type are not free from 

selection pressure as they are likely to be expressed in other cell types. These genes are an 

integral part of a genetic regulatory network whose dynamics lead to different patterns of gene 

expression in different cells. 

 

In the previous chapter it was suggested that these dynamics provide a source of order that 

constrains the phenotypes that are available to evolution. A similar effect is not likely to be 

achieved by allowing unexpressed regions of a genotype that are free from selection pressure. 

This approach does not bias the set of possible phenotypes and is not a source of order. Rather, 

unexpressed regions undergo random search with the hope that they may be integrated into the 

functional phenotype at a later stage. In natural evolutionary systems, this is equivalent to the 

presence of so-called “junk DNA” that in the absence of selection pressure quickly diverges from 

coding regions of DNA and is highly unlikely to ever again code for proteins. 

 

While this approach may be successful for small problems it may ultimately be limited. Consider 

an extreme example in which a genotype is duplicated and a genetic switch introduced that 

determines whether the original or the duplicate will be expressed as the phenotype [69]. Each 

genotype is independently capable of specifying the required phenotype and thus the possibility 

of the currently unexpressed copy randomly generating the required phenotype through neutral 

drift exists. The genetic switch could then be mutated and the search would be successful. While 

this is a possibility, the probability of such an occurrence is negligible for any realistic genotype. 

Local optima do not exist in this space but transitions between many phenotypes are extremely 

unlikely. The probability is increased if smaller regions of the genotype are unexpressed and 

subsequently switched back in to the phenotype but the same principle applies. 

 

In order to gain full advantage from neutrality it may be necessary, therefore, to introduce a 

dynamical process in to the genotype-phenotype mapping; a process that introduces an equivalent 

order to that arising from the dynamics of molecular folding or genetic regulatory networks for 

example. Biology has been able to build on whatever common phenotypes are produced in the 

context of our chemical and physical laws. However, in artificial evolution the genotype-

phenotype mapping needs to be designed in order to encourage the common phenotypes to be 

those of high fitness. In addition, these common phenotypes must be represented by expansive 
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and percolating neutral networks such that they are probable discoveries as a population drifts 

along a neutral network. This work is concerned with developing mappings of this nature. 

 

3.11 Sum m ary 

In this chapter a number of studies that have explored the impact of neutrality in artificial 

evolutionary systems have been reviewed. A number of key features were drawn out and are 

highlighted below: 

 

• Neutrality has likely been an implicit feature of many artificial evolutionary systems due 

to the nature of typical problem representations. 

• There is an increasing realisation that the principled introduction of neutrality may yield 

significant advantages to artificial evolution. These benefits include the speed and 

reliability at which high fitness phenotypes can be discovered. 

• A very common approach is to allow unexpressed regions of a genotype that are free 

from selection pressure. This may either be through the explicit use of a genetic 

“switch” or implicitly in the configuration of the phenotype. 

• This approach does not exploit the order that arises as a result of the dynamics of a self-

organising process in which the system tends toward preferred states or attractors. Such 

processes are the root of the neutrality studied in RNA evolution and genetic regulatory 

networks for example.  

• In order to fully exploit neutrality, such dynamics may need to be introduced into 

artificial genotype-phenotype mappings. 

The remainder of this work is concerned with developing mappings of this nature. In the 

following chapter, several abstract genotype-phenotype mappings are introduced that mimic 

natural self-organising processes. The aim of this work is to generate the landscape properties 

that result from natural self-organising processes by introducing abstractions of those processes 

into artificial genotype-phenotype mappings.  
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Chapter 4 

 

Abstract Genotype-Phenotype M appings 

 

 

4.1 Introduction 

In has been argued that self-organisation is highly likely to play a role in natural evolutionary 

systems. One effect of self-organisation is to introduce neutrality into the search space as many 

genetic configurations give rise to the same final system behaviour or phenotype. However, it 

was seen in the previous chapter that the neutrality resulting from this natural order has not yet 

been fully explored in artificial evolutionary systems. In this chapter, two genotype-phenotype 

mappings are developed that are based on natural self-organising processes. The motivation 

behind this approach is to generate search spaces that exhibit the properties that are found in 

natural search spaces through the use of abstractions of natural processes. 

 

A major influence in the design of these mappings was the extensive study of the landscapes 

created by the folding of RNA molecules highlighted in Chapter 2. This work revealed a number 

of beneficial properties resulting from the presence of large-scale neutrality. One method of 

encouraging similar properties into artificial mappings would thus be to use abstractions of these 

well studied processes. The mathematical models used within the studies allow the pertinent 

structure of RNA to be ascertained given a nucleotide sequence, i.e. a phenotype to be calculated 

given a genotype, and could thus be used as a basis for an artificial mapping. However, there are 

difficulties with this approach as the algorithms are computationally intensive and would thus 

result in a significant performance penalty for any evolutionary algorithm incorporating them. It 

is difficult to justify these penalties as the precise details of the mapping are not likely to be 

crucial; several different models of RNA-folding exist that yield very similar large-scale 

landscape properties. In addition, we have seen in the previous chapter that abstract fitness 

landscapes such as the NKp landscape can be created via very simple mechanisms that produce 

similar properties to those witnessed in RNA-folding. For these reasons, the two mappings 

introduced in this chapter are not specific models of natural processes but rather computationally 

efficient, abstract models that ignore many of the details of natural systems but capture their 

essence and ability to self-organise into orderly states. They are based on a cellular automaton 

and a random Boolean network and are described in detail in the following section. 

 

It was seen in Chapter 2 that the large-scale neutrality inherent to RNA folding resulted in neutral 

networks that percolated throughout genotype space. Movement on these neutral networks 
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allowed the constant innovation of new phenotypes. It is this property that is the primary statistic 

used to explore the properties of these abstract mappings. Such constant innovation would be 

highly desirable in artificial evolutionary systems. Ultimately however, the discovery of new 

phenotypes must allow higher fitnesses to be reached. The ability of the mappings to achieve this 

is also assessed using several different fitness functions.  

 

4.2 The M appings 

In order to compare the ability of the different mappings to allow discovery of new phenotypes, it 

is important that the same phenotypes are possible for each mapping i.e. that phenotype space is 

identical. In order to achieve this, the phenotypes were represented using a binary encoding of a 

fixed length in each case. For a string of length L the number of phenotypes was given by: 

 

L
NP 2=   Equation 4.1 

 

Given this constraint, the design of a mapping involved both the choice of a genetic encoding and 

a process that generated each of the phenotypes using that encoding. The former defined 

genotype space and the latter the genotype-phenotype mapping. For a direct encoding, genotype 

space and phenotype space are equivalent i.e. exactly one genotype maps onto each phenotype. 

However in order to generate potentially beneficial neutrality more complex processes are 

required. It is for this purpose that the cellular automaton and random Boolean network were 

employed. 

 

4.2.1 The Cellular Autom aton M apping 

4.2.1.1 Cellular Automata 

Cellular automata (CA) were first developed by Von Neumann as models of self-reproducing 

machines [45]. They consist of a number of simple, locally-interacting computational elements or 

cells that self-organise into stereotypical patterns of activity [1,109]. These properties make them 

well suited as models of natural self-organising processes and they have been widely used for this 

purpose. Examples include fluid flow or lattice gas models [41] and the reaction-diffusion 

chemical systems highlighted in chapter 2 [54]. In addition, they have been used to model 

biological phenomena such as animal patterning [25], ecosystem dynamics [74] and immune 

responses [29].  

 

Each cell within the CA takes the form of a finite state automaton whose state transitions are 

defined by simple computational rules that are influenced by the state of neighbouring cells. 

Although many CA architectures are possible [109], one common approach is to arrange the cells 
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in to a one-dimensional array in which the state transitions are governed by the current state of a 

cell together with those of its two immediate neighbours. An example of such a CA is shown in 

Figure 4.1. 

 

Figure 4.1: A one-dimensional two-state cellular automaton consisting of 75 cells organised 
into a horizontal array. The state of the CA in successive iterations is shown flowing down 
the image. The state transition rules are shown below. 

 

The figure shows a one-dimensional array of 75 two-state cells that obey the state transition rules 

shown beneath the image. These rules define the next state of a cell given each of the 8 possible 

states of that cell’s neighbourhood i.e. the 8 combinations of its own state together with those of 

its two immediate neighbours. The CA is initialised with a single “live” cell and synchronously 

updated for a number of iterations resulting in a well ordered pattern of activity. The precise 

pattern that is produced is dependent on both the initial state of the CA and the state transitions 

rules. Changes to each of these can not only change the details of the pattern that is produced but 

can also generate qualitatively different behaviour that ranges from fixed-point to chaotic 

attractors [110]. The effect of a single change to the transition rules of the above CA is shown in 

Figure 4.2. 

 

Figure 4.2: The effect of a single change to the CA’s state transition rules. A very different 
behavioural pattern is produced. 
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Given the ability of cellular automata to act as models of natural self-organising systems they are 

good candidates to form the basis of the abstract genotype-phenotype mappings of interest in this 

chapter. One possibility of exploiting the CA’s pattern generating ability would be to identify the 

attractors in the dynamics and equate each attractor to a phenotype. However, there are a number 

of difficulties with this approach. Chief among these being that the type and number of attractors 

is difficult to control. A different approach was therefore taken in which the CA was updated for 

a fixed number of iterations and the resulting state taken as the phenotype. The actual number of 

iterations was chosen to be 20 to allow any initial fluctuations to settle down while minimising 

the computational overheads of the mapping [58,59,63,97-99].  

 

In this mapping the number of two-state cells in the CA defines phenotype space i.e. the number 

of cells is equal to the length of the phenotype L. The genotype-phenotype mapping equates to 

the dynamics of the CA over the 20 iterations and the resulting state gives one of the 2L 

phenotypes. The genotype encodes the information required to initialise the CA, which is 

explained in greater detail in the following section. The mapping is summarised in Figure 4.3. 

 

 

Figure 4.3: Summary of the cellular automaton mapping. A cells state together with those 
of its immediate neighbours defines an address into that cells’ rule table which gives its next 
state. The automaton is updated for a fixed number of iterations and the resulting state of 
the CA gives the phenotype. 

  

4.2.1.2 Genetic encoding 

One important feature of the CA that requires encoding in the genotype is its initial state. 

Changes to the encoded initial state would result in a different pattern of activity and hence may 

result in a different final state or phenotype after the 20 iterations. However, it is not likely that 

all phenotypes could be generated by such an encoding as the CA’s dynamics contain a number 

of attractors. By definition therefore, a number of initial states would result in the same final 

000
001
010
011
100
101
110
111

1
1

1

1

0

0
0

0

01 1
i

......
for cell i:

rule table

address

new state



 56

behaviour pattern and would thus be likely to produce the same phenotype if the number of 

iterations was large enough to allow the CA to settle into its attractor. 

 

As highlighted in the previous section however, the pattern produced by the CA is not only 

affected by the initial state but also by the transition rules. These rules can also be encoded in the 

genotype in order to increase the range of phenotypes that can be produced by the mapping. In 

addition, greater flexibility can be achieved by encoding independent state transition rules for 

each cell i.e. by using a non-uniform cellular automaton [67]. Such a mapping is very likely to 

allow the production of all 2L phenotypes. The resulting genotype is depicted in Figure 4.4. 

 

Figure 4.4: The genetic encoding for the cellular automaton mapping. 

 

A cell’s next state is dependent on its own state together with that of each of its neighbours and 

rules are required for each possible combination of these states. Thus the size of the rule table is 

2K+1 bits, where K is the number of neighbours. In addition to the rule table, each of the L cells 

required its initial state to be encoded. For the two-cell neighbourhood used in this mapping, the 

total length of the binary genotype is thus given by Equation 4.2. 

LLG K
CA 9)21( 1 =+= +   Equation 4.2 

 

4.2.2 Random  Boolean Network M apping 

4.2.2.1 Random Boolean networks 

The random Boolean network (RBN) was introduced in chapter 2 as an abstract model of a 

genetic regulatory network. It consists of an array of cells that are regulated by a number of other 

cells within the network. In its simplest form each cell can be in one of two states, “on” or “off”, 

and a cell’s regulatory inputs define which of these two states a cell adopts. As was described in 

chapter 2, a natural consequence of these regulatory webs of interaction is to place constraints on 

the behaviours that a network can exhibit; the network self-organises into one of a relatively 

small number of attractors. This behaviour makes them good candidates to act as a self-

organising genotype-phenotype mapping. However, equating these attractors with phenotypes 

suffers from the same problems as for the cellular automaton mapping; predicting and controlling 

the nature of the attractors is problematic. A similar solution can however be adopted in which 

Initial State Rule Table 

Cell 1 Encoding Cell L Encoding Cell 2 Encoding 
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the network is updated for a fixed number of iterations and the resulting state interpreted as the 

phenotype. As for the CA mapping, the number of iterations was chosen to be 20. This mapping 

was introduced by Shipman et al. [98] and subsequently explored in detail in a number of related 

papers [58,59,63,97,99].  

 

The RBN can be thought of as a generalisation of a CA in which the constraints on cell 

neighbourhood are relaxed. With the CA, a cells’ neighbourhood was restricted to its immediate 

neighbours. However, the cells within the RBN can be regulated by any of the cells within the 

network. In addition, a cell’s own state need not influence its next state. The RBN mapping is 

depicted in Figure 4.5. 

 

 

Figure 4.5: Summary of the RBN mapping. The initial state and rule tables are encoded in 
the genotype as for the CA mapping. However, in this case a cells’ neighbourhood is no 
longer restricted to its immediate neighbours.  

 

4.2.2.2 Genetic encoding 

The genetic encoding of the RBN mapping is very similar to that of the CA mapping. However, 

extra information is required to specify the regulatory inputs. The resulting genotype encodes the 

initial state, the rule table and indexes for the regulatory inputs for each cell as shown in Figure 

4.6. Each of the K regulatory inputs is encoded as an index to one of the L cells in the network 

and thus requires log2(L) bits. The total number of bits required to encode the regulatory inputs is 

thus Klog2(L) for each cell. For the 3-cell neighbourhood used in this mapping, the total length of 

the binary genotype is given in Equation 4.3. 

LLLLKG K
RBN ))(log39())(log21( 22 +=++=  Equation 4.3 
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Figure 4.6: Genotype structure for the random Boolean network mapping. In addition to a 
cell’s initial state and state transition table, its regulatory inputs are also genetically 
encoded. 

 

The encoding of regulatory inputs greatly increases the size of genotype space, for an 8-bit 

phenotype the CA mapping results in 272 genotypes whereas the RBN mapping results in 2144 

genotypes. As phenotype space is identical in each case there is a far greater degree of neutrality 

in the RBN mapping.  

 

4.3 Phenotype Accessibility 

It has been argued that drift on neutral networks gives access to many more phenotypes than 

would be possible with a direct encoding when no such neutral drift is possible. The aim of this 

section is to assess whether this holds true for the CA and RBN mappings. In order to determine 

which phenotypes are accessible from each neutral network within genotype space, a measure of 

accessibility must be defined. In any evolutionary algorithm, the likely transitions between 

phenotypes are influenced not only by the structure of the search space but also the genetic 

operators that are used to navigate that space. Many such operators are possible, recombination 

and mutation being two of the most common. While some of these operators have the potential to 

allow large movement in genotype space, the focus of this study is on the basic structure of the 

search space created by the two mappings. For this reason, the study is restricted to local 

movement in genotype space generated by the mutation operator.  

 

Many evolutionary algorithms use a mutation operator in which each gene is mutated with a 

given probability. With such a scheme it is theoretically possible to change the entire genotype in 

a single reproductive event and hence every phenotype is theoretically accessible from every 

other. However, for any realistic genotype the probability of the majority of these transitions is 

negligible; a typical mutation event will result in far fewer genetic mutations and hence smaller 

movements in genotype space. This study considers only the smallest of these movements, those 

that are generated by single-point mutations. If constant innovation of phenotypes can be 

demonstrated for such restricted movement in genotype space, this will be a strong case to 

suggest that it would also occur in any real evolutionary algorithm using these mappings. 

Multiple mutation events and more sophisticated operators would only further increase the 

accessibility between phenotypes.  

 

Initial State Rule Table 

Cell 1 Encoding Cell L Encoding 

Neighbour 1 Neighbour K 
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For a direct encoding the number of phenotypes that are accessible from a genotype of length L 

using only single-point mutation is given by: 

LAP )1( −=    Equation 4.4 

Where A is the number of genetic alleles, for the binary genotypes used in this study the number 

of accessible phenotypes is thus equivalent to the length of the genotype i.e. each gene can be 

individually mutated to result in a new phenotype. If all of these phenotypes are of lower fitness, 

this genotype corresponds to a local optimum. For the CA and RBN mappings to have the 

potential of alleviating the problem of local optima, they must allow access to a greater number 

of phenotypes than the direct encoding on average. A key tool in assessing whether this was the 

case is the random neutral walk [65] 

 

4.3.1 The Random  Neutral W alk 

Consider an individual within an evolving population that resides on a particular neutral network. 

Each gene within this individual has the potential of being mutated. Some of these mutations will 

be neutral and will cause the individual to move along the neutral network; others will result in 

different phenotypes and allow the population to probe the boundaries of the neutral network. As 

the population drifts along the neutral network, new boundaries are opened up for exploration 

which may allow the discovery of new, better adapted phenotypes. 

 

The random neutral walk mimics this process by modelling a single individual engaged in neutral 

drift. A series of steps along the neutral network are taken by randomly choosing one of the 

possible neutral mutations. At each step, the boundaries of the neutral network are assessed to 

give a measure of the accessibility of different phenotypes from that neutral network. A number 

of neutral walks can be performed on each of the neutral networks within genotype space to give 

a good indication of the ability of neutral drift to allow access to phenotypes that would otherwise 

have not been possible. The process is visualised in Figure 4.7 and formalised below for a walk 

on the neutral network associated with a phenotype P0: 

 

1. Randomly choose a genotype G0 mapping onto phenotype P0 

2. Generate all single-point mutants of G0 and store in list M0 

3. Generate a list of neutral neighbours N0 consisting of all members of M0 that map on to 

P0. 

4. Log all remaining non-neutral members of M0 

5. Randomly choose a member of N0 to become G0. 

6. Repeat from step 2 until a given number of steps have been performed or N0 is empty. 
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Figure 4.7: Visualisation of a random neutral walk in genotype space. Neutral mutations 
are chosen at random and the phenotypes that are within a single mutation of each 
resulting genotype are assessed. 

 

4.3.2 8-bit Phenotype Spaces 

An 8-bit phenotype space results in a total of 28=256 possible phenotypes. Any realistic problem 

would likely generate larger phenotype spaces, however, these small spaces reduce the 

computational overheads required to generate the statistics while not diminishing their relevance 

to larger problems. Even such a small number of phenotypes results in large genotype spaces for 

the two mappings, the CA mapping produces 272 genotypes a number that rises to 2144 for the 

RBN mapping. Each of these genotypes maps on to one of the 256 phenotypes and hence the 

genotype spaces are sub-divided into 256 neutral networks representing each of the possible 

phenotypes. In this section, the extent and inter-connectivity of these neutral networks is assessed 

using the random neutral walk. All the statistics presented below were generated from 100 

independent walks on each of the 256 neutral networks resulting in a total of 25,600 walks for 

each mapping. 
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4.3.2.1 Average phenotype accessibility 

The large genotype spaces created by both the CA and RBN mappings make exhaustive 

enumeration and hence an exact measure of the average phenotypic accessibility impossible. 

However, statistics collected on the neutral walks allow a good approximation to be obtained. 

These statistics are shown in Figure 4.8.  

 

Figure 4.8: The number of new phenotypes found on a series of 25,600 random neutral 
walks for each mapping. The graphs to the left show the average number of phenotypes 
found as a function of walk length. The histograms to the right bin the number of 
phenotypes reachable after 100 steps of each neutral walk.  
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As would be expected, the direct encoding resulted in the discovery of exactly 8 new phenotypes 

on all walks. Each single-point mutation generated a new phenotype and in the absence of 

neutrality, further moves in genotype space were not possible. In contrast, the CA mapping 

generated substantial degrees of neutrality; on average 272/28 = 264 genotypes mapped onto each 

phenotype allowing the discovery of many more phenotypes through neutral drift. The initial 

high rate of discovery tailored off to become relatively constant towards the end of the walks. 

The number of phenotypes discovered after 100 steps averaged approximately 100. The random 

Boolean network generated even more extensive neutrality with 2144/28 = 2136 genotypes mapping 

onto each phenotype. This increased level of neutrality was also reflected in the number of 

phenotypes discovered, after 100 steps of the neutral walk approximately 150 new phenotypes 

were discovered on average.  

 

These results demonstrate the ability of the two mappings to give access to many more 

phenotypes than a direct encoding. They also suggest an added benefit from the higher levels of 

neutrality within the RBN mapping. However, closer examination reveals that this benefit was 

larger due to the inherent biases of the experimental method. At each step of the neutral walk, 

every possible mutation was generated and hence the entire neighbourhood of the current 

genotype was assessed. This is very different to a real evolutionary algorithm in which this 

neighbourhood is sampled rather than exhaustively enumerated. The 144-bit RBN genotype was 

double the length of the CA genotype, which consisted of only 72 bits. Thus, at each step of the 

walk 72 more genotypes were assessed for the RBN mapping which equates to 7,200 over the 

course of a 100 step walk. The fact that some of these assessments will inevitably be of the same 

genotype does not remove the inherent advantage gained by a larger genotype. 

 

A more balanced measure of the performance of the two mappings can be obtained by relating 

the total number of genotypes examined during a walk to the total number of new phenotypes 

found to yield a probability of a phenotype discovery. Thus, a total of 72*100 = 7,200 genotypes 

were assessed for the CA mapping. This resulted in the discovery of approximately 100 

phenotypes on average and hence a probability of discovery of 100/7,200 = 0.01. For the RBN 

mapping the probability of phenotype discovery was approximately 150/(144*100) = 0.01. Thus, 

by this measure the performance of the two mappings was equivalent. 

 

4.3.2.2 Large-scale structure of genotype space 

Both the CA and RBN mappings encode not only the initial state of the automaton but also 

independent rule tables for each cell. It was claimed that this approach was very likely to allow 

all required phenotypes to be produced. The results presented in the previous section revealed 

that new phenotypes were discovered but did not show whether there was a bias to any particular 

sub-set of phenotypes or whether certain phenotypes were never found. In this section, statistics 

are presented that aim to give an insight into whether such biases exist.  
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Figure 4.9: The average number of times each phenotype was discovered on the random 
neutral walks.  

 

Figure 4.9 shows the average number of times that each phenotype was discovered on the random 

neutral walks. In each case, the average for each phenotype was equivalent to the overall average 

number of discoveries presented in the previous section. Thus, for the CA mapping each 

phenotype was discovered approximately 100 times and for the RBN mapping approximately 150 

times. These results indicate that there was no dominant sub-set of phenotypes that were 

discovered more frequently than others; across all the neutral walks the discovery of each 

phenotype was equally likely and no biases were apparent. 

 

Figure 4.10: The phenotypes discovered by 100,000 random samples of genotype space for 
each mapping.  

 

Figure 4.10 presents a further independent set of statistics that were generated by taking 100,000 

random samples of genotype space. The figure shows the number of phenotypes that were 

discovered for each mapping. The results for both the CA and RBN mappings are qualitatively 

similar to those for the direct encoding for which it is known that each phenotype is equally likely 

to result from a random sample. The results also suggest therefore that there was no inherent bias 

to any particular sub-set of phenotypes and support those from the neutral walks.   

 

4.3.2.3 Local structure of genotype space 

The results presented above give an insight into the global properties of genotype space. In this 

section, a greater insight into the local properties of genotype space is developed. Although new 

phenotypes may be readily discovered it may be the case that certain phenotypes can never be 

reached from some neutral networks, which may be detrimental to the search process. In order to 

determine whether this was the case, accessibility plots were generated. These plots indicate 
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exactly which phenotypes were found during the neutral walks on each of the 256 neutral 

networks and are shown in Figure 4.11. 

 

 

Figure 4.11: Inter-phenotype accessibility for each mapping. The horizontal axis gives the 
phenotype for which neutral walks were performed and the vertical axis the phenotypes 
discovered on those walks.  

 

As would be expected, the inter-phenotype accessibility is very low for the direct encoding. Only 

8 new phenotypes were accessible from any given phenotype. This is in stark contrast to both the 

CA and RBN mappings for which the accessibility plots were fully populated, indicating that 

every phenotype was accessible from each of the neutral networks. Thus, local optima are not 

present in these landscapes as neutral drift on each neutral network allows access to all other 

neutral networks. However, it is important to determine not only the theoretical possibility of 

transitions between neutral networks but also the probability of those transitions as the most 

probable transitions will have a greater impact on the evolutionary process. Figure 4.12 enhances 

the accessibility plot to indicate the frequency with which phenotypes were discovered. This is 

achieved by adopting a grey-scale, the darker the data point the more frequent the discovery. This 

approach was introduced by Bullock [107]. 

 

 

Figure 4.12: Grey-scaled inter-phenotype accessibility for each mapping. The shade of a 
data point indicates the frequency with which the associated phenotype was discovered; the 
darker the shade the more frequent the discovery. The shading is log-scaled. 

(a) Direct encoding (b) CA mapping (c) RBN mapping 

1 
1 

256 

256 

1 
1 

256 

256 

1 
1 

256 

256 

(a) Direct (b) CA (c) RBN 
1 

1 
256 

256 

1 
1 

256 

256 

1 
1 

256 

256 



 65

The figure shows that although all transitions are possible for the two mappings, they are not 

equally probable. The most probable transitions appear to be influenced by the transitions that 

would have been possible using a direct encoding. Thus although no large-scale structure or 

biases are apparent in the landscape, localised structure is apparent. This structure may have an 

influence on the performance of an evolutionary algorithm. 

 

4.3.3 16-bit Phenotype Spaces 

In order to gain some insight into the scalability of the two mappings, a further set of experiments 

were performed for 16-bit phenotype spaces. This increased the number of phenotypes from 28 = 

256 to 216 = 65,536 and resulted in a corresponding increase in the size of genotype space. The 

CA mapping required a genotype of length 144-bits and hence resulted in 2144 genotypes, 

whereas the RBN genotype was 336-bits long resulting in 2336 genotypes. A total of 1,024 

independent random neutral walks of length 500 were performed for each mapping and the 

average number of phenotypes discovered is shown in Figure 4.13. 

 

Figure 4.13: Phenotype discovery on a series of 1,024 independent random neutral walks 
for 16-bit phenotype spaces.  

 
 
The figure reveals that both mappings again allowed the discovery of large numbers of 

phenotypes through neutral drift and that the rate of phenotype discovery was relatively constant 
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throughout the walk. However in this case, the difference between the CA and RBN mappings 

was more pronounced. Approximately 450 phenotypes were discovered for the CA mapping 

whereas the number discovered for the RBN mapping was an order of magnitude greater at 

approximately 4500. This was partly due to the fact that the length of the walk was longer in this 

experiment and hence any difference between the two mappings was accentuated. However, it 

was again also due to the inherent biases of the experimental method. The RBN genotype was 

192 bits longer than that of the CA and thus 192*500=96,000 more genotypes were assessed 

during a neutral walk for the RBN mapping.  

 

A fairer comparison can again be made by calculating the probability of discovering new 

phenotypes by relating the total number of genotypes assessed to the number of phenotypes 

discovered. For the CA mapping this probability was approximately 450/(144*500) = 0.06 and 

the for the RBN mapping 4500/(336*500) = 0.03. Thus, despite the increased possibility of 

discovering new phenotypes with the RBN mapping the probability of doing so was less than for 

the CA mapping for these larger spaces. 

 

4.4 Adaptive Fitness W alks 

The previous section presented evidence showing that both the CA and RBN mappings allowed 

the discovery of many more phenotypes than were possible with a more traditional direct 

encoding. However, the discovery of new phenotypes alone is not sufficient to provide an 

advantage to an evolutionary algorithm. For this the mappings must allow access to new 

phenotypes of higher fitness. Their ability to do so is assessed in this section through use of 

similar walks to those of the previous section but with the distinction that moves to higher fitness 

phenotypes are taken whenever possible. 

 

In order to determine which phenotypes are of a higher fitness, a fitness landscape must be 

defined. Two different landscapes were explored, the first of which assigned fitnesses to 

phenotypes according to a random distribution and the second according to the hierarchical if and 

only if (h-iff) fitness function proposed by Watson et al. [88-91]. In both cases 16-bit phenotypes 

were used resulting in a total of 65,536 phenotypes. 

 

4.4.1 Random  fitness landscape experim ents  

4.4.1.1 The fitness landscape 

In this set of experiments each of the 65,536 phenotypes were randomly assigned a fitness value 

in the range [0, 1] with higher values denoting higher fitnesses. However, the random numbers 

were generated so as to create a landscape with many more low fitness values than high. This 

non-uniformity mirrors that of many real problems in which poor solutions are far more 

numerous than good solutions. It also increased the difficulty of the problem so that any 
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performance differences between the two mappings were accentuated. The fitness assignment 

was performed according to the following equation: 

)1(100 −= ref   Equation 4.5 

Where r is a random number in the range [0, 1] drawn from a uniform distribution. 

 

4.4.1.2 The adaptive fitness walk 

The walk used in these experiments was very similar to the random neutral walk with the 

exception that steps were taken to a neighbouring genotype of higher fitness whenever possible. 

If a higher fitness neighbour did not exist, a neutral neighbour was chosen at random as before. 

The process is summarised below: 

 

1. Randomly choose a genotype G0 mapping onto a phenotype with fitness F0 

2. Generate all single-point mutants of G0 and store in list M0 

3. Generate a list N0 consisting of all members of M0 that map onto phenotypes of fitnesses 

greater than or equal to F0 

4. Determine the genotype Gmax within N0 that has the highest fitness Fmax 

5. If no genotypes are of a higher fitness then randomly assign a member of N0 to Gmax 

6. Make G0 = Gmax and F0 = Fmax  

7. Repeat from step 2 until a given number of steps have been performed. 

 

4.4.1.3 Results 

A total of 1,024 independent adaptive fitness walks of 500 steps were performed for a direct 

encoding, the CA mapping and the RBN mapping. The results, shown in Figure 4.14, reveal that 

adaptive fitness walks using the direct encoding quickly become trapped at local optima; no 

improvements in fitness were achieved following the first few steps. In contrast, both the CA and 

RBN mappings allowed the discovery of higher fitness phenotypes throughout the walk. The 

increased phenotypic accessibility afforded by the RBN mapping allowed high fitnesses to be 

readily achieved. However, the performance of the RBN mapping was again aided by the 

experimental methods. As with the random neutral walks, the entire neighbourhood of the current 

genotype was assessed at each step which favoured mappings that generated an increased 

possibility of phenotype discovery through the use of larger genotypes. As was highlighted 

previously, it is the probability of phenotype discovery rather than the theoretical possibility that 

is likely to be of greater importance in any real evolutionary algorithm. Nonetheless, these results 

demonstrate that both mappings not only allow access to a greater number of phenotypes but also 

access to phenotypes of higher fitness for this landscape. 
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Figure 4.14: Adaptive fitness walks for the CA, RBN and direct mappings with a random 
fitness landscape. The direct encoding quickly becomes trapped at local optima and makes 
no further improvements during the walk. However, both the CA and RBN mappings allow 
higher fitnesses to be achieved. These results are averaged over 1,024 independent walks. 

 

4.4.2 H-IFF fitness landscape experim ents 

4.4.2.1 The fitness landscape 

The “hierarchical if and only if” fitness function was developed as an example of a fitness 

function that models hierarchical interdependency between a number of building blocks [88-91]. 

H-IFF decomposes a genotype into a number of layers which are composed of building blocks 

from lower layers within the hierarchy. This process is controlled by two parameters; k indicating 

the number of sub-blocks within each block and p indicating the number of layers of hierarchy. 

Each building block contributes to the overall fitness if all bits within it are of the same value. An 

example is shown in Figure 4.15. 

 

It can be seen from the figure that while each block can maximise its fitness independently at a 

given layer of the hierarchy, its total contribution to fitness is dependent on the state of 

neighbouring blocks and ultimately the state of the whole genotype. This process is formalised in 

the recursive equation below where n = kp: 

 










++

=∀=∀>+++
=

=

otherwise)
n

,...,b
n/

f(b)
n/

,...,bf(b

)
i

i:bor
i

i:b(and)(nif)
n

,...,b
n/

f(b)
n/

,...,bf(bn

)(nif

)
n

,...,bf(b

1221

101
1221

11

1
 

Equation 4.6 

0

0.25

0.5

0.75

1

0 50 100 150 200 250 300 350 400 450 500

W alk Length

F
it
n
e
s
s

CA RBN Direct



 69

 

 

Figure 4.15: An example fitness calculation using the H-IFF fitness function. In this 
example the number of sub-blocks in each block, k is 2 and the number levels of hierarchy, 
p is 4. A fitness contribution is made when all values within a block are the same value.  

 

The H-IFF fitness function results in two maximally distinct global optima in which all values are 

either 1 or 0. It also results in a number of local optima that correspond to situations in which 

adjacent sub-blocks are individually aligned but with opposite states. A feature of these local 

optima is that they are maximally distant from a higher fitness value. For example, the local 

optima with the highest fitness consist of the two genotypes with half-zeros and half-ones. Fully 

half of the genotype must be changed in order to reach the next highest fitness level, which in this 

case are the two global optima consisting of all-ones and all-zeroes. H-IFF is therefore very 

difficult to solve for a hill-climbing search process and is a good test of the neutral mappings. 

The nature of the local optima can be emphasised by taking a cut through the landscape as shown 

in Figure 4.16. 

 

Figure 4.16: A cut through the H-IFF fitness landscape for a 16-bit genotype. A number of 
different genotypes are shown consisting of a series of leading zeros followed by ones. Both 
global optima are represented together with a number of local optima that are maximally 
distant from higher fitness values. 
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4.4.2.2 The adaptive fitness walk 

The adaptive walk used for these experiments removed the inherent bias of the walks performed 

for the random landscapes which favoured larger genotypes. This was achieved by more closely 

mirroring a mutation-based evolutionary algorithm. Rather than exhaustively enumerating a 

genotype’s neighbourhood and choosing the neighbour with the highest fitness, a single 

neighbour was chosen at random independently from its fitness i.e. a mutation was performed. 

This neighbour was retained if its fitness was greater than or equal to the original genotype. The 

process is outlined below: 

 

1. Randomly choose a genotype G0 mapping onto a phenotype with fitness F0 

2. Mutate G0 to generate a single-point neighbour G1 and calculate its fitness F1 

3. If F1 is greater than or equal to F0 then make G0 = G1 

4. Repeat from step 2 until a given number of steps have been performed. 

 

4.4.2.3 Results 

A series of 100 adaptive fitness walks were performed for the CA, RBN and direct mappings 

using the H-IFF fitness function. Each of these walks consisted of 2000 steps. The results, shown 

in Figure 4.17, reveal that adaptive walks using a direct encoding quickly became trapped at local 

optima as for the random landscape. Small initial improvements were evident but progress 

quickly halted. However, both the CA and RBN mappings again allowed the attainment of higher 

fitness values and in many cases a global optimum was discovered. These results demonstrate 

therefore that the use of the CA and RBN mappings allowed a very difficult fitness landscape to 

be negotiated by a simple hill-climbing search algorithm. 

 

In previous experiments the RBN mapping seemingly outperformed the CA mapping, in this case 

however the reverse was true. This was a consequence of the revised adaptive fitness walk which 

removed any biases towards larger genotypes. During the random neutral walks it was discovered 

that although the RBN mapping increased the possibility of finding new phenotypes, the 

probability of doing so was less than that of the CA mapping. In the revised adaptive walk, a 

random neighbour was chosen at each step in the absence of complete knowledge of a genotype’s 

neighbourhood. In this case therefore, the importance of the probability of phenotype discovery 

overrode the theoretical possibility and this was reflected in the results.  

 

This highlights an important point when designing neutral mappings. Although sufficient 

neutrality is required to generate extensive and percolating neutral networks, too much neutrality 

may decrease the likelihood of discovering adaptive mutations. As the number of neutral 

neighbours increases, the likelihood of a mutation generating a different phenotype decreases i.e. 
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the neutrality produces mutational robustness. During these experiments it was found that 58% of 

neighbours were neutral for the RBN mapping on average whereas only 44% were neutral for the 

CA mapping. The latter produced a more effective balance between neutral and non-neutral 

mutations in this case. 

 

 

Figure 4.17: Adaptive fitness walks for each mapping using the H-IFF fitness function. The 
left-hand graphs show the average, minimum and maximum fitnesses achieved over 100 
independent walks and the right-hand side graphs show the performance of each individual 
walk.  
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4.5 Discussion 

The results presented above show that use of the CA and RBN mappings can increase 

accessibility of phenotypes and hence allow higher fitnesses to be reached using a simple hill-

climbing algorithm. While the use of the mappings improved the performance of the hill-climber 

on several abstract problems, this does not in itself show that the mappings would be of use on 

larger scale problems using a realistic evolutionary algorithm. One of the key simplifications 

made in the above analysis was the consideration of only single-point mutations. While these 

mutations are common in many evolutionary algorithms, multiple changes to the genotype are 

also typically possible. The allowance of greater movement in genotype space changes the 

neighbourhood relationships and may allow shallow local optima to be avoided. This effect may 

substantially improve the performance of the direct encoding. 

 

In a recent paper, Knowles and Watson compared the RBN mapping with a direct encoding on 

various optimisation problems with varying mutation rates [46]. This work suggested that the 

RBN mapping did not significantly improve the performance of either a hill-climber or a 

mutation-based evolutionary algorithm when an appropriate mutation rate was used. One 

example that was investigated was the H-IFF fitness function with 32 and 64-bit phenotypes. It 

was found that while the performance of the RBN mapping was relatively consistent with 

different mutation rates its performance was not as good as a direct encoding using high mutation 

rates and elitism i.e. keeping the best solution found to date. In the extreme, increasing the 

mutation rate effectively reduces to random search. However, smaller increases in mutation rate 

may allow exploitation of local correlations and larger movement in genotype space when 

necessary to negotiate shallow local optima. The results presented by Knowles and Watson 

suggested that this was indeed the case. However, the relative performance of the two approaches 

may have also been influenced by the choice of mutation rates. Relatively large mutation rates 

are required to compensate for the mutational robustness afforded by the RBN mapping. Those 

chosen for these experiments may not have been high enough to fully exploit the capability of the 

RBN mapping. Nonetheless, there are deeper reasons for the relatively poor performance of the 

RBN mapping for these larger spaces which can be elucidated by returning to the original 

inspiration for the mappings; RNA folding. 

 

The studies of RNA folding described in detail in chapter 2 revealed four properties of the 

associated genotype-phenotype mappings; large-scale neutrality, neutral networks, shape space 

covering and common phenotypes. It is clear from the above results that the proposed mappings 

generated large-scale neutrality and neutral networks; many genotypes mapped onto each 

phenotype and random neutral walks resulted in a constant innovation of phenotypes. In addition, 

these walks were not restricted to isolated areas of genotype space but traversed significant 

amounts of the space. For the 8-bit phenotype spaces, an average 44% of the CA genotype and 

34% of the RBN genotype had changed by the end of the walk. The results also reveal that the 
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mappings exhibit shape space covering, which refers to the property that all phenotypes are 

accessible from any arbitrary location in genotype space. All phenotypes were discovered with a 

series of random samples and on the random neutral walks. However, these same statistics reveal 

that the mappings did not exhibit the final property of common phenotypes as all phenotypes 

were discovered with equal probability. This would be expected as the mappings were designed 

to remove any biases in genotype space. However, the lack of common phenotypes ultimately 

limits the usefulness of the mappings. 

 

If all phenotypes were equally likely discoveries from any location in genotype space, the 

evolutionary process would reduce to random search with elitism or equivalently the use of a 

very high mutation rate with elitism. At each step along a neutral network, all other neutral 

networks would be equally probable discoveries. This may be beneficial for small spaces but as 

the size of the problem and hence the number of neutral networks increased, the likelihood of 

discovering a required neutral network would diminish. To be of benefit the mappings must 

exhibit some structure. The accessibility plots revealed that localised structure was apparent in 

genotype space; some phenotypes were more commonly discovered from a given neutral 

network. However, these common phenotypes were heavily influenced by the phenotypes that 

would have been accessible using a direct encoding and thus the structure in genotype space was 

still heavily influenced by the original neighbourhood relationships in phenotype space. 

 

To gain full advantage of a neutral genotype-phenotype mapping it is likely that a more 

fundamental restructuring of genotype space is required which produces common phenotypes by 

introducing biases into genotype space. Such biases would make certain phenotypes more likely 

outcomes of evolution. Natural evolution has been able to build on whatever phenotypic biases 

are produced by the laws of physics and chemistry, which produce common RNA structures for 

example. However, in artificial mappings these biases must be introduced so that the common 

phenotypes tend to be those of relatively high fitness. This is likely to require a priori knowledge 

about the problem. The use of abstract neutral mappings for arbitrary problems is thus not likely 

to be a fruitful approach in the long run. The mappings will need to be designed in the context of 

a particular application. This is the subject of the remainder of this work. 

 

4.6 Sum m ary 

In this chapter two abstract genotype-phenotype mappings have been explored that are based on 

generic models of natural self-organising processes; the cellular automaton and the random 

Boolean network. The key findings are highlighted below: 

 

• Both the CA and RBN mappings exhibit large-scale neutrality and neutral networks. 

• A random neutral walk on these neutral networks allows the discovery of many more 

phenotypes than would be possible using a direct encoding. 
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• The increased accessibility of phenotypes allows higher fitnesses to be reached in both a 

random fitness landscape and the “hierarchical if and only if” landscape. 

• The mappings give equal emphasis to each phenotype and thus do not exhibit the 

property of common phenotypes observed in the RNA-folding landscapes described in 

chapter 2. There was no bias in the search space in favour of certain phenotypes. 

• Such a property is necessary to gain full advantage from a neutral mapping and is likely 

to require the use of domain knowledge to encourage the common phenotypes to be of 

high fitness. 

 

The following chapter builds on the knowledge gained in this chapter to develop a mapping for a 

telecommunications network design problem. This mapping uses domain knowledge with a view 

to biasing the search space in favour of high-fitness phenotypes. The resulting search space is 

extensively analysed to ascertain whether this was achieved. 
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Chapter 5 

 

Growing Telecom m unication Networks 

 

5.1 Introduction 

In the previous chapter it was concluded that to gain full advantage of neutrality, genotype-

phenotype mappings must be designed in the context of a particular application. The use of 

domain knowledge opens up the possibility of producing common phenotypes that tend to be of 

high fitness. This would be highly advantageous as the common phenotypes are more likely 

outcomes of the evolutionary search process. In this chapter, domain knowledge is used to design 

a self-organising mapping for a specific real-world application with a view to generating such 

common phenotypes. This application involves the design of telecommunications networks. 

 

Evolutionary computation has been widely used within the telecommunications domain. The 

work dates back to the late 1980’s and tackles numerous problems including frequency 

assignment, call allocation, routing, node location and topology design. A thorough review of this 

work can be found in [61,62]. The focus of this chapter is on node location, which involves 

discovering the best locations for nodes from a set of potential sites. A common approach in the 

application of evolutionary computation to the node location problem is to use an encoding in 

which the locations of the nodes are directly specified in the genotype. An example of this 

approach is the work of Routen who addressed the problem of concentrator location and 

assignment [122]. A concentrator accumulates traffic from a number of different sites so as to 

lessen the number of independent connections to the network. Routen employed a two-stage 

process in which one genotype defined the location of concentrators and another genotype 

encoded the allocation of sites to those concentrators. This approach is a classic example of a 

direct encoding, the network design can be interpreted directly from the genotype and no further 

information is required. Examples of similar approaches can be found in the work of Chardaire et 

al. [73], Celli et al. [24], Gondim [78] and Calégari et al. [72].  

 

In this chapter, an alternative approach is developed in which the genotype does not directly 

specify the configuration of the network but rather instructions for creating that network. The 

final network design is the result of a self-organising developmental process that is tailored by the 

information encoded in the genotype rather than controlled by it. This approach is described more 

fully in the following section. By way of example, the approach is then applied to a simplified 

version of a real problem; the growth of the UK’s data network. The mapping designed for this 
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application introduces significant neutrality in to the genotype-phenotype mapping as many 

different instructions produce the same network design. The impact of this neutrality is analysed 

in detail in the context of an example evolutionary run and through exhaustive enumeration of 

genotype space. 

 

5.2 Coupling evolution and developm ent for network design 

In practice, real telecommunication networks are often built according to various planning rules 

that embody the accumulated experience of network designers. These planning rules typically 

take the form of a series of IF-THEN rules that define actions to be taken given certain 

conditions. For example, a rule may place a new node at a given site based on that site’s level of 

demand as below: 

IF (demand > x) THEN (add node to site) 

Where x is a threshold at which the site’s demand is deemed high enough to warrant the addition 

of a node. Designing a network would thus consist of applying this planning rule to each of the 

available sites. This example is obviously a gross simplification, any realistic design problem 

would require a number of different planning rules that take into account many conditions and 

define a number of possible actions. However the same principles apply, the state of the current 

network and its environment is assessed and the planning rules define the actions to be taken 

given these conditions. 

 

It is possible to aid network designers in this process by automating the application of the design 

rules. In this approach, both the current network and its environment are simulated such that the 

relevant conditions can be assessed and actions taken. The network is automatically produced 

through application of the planning rules in the context of this simulation. The rules typically 

consider localised conditions and take localised actions and it is their combined action that 

produces the final network design. In effect, the planning rules define a self-organising 

developmental process. The network is “grown” under the influence of the self-organising 

dynamics rather than precisely specified, which has analogues to natural development as shown 

in Figure 5.1. A concrete example is given in the following section.  

 

In order to evolve networks therefore, the parameters of the developmental process can be 

encoded in the genotype rather than the network design itself. For example in the rule shown 

above, the threshold parameter x may be genetically encoded. Evolution is able to influence the 

network design through tailoring the parameters and the resulting dynamics of the developmental 

process but must always work within the constraints that it imposes; it does not have a free hand 

to create arbitrary network designs. Good networks are produced using both the knowledge 
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gained during evolution in conjunction with that inherent to the growth process. This approach 

was developed by Shipman et al [17,96,97,100]. 

 

 

Figure 5.1: The natural analogy for this approach to evolutionary network design. Right, 
planning rules are encoded and interpreted in the context of a simulated environment to 
produce a network design. Left, the analogue in nature is the encoding of molecules that are 
expressed and interact during development to form the organism. 

 

There are a number of advantages to this approach. Expert knowledge can easily be captured in 

the form of planning rules and used to seed the evolutionary process. The resulting rules are in a 

form familiar to network designers and can be used in conjunction with other network design 

tools. It is also possible to evolve the structure of the planning rules together with their 

parameters. This allows new planning rules to be evolved that were not previously known to the 

network designers. 

 

In addition to these more pragmatic considerations, the introduction of a self-organising 

developmental process has a significant impact on the nature of the search space. The mapping 

from genotype (encoded rules) to phenotype (network design) typically contains large-scale 

neutrality as many different rule sets give rise to the same network design. It is this feature that is 

of primary concern in this work and is analysed in detail in the context of a specific application; 

the growth of the UK data network. 

 

5.3 Growing the UK data network 

As demand for telecommunication services increases, the networks designed to accommodate 

this demand must be grown. In particular, the explosive growth of the Internet has necessitated 

large-scale growth of the networks dedicated to data traffic. This is a challenging problem for 

network designers involving many competing constraints and the use of automated techniques to 
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aid in the process would be highly desirable. This problem thus provides a good test bed for the 

techniques proposed in the previous section. In order to apply these techniques to this data 

network problem, both a simulation of the network and a developmental process must be defined. 

These are the subject of the following two sections. 

 

5.3.1 The netw ork sim ulation 

In order to design the real UK data network, a very complex network simulation would be 

required. However, the aim of this chapter is not to produce network designs that will actually be 

deployed but to analyse the nature of the search space created by the developmental process. For 

these purposes, a greatly simplified network simulation is sufficient.  

 

Figure 5.2: The initial data network consisting of 3 core nodes and 20 potential sites for 
access nodes. The total demand (indicated by the fill of a box) is greater than can be 
handled by the existing network and thus it must be grown. 

 

Figure 5.2 shows an early manifestation of the data network within the UK. This network consists 

of a fully meshed core of three high-capacity nodes situated in London, Manchester and 

Birmingham. All data traffic originates at exchange sites around the country and is transmitted 

via the standard public switched telephone network (PSTN) to one of these nodes. Twenty sites 

are shown in the figure with the level of data traffic originating at that site indicated by the fill of 

the box and detailed in Table 5.1. The amount of data traffic in the environment is more than can 

be handled by the existing core network and it must therefore be grown. The network design task 

consists of placing access nodes (concentrators) at appropriate sites in order to satisfy more 

demand and alleviate the strain on the PSTN. When an access node is placed at a site, it is 

connected directly to the nearest core node and hence the network topology is fixed. 
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Table 5.1: The demand for data traffic at the 23 sites of the sample application together 
with their co-ordinates on a 100x100 plane. All demands fall within the range 0-1000.  

 

Site Co-ordinate Demand 

Aberdeen 61, 25 100 

Belfast 36, 49 600 

Birmingham 65, 73 900 

Brighton 75, 89 100 

Bristol 63, 82 250 

Cambridge 77, 78 100 

Cardiff 57, 82 400 

Edinburgh 56, 38 500 

Exeter 53, 92 200 

Glasgow 51, 39 400 

Ipswich 81, 81 100 

Leeds 67, 61 600 

Liverpool 59, 63 500 

London 77, 84 1000 

Manchester 64, 64 900 

Middlesbrough 67, 51 300 

Newcastle 65, 47 400 

Norwich 84, 72 200 

Nottingham 70, 69 300 

Plymouth 49, 94 100 

Reading 71, 85 200 

Sheffield 68, 65 600 

Southampton 67, 90 200 

 

The above environment allows both core and access nodes to be placed at appropriate sites and 

connected to form a network. The addition of this hardware results in costs being incurred. 

However, in addition to hardware costs the ability of the resulting network to handle the demand 

and alleviate PSTN strain must also be ascertained. In order to achieve this, a simple call-

handling procedure was simulated and is detailed below: 

1. All demand at a site without a collocated node is routed via the PSTN to the nearest 

node. This incurs a cost for the PSTN call. 

2. Demand at a site with a collocated access node is handled by that node if there is 

available capacity. 
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3. Any remaining demand at a site with a collocated access node is routed to the nearest 

core node via the PSTN. This incurs a further cost for the PSTN call. 

4. Any demand at sites with a collocated core node is handled by that node if there is 

available capacity. 

5. Any remaining demand at a site with a collocated core node is dropped. This incurs a 

cost for each call that is dropped. 

 

This call-handling procedure requires the capacities of the two types of node to be specified, the 

specific values used for thus simulation are given in Table 5.2. 

 

Table 5.2: Parameters of the network nodes. 

Node type Capacity 

Access 1000 

Core 2000 

 

5.3.2 The Developm ental Process 

The developmental process was created through use of a single planning rule that defines the 

conditions under which sites become candidates to house access nodes. These conditions take 

into account the demand at a site and its Cartesian distance away from an entry point into the data 

network, the following values are calculated for each site i:  

θ_demandi = a * (demandi - b)   Equation 5.1 

θ_distancei = c * (distancei - d)   Equation 5.2 

The parameters b and d are threshold parameters i.e. the values at which the conditions are 

satisfied, parameters a and c are scaling parameters and allow the relative importance of the two 

conditions to be controlled, demandi is the demand at site i and distancei is the distance that site i 

is away from the nearest existing node. If both θ_demandi and θ_distancei are above zero i.e. if 

both conditions are met then the site becomes a candidate to house an access node:  

A “firing strength” is then calculated for each site in the candidate list: 

 

FiringStrengthi = θ_demandi + θ_distancei  Equation 5.4 

 

IF (θ_demandi > 0) AND (θ_distancei > 0) 

THEN add site i to candidate list 

Equation 5.3 
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The site with the highest firing strength is chosen to house an access node. The candidate list is 

then recalculated and the process repeated until the candidate list is empty i.e. no more sites 

satisfy both planning rule conditions. This iterative process is necessary as the action of a rule 

affects the calculated conditions i.e. adding a node affects a site’s distance to the nearest existing 

node and thus the order in which nodes are added is important. The scaling parameters a and c 

enable the relative importance of the two conditions to be controlled and hence the order in which 

nodes are added to be modified. If a was much higher than c then sites with high demand would 

fire more strongly than those a long way from the existing network and vice versa.  

 

5.3.2.1 An example network development 

Consider the following parameter settings for the developmental process defined above: a=1, 

b=400, c=1, d=20. These parameters scale both conditions evenly and make a site a candidate to 

house an access node when both the demand is greater than 400 and the Cartesian distance to the 

nearest current node is greater than 20. For this rule, the developmental process would proceed as 

follows: 

1. θ_demandi and θ_distancei are calculated for each vacant site. 

2. A candidate list is built using Equation 5.3.  

o Belfast, Edinburgh, Leeds, Liverpool and Sheffield are the only vacant sites 

that satisfy the demand criterion as their demands are greater than 400.  

o Leeds, Liverpool and Sheffield are in close proximity to Manchester and 

therefore do not satisfy the distance criterion. However, Belfast and Edinburgh 

are a distance of 31.76 and 27.2 respectively away from the closest data node 

at Manchester. These two sites therefore also satisfy the distance criterion and 

are added to the candidate list. 

3. The firing strength of the two sites in the candidate list is calculated: 

o Belfast FiringStrength = 1*(600-400) + 1*(31.76-20) = 211.76. 

o Edinburgh FiringStrength = 1*(500-400) + 1*(27.2-20) = 107.2. 

4. Belfast has the highest firing strength and is thus assigned an access node which is 

connected to the nearest core node at Manchester. See Figure 5.3 (b). 

5. The process is repeated and θ_demandi and θ_distancei calculated for the remaining 

vacant sites. 

6. A new candidate list is calculated. 

o Edinburgh, Leeds, Liverpool and Sheffield are now the only vacant sites that 

satisfy the demand criterion.  
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o Leeds, Liverpool and Sheffield are again ruled out due to their close proximity 

to Manchester. 

o The addition of a node at Belfast makes this the closest node to Edinburgh at a 

distance of 22.84. Edinburgh thus satisfies both criteria and is the only 

candidate site. 

7. Edinburgh is assigned an access node and connected to the nearest core node at 

Manchester. See Figure 5.3 (c). 

8. The process is repeated and θ_demandi and θ_distancei calculated for the remaining 

vacant sites. 

9. No sites match both criteria and thus the candidate list is empty. The developmental 

process terminates. 

 

The parameters specified above would therefore result in the addition of two access nodes at 

Belfast and Edinburgh as shown in Figure 5.3. Different sets of parameters would affect the 

dynamics of this developmental process and may generate different network designs. 

 

Figure 5.3: The developmental process for the rule IF (demand > 400) AND (distance > 20) 
THEN (add access node). (a) the initial network (b) an intermediary network with an access 
node at Belfast (c) the final network design with a further access node at Edinburgh. 

 

5.4 Evolving the Data Network 

The environmental context and developmental process defined in the previous section allow 

networks to be produced given a set of parameters. In this section, an evolutionary algorithm is 

used to optimise these parameters with the aim of producing high quality network designs. The 

impact of neutrality on such an evolutionary process is analysed in detail. However, before an 

evolutionary algorithm can be used, a fitness function and a genetic encoding must first be 

defined.  

 

(a) (b) (c) 
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5.4.1 The fitness function 

In order to assess the quality of the final network design a number of criteria need to be 

considered that relate to the cost of the deployed network, the strain on the PSTN and a measure 

of the quality of service that the network provides. For the purposes of this work, the overall 

fitness was the sum of 3 individual costs: 

1. Hardware – The cost of the deployed nodes and of linking them to the existing core 

network. 

2. PSTN call – The cost of transmitting unsatisfied demand to a node in the data network 

via the PSTN. 

3. Quality of Service (QoS) – The perceived quality of service, in this case the measure 

relates solely to the level of demand that could not be satisfied i.e. the number of 

dropped calls. 

A good network design must strike a balance between these costs. Adding an access node to the 

network increases the hardware cost but may decrease the number of PSTN calls that are required 

and allow more demand to be satisfied.  

 

Table 5.3: Costs incurred by a network design. 

Type Symbol Cost 

Access node An 800 

Link Lk 25 per unit length 

Dropped call QoS 10 

PSTN call PSTN 5 

 

The specific costs used in this case are specified in Table 5.3 and allow the fitness of a simulated 

network f to be calculated according to the following equation: 

 

)*()*()*()*( PSTNpQoSdcLklAnnf +++=  Equation 5.5 

 

Where n is the number of access nodes that have been added to the network, dc is the total 

number of dropped calls and p is the total number of PSTN calls. The length of link is calculated 

as the Cartesian distance between an access node and its closest core node, and l calculated as 

follows: 

∑=
n

n CoreAccessCdl
0

0 ),(   Equation 5.6 
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Where Accessn is the nth access node, Core0 is its closest core node and Cd is the Cartesian 

distance between these two nodes. 

 

5.4.2 The genetic encoding 

A typical direct encoding for this problem would consist of a binary genotype of 20 bits. Each of 

these bits would represent one of the vacant sites and its value would indicate whether or not that 

site would house an access node in the final network design. In this case, however, it is the 

parameters of the developmental process that must be encoded rather than elements of the final 

network design. There are a number of possible ways in which to encode these parameters each 

with their own properties. However, for the purposes of this study a binary genotype of length 20 

was chosen. The genotype was divided into four 5-bit values that encode the parameters of the 

developmental process; the demand scaling parameter (a), the demand threshold (b), the distance 

scaling parameter (c) and the distance threshold (d). This encoding is shown in Figure 5.4.  

 

Figure 5.4: The genotype used to encode the parameters of the developmental process. Each 
of the 4 parameters a, b, c and d from Equations 5.1 and 5.2 are encoded as 5-bit binary 
values. 

 

Use of 5-bit binary values allows 25 = 32 distinct values for each parameter. These values can be 

used to quantise a defined range. The ranges used in this experiment are shown in Table 5.4. 

 

Table 5.4: The ranges of the parameters of the developmental process. 

Parameter Description Min Max 

a Demand scaling 0 5 

b Demand threshold 0 1500 

c Distance scaling 0 5 

d Distance threshold 0 50 

 

5.4.3 The evolutionary algorithm  

A generational genetic algorithm was used to evolve these parameters in which an entirely new 

population was created at each generation [12]. A population of 20 genotypes was used and both 

per-bit mutation and single-point crossover employed to generate new individuals. The parents 

were chosen using roulette wheel selection, which selects parents with a probability that is 

dependent on their fitness. The parameters for this algorithm are given in Table 5.5. 

c d b a 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
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Table 5.5: Parameters for the initial evolutionary algorithm 

Parameter Value 

Population size 20 

Mutation rate 0.01 

Crossover rate 0.7 

 

5.4.4 An exam ple evolutionary run 

Figure 5.5 shows a plot of the evolutionary process over 1180 generations. All encoded rule sets 

initially produced high cost networks as would be expected for a random set of parameters. 

However, better quality rules were quickly discovered and a relatively low cost network was 

produced within the first 76 generations. This network was not improved upon for around a 

thousand generations until two better quality networks were discovered in relatively close 

succession. The figure reveals a punctuated equilibrium dynamic with periods of no gain 

followed by rapid jumps to higher quality networks.  
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Figure 5.5: An example evolutionary run over 1180 generations. A series of 5 fitness 
plateaus are identifiable corresponding to a series of 5 different network designs, 1-5. 

 

The final network design was the endpoint of a series of 5 networks that correspond to the 

plateaus in the evolutionary plot. These networks are visualised in Figure 5.6. 
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Figure 5.6: The series of best networks produced during the sample evolutionary run. The 
networks 1-5 correspond to the five fitness plateaus in Figure 5.5. 

  

The parameters of the planning rules that created each of the five networks are shown in Table 

5.6. These parameters relate to the first discovery of the network i.e. the start of each plateau. 

 

Table 5.6: The rule parameters that generated each of the 5 networks shown in Figure 5.6. 
These parameters relate to the first network found on each plateau. 

 a 

Demand Scaling 

b 

Demand Threshold 

c 

Distance Scaling 

d 

Distance Threshold 

1 4.69 421.88 3.59 18.75 

2 3.24 375 4.84 6.25 

3 1.88 375 2.03 0 

4 3.12 187.5 2.66 0 

5 2.50 234.38 2.66 1.56 

 

 

It can be seen from these parameters that the best solution in the initial random population set 

relatively high thresholds for both the distance and demand conditions. Relatively few sites 

matched both these criteria and thus the first network contained only two access nodes at Belfast 

and Edinburgh. It was quickly discovered, however, that a smaller distance threshold allowed 

lower cost networks. Particular gains were made in the transition from network 2 to 3 as this 

1 2 3 

4 5 
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threshold was reduced to zero. This allowed the demand to be satisfied in the geographically 

concentrated population centers of northern England. Further smaller gains were achieved mainly 

through fine-tuning the demand threshold to find an optimum balance between hardware and 

quality of service costs. This fine-tuning initially increased the amount of hardware at network 4 

until a network design was discovered that reduced the hardware costs by a greater degree than 

corresponding increases in the cost of PSTN and dropped call costs. Figure 5.7 shows the 

component costs of the final network, number 5. All demand is satisfied after 8 iterations of the 

growth process. However, further nodes are added to the network as the reduction in the PSTN 

cost more than offset the increase in hardware costs. 

Figure 5.7: The cost of the best network produced by the evolutionary algorithm. In 
addition to the total cost, the diagram shows the three component costs Quality of Service 
(QoS), PSTN calls and hardware. The horizontal access shows iterations of the growth 
process. After the addition of 8 nodes all the demand is satisfied. A further 3 nodes are 
added, however, which reduced the PSTN cost to a greater degree than the increases in 
hardware costs.   

 
 

5.4.5 Useful and useless neutral m utation 

The encoding of the rule used to generate the above networks introduced a significant possibility 

for neutral mutations. For any given value of distance and demand, the only mutations to the 

threshold parameters that had the potential of changing the network design were those that 

resulted in a value becoming greater than a threshold it was previously below or vice versa. Many 

mutations did not have this effect and were thus neutral. In addition, many changes to the scaling 

parameters did not affect the final network design, as they did not modify the relative strength of 

rule firing by a great enough degree.  However, care needs to be taken when introducing the 
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possibility for neutral mutation. Although such a possibility would always allow for neutral drift, 

it would not always allow for beneficial neutral drift. In order to decrease the likelihood of 

entrapment at local optima, neutral drift must allow access to phenotypes that would otherwise 

have been inaccessible.  

 

A situation where this was not the case can be illustrated by considering the thresholds. In this 

example the maximum value of the demand threshold was set to 1500 and the maximum distance 

threshold to 50. However, the maximum possible demand at a site was 1000 and the maximum 

possible distance away from the existing data network was approximately 39. Thus, it was 

guaranteed that any modification to the demand threshold that maintained the value within the 

range 1000 to 1500 would not modify the network design. This is the case as demands greater 

than 1000 were not present at any site and thus changes to the threshold in this range could not 

change the set of sites which matched that criteria. Similarly, modifications to the distance 

threshold that maintained the value within the range 39-50 could not possibly modify the network 

design. Mutations that maintained the demand threshold in the range 1000-1500 or the distance 

threshold in the range 39-50 would therefore be neutral. However, these neutral mutations would 

not be of any benefit in reducing the likelihood of local optima, as they could never contribute to 

the fitness of the phenotype. For any given network design it would make no difference whether 

the threshold was 1000, 1500 or any value in between. A neutral mutation would only be useful if 

it produced a value that, given changes elsewhere on the genotype, played a role in the 

development of the phenotype i.e. a value that had the potential of loosing its neutrality. The 

neutrality created through increasing the maximum value of these thresholds could not improve 

evolutionary search but may simply slow it down through encouraging non-beneficial random 

drift. 

 

5.4.6 Neutrality in the scaling param eters 

The neutrality described in the previous section is at one end of a scale - guaranteed to never 

directly contribute to the fitness of the phenotype. However, neutrality could also be introduced 

that was potentially useful but very unlikely to be so. For example, the entire genotype could be 

duplicated and an extra bit employed that determined whether the original or its duplicate would 

be interpreted. Thus, at any one time an entire (original) genotype would be free to be mutated at 

will without affecting the current fitness. It is possible that neutral mutations could produce a 

high quality phenotype that could then be interpreted as the current phenotype through mutation 

of the "switch". However, this is highly unlikely - local optima do not exist in this search space 

but the transition points between phenotypes (i.e. areas of genotype space in which further 

increases in fitness could be made) are very sparse. This is akin to randomly drifting along an 

enormous neutral ridge looking for a single point that allows access to a different phenotype. It is 

very unlikely that the needle in this haystack would be discovered. To improve evolutionary 

search we need to encourage the presence of many needles. 
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An example of where this was not achieved is in the choice of scaling parameters. These two 

parameters were assigned the ranges 0 to 5 and as already discussed, scaled the contribution of 

the associated condition to the overall firing strength. However, their effect was likely to be very 

different for the two conditions. As stated in the previous section, the maximum distance a site 

could be from the existing network was 39 and the maximum demand at a site was 1000. Thus, 

the maximum amount the two values could exceed their thresholds was 1000 for the demand 

threshold but only 39 for the distance threshold. However, the range of their scaling was the 

same. There was thus an implicit bias in the encoding to place access nodes at sites with high 

demand over those that were a large distance away from the nearest node. This bias was 

exacerbated by the fact the placement of sites was such that their actual distance from the existing 

network was typically much less than the maximum possible distance of 39. It was still possible 

for these biases to be overcome (with a high distance scaling parameter and a low demand scaling 

parameter) but the bias made it less likely that mutations to the scaling parameters would have an 

effect on the overall network design. The encoding of the scaling parameters introduced a 

significant probability of neutral mutation. However, the bias shifted the balance between neutral 

mutations and non-neutral mutations too much in favour of the former. Neutral ridges had been 

formed but the accessibility between them had been reduced; there was too much hay and not 

enough needles.  

 

The reduced effect of the scaling parameter is highlighted by the data presented in Table 5.6. All 

the transitions to networks of higher fitness were the result of mutations to the thresholds and not 

to the scaling parameters. The changes in the scaling parameters during periods of neutral drift 

between individual transitions were coincidental rather than necessary. However, that is not to 

say that neutral drift in the scaling parameters was unimportant. Consider the transitions from 

network 1 to 3 for example. Changes in the scaling parameter were not necessary to allow the 

transition from network 1 to 2 or the transition from 2 to 3. However, changes to the scaling 

parameter were necessary to allow the transition from network 1 to 3. That is, the scaling 

parameters used in the rule that generated network 1 could not have been used in the rule that 

produced network 3. Thus, although neutral drift in the scaling parameters was not important for 

individual transitions, it was important when considering the series of transitions.  

 

5.4.7 Neutrality in the threshold param eters 

The threshold parameters were the driving force behind the transitions to higher fitness networks. 

The transitions from network 2 to 3 and from network 4 to 5 were the result of single mutations. 

In the former case the mutation reduced the distance threshold from 6.25 to 0. In the latter case 

the demand threshold was increased from 187.5 to 234.38. Figure 5.5 reveals that these mutations 

were relatively quickly discovered. The transitions from network 1 to 2 and network 3 to 4 

required two mutations. In the former case a single mutation was required to both the demand and 
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distance thresholds. In the latter case a dual mutation to the demand threshold was required. 

However, Figure 5.5 shows that they took very different lengths of time to discover. The time 

taken for the transition from network 1 to 2 was of the same order as that for a single mutation; 

the transition from 3 to 4 took a great deal longer.  

 

Figure 5.8 shows the effect of all possible mutations on the rule producing network 1 at the start 

of the plateau. The figure shows that all possible single mutations are either deleterious or 

neutral. It is not possible to increase the fitness of the network from this point in genotype space. 

The figure also shows that the two mutations required to transition to network 2 are individually 

neutral - either can be made without affecting the current network. Thus, the scene can be set for 

the second required mutation, which does increase the fitness of the resulting network. This is a 

good example of useful neutrality. The individual mutation has no immediate effect on the 

phenotype but given changes elsewhere on the genotype comes to play an important role in its 

construction. 

 

 

Figure 5.8: The effect on network cost of all possible mutations of the rule producing 
network 1. No mutations are immediately beneficial, however, the two mutations required 
to cause a transition to network 2 (shaded columns) are both individually neutral. They can 
thus be made without affecting the current network in order to “set the scene” for the 
second mutation. The dashed line shows the cost of network 1. 

 

Figure 5.9 shows the effect of all possible mutations on the rule producing network 3 at the start 

of the plateau. Again all mutations are either deleterious or neutral. However, in this case both the 

mutations that are required to produce the transition from network 3 to 4 are individually 

deleterious. It is thus not possible for these mutations to be made without forgoing the current 

fitness value – the stage cannot be set for the second mutation. In this case both mutations must 

be made simultaneously or within short succession before being removed from the population 

through selection pressure. The probability of this occurrence is very much less than that of a 
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single mutation, which is reflected in the number of generations that were required for the dual-

mutation to occur. In effect, a local optimum has been reached at network 3 and reliance is being 

made on improbable multiple mutation events to jump an individual over a valley. Note that the 

jump could potentially also be made via a beneficial crossover event. However, the functional 

parts of the genotypes in the population were typically highly converged during periods of neutral 

drift and therefore crossover had little effect. 

 

Figure 5.9: The effect on network cost of all possible mutations to the rule producing 
network 3. Again, no mutations are immediately beneficial. In this case both the mutations 
required to transition to network 4 (shaded columns) are individually deleterious and 
cannot be made without forgoing the current fitness value. The dashed line shows the cost 
of network 3. 

 

The ability of neutral mutations to improve evolutionary search is evident from this example. In 

the cases were immediate improvement was not possible, the existence of beneficial neutral 

mutations allowed the search to quickly progress. Their absence caused it to drastically slow and 

even halt but for unlikely multiple mutation events. 

 

5.5 Exhaustive Enum eration of Genotype Space 

In the previous section, the benefit of the neutral mutations allowed for by the developmental 

process was highlighted in the context of an example evolutionary run. However, the same 

example also revealed that use of the developmental process had created a local optimum. A 

primary goal of a neutral mapping is to alleviate this problem and the results therefore suggest 

that this goal is not achieved by the mapping in its current form. In order to gain a greater insight 

into the nature of the search space created by the developmental process, a more thorough 

analysis is required. In this section, genotype space is exhaustively enumerated so that definitive 

statements can be made about its structure. The lessons learned from this analysis are then used to 

re-engineer the developmental process to create a more amenable search space that is free from 

local optima and contains the best possible network design. 
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5.5.1 Phenotypic constraints 

The encoded planning rule resulted in a genotype of 20 bits and thus generated 220 = 1,048,756 

distinct genotypes. This relatively manageable number allowed the phenotypes (network designs) 

that resulted from the application of each of these encoded rules to be ascertained and thus the 

precise mapping between genotype space and phenotype space to be determined. There were also 

20 vacant sites in the initial environment, each of which could be in one of two states in the final 

network design; vacant or housing an access node. There were thus 220 potential phenotypes 

resulting in phenotype space being exactly the same size as genotype space. In theory therefore 

the mapping between genotype and phenotype space could be one-to-one in which each genotype 

produced a unique phenotype. In reality, however, there was large-scale neutrality in this 

mapping. Only 52 phenotypes were produced by all possible instances of the encoded planning 

rule and the vast majority of phenotypes (99.995%) were not possible; the developmental process 

imposed enormously tight constraints on evolution.  

 

On average approximately 20,000 genotypes mapped on to each of the 52 possible phenotypes. 

However, the exact figure was highly variable ranging from 16 to over 750,000. The proportion 

of genotype space representing each of the possible phenotypes is shown in Figure 5.10. It can be 

seen that genotype space was dominated by a single phenotype that was produced by over 70% of 

genotypes. This phenotype represented the network design in which no access nodes had been 

added to the network i.e. when the developmental process had no effect. It was of a low fitness 

and it was thus not desirable for it to occupy so much of genotype space. Its dominance reduced 

the amount of genotype space occupied by other, higher fitness phenotypes and hence had the 

potential of isolating these phenotypes in genotype space. The reason for the dominance of this 

“null” phenotype is discussed in later sections. 

 

Figure 5.10: The proportion of genotype space covered by each of the 52 phenotypes 
generated by the encoded planning rule. Genotype space is dominated by a single 
phenotype that covers over 70% of the space. 
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5.5.2 Neutral netw orks in genotype space 

The above analysis revealed that genotype space was sub-divided into 52 sets of genotypes each 

producing a specific phenotype i.e. there were 52 neutral sets. In order to allow a population to 

explore these neutral sets in search of areas of genotype space that allow further increases in 

fitness (when no immediate increase in fitness is possible), they must be connected by application 

of the genetic operator i.e. the neutral sets must form neutral networks. In order to ascertain 

whether this was the case, the connectedness of the genotypes within each neutral set was 

determined. However as for the analysis of the abstract mappings in the previous chapter, a 

measure of connectedness must be defined. The analysis of the abstract mappings was restricted 

to the simplest modification to the genotype; single-point mutation. This approach allowed a 

“base level” connectivity to be determined, which was only likely to be enhanced by considering 

higher mutation rates and more complex genetic operators. For the same reasons, the analysis 

performed in this section was also restricted to single-point mutations. 

 

In order to determine which genotypes within a neutral set were connected into neutral networks 

by single-point mutations, the following process was used: 

1. Move the first genotype in a neutral set, NS, into a subset, SNS. 

2. For all remaining genotypes in NS,  

a. If the genotype is a single mutation away from any member of SNS, move the 

genotype from NS to SNS. 

3. If new genotypes were added to SNS, repeat from step 2. 

4. If NS is not empty, repeat from step 1 using a new subset. 

If all the genotypes within a neutral set were connected into a single neutral network, this process 

would result in one subset containing all the genotypes in the neutral set. However if the neutral 

network was fragmented, a number of subsets would result. These subsets would form neutral 

sub-networks that represented the same phenotype but were disconnected from each other in 

genotype space. The results, shown in Figure 5.11, reveal that 23 of the neutral sets were 

connected into a single neutral network. However, the remaining 29 neutral sets were fragmented 

into a number of smaller sub-networks. The majority of these formed only 2 disconnected neutral 

networks, however, in some cases 3 and 4 were present. This fragmentation may be detrimental 

to the search process as it has the potential of reducing the ability of a population to explore 

genotype space through neutral drift; a population may be restricted to one of the sub-networks 

and hence isolated in genotype space. This would increase the likelihood of local optima. 
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Figure 5.11: The neutral networks associated with each of the 52 phenotypes. 23 of the 
phenotypes have a fully connected neutral network associated with them. The remainder 
are represented by a number of neutral sub-networks that are disconnected from each 
other in genotype space. 

 

5.5.3 Local optim a 

In order for genotype space to be free of local optima, all neutral networks with the exception of 

the global optimum must allow access to another neutral network of higher fitness. If this was not 

the case then the neutral network would effectively form a “local” optimum; the population may 

drift at the same fitness level but this neutral drift could not move the population to an area of 

genotype space that allowed continued improvements in fitness. In order to assess whether any 

such local optima were present in this case, the accessibility between each neutral network was 

assessed. The analysis again concentrated on single-point mutations and the following process 

used; all single-point mutants of each genotype on a neutral network were generated and the 

resulting phenotypes recorded. The fitness of each phenotype was then assessed and the number 

of unique higher-fitness phenotypes recorded. The results for each of the 86 neutral networks are 

shown in Figure 5.12. 

 

Figure 5.12: All neutral networks categorised according to the number of higher fitness 
phenotypes they allow access to. In 3 cases, higher-fitness transitions are not possible. 
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For a neutral network not to represent a local optimum, it must give access to at least one higher-

fitness phenotype. However, the figure shows that 3 of the neutral networks did not allow access 

to higher fitness phenotypes via single-point mutations. One of these represented the global 

optimum but the remaining two represented local optima that could be detrimental to the search 

process. Indeed, one of these local optima was discovered in the example evolutionary run 

analysed earlier in this chapter. Its detrimental effect was very apparent in this case as 

evolutionary progress drastically slowed. Removal of these local optima would thus be highly 

desirable.  

 

5.5.4 Rem oving local optim a 

Both the problematic neutral networks contained 3069 genotypes and were one sub-network of a 

pair. That is, two disconnected neutral networks were present in genotype space that represented 

the same phenotype. Furthermore, in both cases the other sub-network of the pair did allow 

access to higher fitness networks. Thus it was the fragmentation of the neutral networks that had 

resulted in local optima; if the neutral sets had formed a single connected neutral network they 

would not have arisen. The cause of the fragmentation was thus assessed in greater detail by 

determining the differences between the two sub-networks of a pair. 

 

For each phenotype, it was crucial that certain sections of the genotype were at a precise value. 

These sections were thus constant for all genotypes within a given neutral network. However in 

the case of the local optima, the required state of certain constant sections was different for each 

sub-network. Thus, it was not possible to connect the two sub-networks through neutral 

mutations as this would require the entire constant section to be simultaneously changed from the 

state required for one sub-network to that for the other. For both local optima, the problem 

resulted from the encoded demand threshold. In one case, the required value for one sub-network 

was 7 and for the other 8. Although these values resulted in very similar demand thresholds and 

generated the same phenotype, in genotype space they were separated by a hamming distance of 

4 i.e. four single-point mutations were required to change from one value to another. This effect 

was the root cause of the fragmentation as illustrated in Figure 5.13.  

 

In order to address these difficulties it was necessary to modify the encoding to ensure that 

contiguous values of the parameters i.e. those that were a single quantised level from each other, 

were also close to each other in genotype space. This was achieved by adopting the familiar Gray 

encoding scheme [21]. In this scheme, contiguous values are guaranteed to be a hamming 

distance of 1 away from each other and hence the problem highlighted above would not arise. 

The above analysis was repeated for the Gray encoding scheme and revealed that the use of a 

Gray code had eliminated fragmentation of the neutral networks. Each of the 52 phenotypes was 



 96

represented by a single fully connected neutral network. All these networks allowed access to 

higher fitness phenotypes and thus the local optima generated by the binary encoding had been 

removed. 

 

 

Figure 5.13: Illustration of neutral network fragmentation. The set of genotypes mapping 
onto a given phenotype is divided into two distinct neutral networks. Each sub-network 
requires one of the encoded values to be at an exact value. Although these values are very 
similar when decoded (7 in one case and 8 the other) and produce the same phenotype, they 
are very different in genotype space and are not neutral neighbours.  

 

5.6 Re-engineering the developm ental process 

The developmental process explored above generated large-scale neutrality in the genotype-

phenotype mapping; a total of 220 genotypes mapped onto only 52 of the 220 possible phenotypes 

and thus the vast majority of phenotypes were not possible. While generating such phenotypic 

biases was an aim of this approach, a danger is that the very best networks could never be 

produced. If the possible phenotypes are of high enough quality, the loss of the actual global 

optimum may be an acceptable price to pay for the prospect of removing local optima. However, 

Neutral subset 1 

0 1 1 1 0 x x x x x x 

0 1 1 1 0 x x x x x x 

0 1 1 1 0 x x x x x x 

Neutral subset 2 

1 0 0 0 0 x x x x x x 

1 0 0 0 0 x x x x x x 

1 0 0 0 0 x x x x x x 
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it would be desirable if the global optimum could be created by the developmental process. In 

order to assess whether this was the case, the fitness of each of the 220 network designs was 

ascertained. This revealed that there were indeed network designs that were of a higher fitness 

than the best of the 52 possible phenotypes. However, only two such network designs existed and 

these were of only slightly higher fitness.  

 

The reason that the global optimum could not be produced in this case can be understood by 

examining the relationship between the planning rule and the fitness calculation. The planning 

rule defines two conditions that take into account the demand at a site and its distance away from 

an existing node. The former condition relates very well to the fitness calculation. Access nodes 

need to be placed where there is high demand as this reduces the necessity for routing calls via 

the PSTN and increases the demand that can be satisfied. However, the latter condition is less 

well matched to the fitness calculation. For a high distance threshold, sites that are far from the 

existing network would be preferentially selected to house access nodes. This reduces the 

requirement to transmit data over the PSTN and hence reduces the associated cost. However, the 

same cost reduction could be achieved if a node was placed at an equivalent site that was close to 

the current network as the PSTN costs are not dependent on distance. Preferentially selecting 

sites based on distance does not therefore reduce these costs. However, the distance condition 

does impact another part of the fitness calculation as the cost of the links required to connect an 

access node to the core network is greater for larger distances. In some cases, therefore, it may be 

beneficial to favour sites that are relatively close to the existing network so as to reduce the cost 

of the links. However, the distance condition does not allow for this as when the distance 

threshold is low enough to allow these sites to satisfy the distance condition it also allows all the 

sites that are at a greater distance to do the same. 

 

The encoded planning rules are effectively heuristics that help bias the search space in favour of 

quality networks. The distance condition is not a good heuristic for designing this network and is 

thus detrimental to the search process rather than an aid to it. This is evidenced by the example 

evolutionary run highlighted earlier in this chapter. Table 5.6 shows that in order to create high 

quality networks, the distance threshold was set at a low level so that the condition was always 

true and this part of the planning rule made redundant. In fact, the best of the 52 possible 

phenotypes could have been achieved by simplifying the planning rule and encoding only the 

demand threshold. However, demand alone is not sufficient for generating the best possible 

network design. For this the development process must be re-engineered. 

 

5.6.1 M odifying the planning rule 

When a site is vacant, the call-handling procedure routes its demand to the nearest node via the 

PSTN. Thus, when a node is added to a site it is possible that additional demand will be 

generated from adjacent vacant sites. It may be important, therefore, for the planning rules to take 
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into account not only the demand at a site but also the demand at nearby sites. This requirement is 

captured by the following planning rule: 

 

Where j and l are threshold parameters, demandi is the demand at site i and demand_in_radiusi(k) 

is the demand within a radius k from site i. This updated rule does not consider the currently 

deployed network and thus the action of adding a new node does not affect the conditions of the 

rule. For this reason, an iterative developmental process is not required. The network design can 

be generated through a single application of the rule to each of the vacant sites. 

 

5.6.2 The genetic encoding 

The 3 parameters j, k and l were represented using 5-bit Gray encoded values which resulted in a 

15-bit genotype. This encoding again allowed for 25=32 distinct values of each parameter, which 

were used to quantise the ranges given in Table 5.7.  

 

Table 5.7: Ranges of the parameters for the revised planning rule. 

Parameter Description Min Max 

j Demand threshold 0 1500 

k Radius 0 50 

l Radius threshold 0 1500 

 

5.6.3 Phenotypic constraints 

The phenotypes produced by each of the 215 = 32,768 genotypes were generated and a total of 

137 unique phenotypes were discovered. This again imposed very tight constraints on evolution; 

99.987% of the potential phenotypes could not be generated by the modified planning rule. On 

average, approximately 240 genotypes mapped on to each of the 137 possible phenotypes. 

However, this number was again highly variable ranging from 2 to nearly 22,000. The proportion 

of genotype space occupied by each of these neutral sets is shown in Figure 5.14. As for the 

initial planning rule, genotype space was dominated by a single phenotype that occupied 66% of 

the space. This phenotype was of relatively low fitness and corresponded to the network design in 

which a node was added to every vacant site. Its dominance restricted the extent of the other 

neutral networks and thus there was again the potential of isolating these neutral networks in 

genotype space and creating local optima. 

IF (demandi > j) OR (demand_in _radiusi(k) > l) 

THEN Add access node 
Equation 5.7 
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Figure 5.14: The proportion of genotype space occupied by the 137 phenotypes created by 
the new planning rule. Genotype space is again dominated by a single phenotype occupying 
66% of the space. 

 

Although the phenotypic constraints were again very strong for this planning rule, the set of 137 

possible phenotypes included the best possible network design. Modification of the planning rule 

to embody more appropriate heuristics had thus created the equivalent of common phenotypes 

which included the global optimum.  

5.6.4 Neutral netw orks 

Although the global optimum was present in genotype space, it remained important for the 

neutral sets to be connected into networks that each allowed access to higher fitness phenotypes. 

In order to assess whether this was the case, the neutral sets were analysed using the process 

described in section 5.5.2. This analysis allowed the structure and any fragmentation of the 

neutral networks to be ascertained. The results, shown in Figure 5.15, reveal that a large majority 

of the phenotypes were represented by a single neutral network. However, even with the use of 

Gray coding some fragmentation was evident. The cause of this fragmentation will be discussed 

in a later section. 

 

Figure 5.15: The 137 possible phenotypes categorised according to the number of neutral 
networks that represent them in genotype space. Limited fragmentation of the neutral 
networks is evident.  
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The fragmentation had split the 137 neutral sets into a total of 163 neutral networks. However, in 

this case it did not generate any local optima. A higher fitness phenotype was accessible from all 

neutral networks apart from the global optimum. The re-engineered developmental process thus 

resulted in a search space with highly desirable properties; it emphasised phenotypes of high 

quality that included the global optimum and did not contain any local optima. 

 

5.6.5 The effect of param eter ranges 

For both the original and modified planning rules, a single phenotype dominated genotype space 

and thus restricted the extent of the neutral networks associated with other phenotypes. Although 

this did not generate any local optima for the modified planning rule, it has the potential of doing 

so when the approach is applied to other problems as a population’s movement in genotype space 

is restricted. These problems are likely to be exacerbated by the fragmentation of the neutral 

networks that was evident for the revised planning rule. Analysis revealed that both these 

difficulties were heavily influenced by a common cause; the ranges of the encoded parameters.  

 

For the original planning rule, the demand threshold was allowed to vary between 0 and 1500; 

however, the maximum demand at any of the vacant sites was 600. Thus, all encoded values that 

were greater than 600 resulted in a phenotype in which no access nodes were added to the 

network as no site could possibly exceed the threshold and thus satisfy the rule condition. 20 of 

the 32 quantised levels of the demand threshold resulted in a value greater than 600 and thus 

62.5% of the possible values resulted in this “null” phenotype. This strong bias was the 

overriding reason for the dominance of that phenotype and was caused by an inappropriate choice 

of parameter range. If the maximum value of the threshold mirrored the maximum demand at a 

site any biases in genotype space would have been greatly reduced. 

 

A similar effect also resulted in the dominance of a single phenotype for the revised planning 

rule. However, in this case the dominant phenotype corresponded to the network design in which 

access nodes were added to every vacant site. The principal reason for this was not the demand 

threshold but the radius. This parameter controlled the size of the neighbourhood that was 

deemed relevant to a given site. If demand within this radius was greater than a threshold then an 

access node may be added to the site. When the radius was sufficiently large it included enough 

sites to allow the accumulated demand to exceed the majority of threshold values. This was the 

case even for relatively small radii and thus with a large maximum value of 50, a majority of 

parameter combinations resulted in every site satisfying the rule conditions and a fully populated 

network design. Again, the choice of the maximum value of a parameter was the overriding cause 

of the dominant phenotype. 
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The choice of parameter ranges also contributed to the fragmentation of the neutral networks. The 

parameters were encoded using 5 bits and thus the number of possible values was fixed at 25=32. 

If these 32 values quantised a relatively large range then the minimum change to the parameter 

was also relatively large. For example, the range of the demand threshold was 1500 and thus the 

minimum change to this parameter was 1500/32 = 46.875. Such large changes are less likely to 

be neutral with respect to the phenotype. As an example, consider the following parameter values 

for the revised planning rule.  

 

Table 5.8: Example parameter ranges for two genotypes encoding the revised planning rule 
that map onto the same phenotype. 

 a b c 

Genotype 1 562 15 1218 

Genotype 2 562 17 1312 

 

The two genotypes shown in Table 5.8 map on to the same phenotype but are on two 

disconnected neutral sub-networks. Changes to both parameters b and c are required to move 

between these genotypes in genotype space. However, individual changes to both parameter b 

and c result in different phenotypes thus fragmenting the neutral network. Due to the wide range 

of the radius parameter b, a single mutation changes the value from approximately 15 to 

approximately 17. However, if the quantisation were finer allowing a mutation that resulted in a 

value of 16, the change would be neutral. This would then allow parameter c to be neutrally 

mutated from 1218 to 1312 followed by a second adaptive mutation to parameter b that would 

complete the transition from one genotype to the other. Thus, finer quantisation would increase 

the number of neutral neighbours and allow previously disconnected neutral sub-networks to 

merge into a single network with a greater extent in genotype space. While this finer quantisation 

could be achieved by increasing the number of bits that encode each parameter, it can also be 

achieved by reducing the ranges of the parameters. This would have the effect of reducing the 

minimum changes to a parameter and increase the likelihood of neutral neighbours. 

 

5.6.6 M odifying the param eter ranges 

In order to determine whether a more appropriate choice of parameter ranges could reduce 

fragmentation and alleviate the problem of overly dominant phenotypes, the ranges for the 

revised planning rule were reduced as shown in Table 5.9. These ranges more closely mapped on 

to the actual values that were likely to be present in the network. 
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Table 5.9: Revised parameter ranges for the new planning rule. 

Parameter Description Min Max 

j Demand threshold 100 600 

k Radius 0 15 

l Radius threshold 100 1500 

 

It was discovered that the restricted parameter ranges had reduced the number of possible 

phenotypes to only 36. In effect, more precise knowledge about the problem was embedded into 

the planning rule heuristics which introduced more stringent constraints. This set of phenotypes 

again included the global optimum and only one of the associated neutral networks exhibited any 

fragmentation. The revised ranges had also removed the overly dominant phenotype. Figure 5.16 

shows that genotype space is more evenly distributed among the phenotypes. The largest 

proportion of genotype space occupied by a single phenotype was only 21%. Thus, more careful 

consideration of parameter ranges had removed undesirable phenotypic dominance and greatly 

reduced the fragmentation of the neutral networks. 

 

 

Figure 5.16: The proportion of genotype space occupied by the 36 phenotypes generated by 
the revised planning rule with reduced parameter ranges. Genotype space is no longer 
dominated by a single phenotype. 

 

5.7 Discussion 

This chapter has demonstrated that it is possible to bias the search space in favour of high-fitness 

phenotypes by embedding domain knowledge into a self-organising genotype-phenotype 

mapping. In addition, careful design of the mapping enabled each of these phenotypes to be 

represented by neutral networks that allowed access to higher fitness phenotypes. However in 

order to achieve this, the search space created by the developmental process required exhaustive 

enumeration such that the precise effect of each design decision could be ascertained. While this 

was possible on the small-scale problems investigated in this chapter, it is not possible for more 

realistic, larger-scale problems. Applying this approach to such problems may thus be 

problematic. 
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However, application of the approach does not rely on the ability to exhaustively enumerate the 

search space. Small-scale analyses allow lessons to be learned on manageable problems that may 

be equally applicable in other situations i.e. it allows the development of useful heuristics. There 

are two categories of heuristic that can be developed; generic and problem-specific. An example 

of the former was the effect of the binary encoding in the original planning rule. This encoding 

resulted in detrimental fragmentation of the neutral networks, which was removed through use of 

a Gray code. This would be a sensible option to encourage fully connected neutral networks for 

any problem in which continuous variables are represented in a binary genotype. This is thus an 

example of a generic heuristic that applies to a variety of problems regardless of their scale. 

Analyses of this nature could allow a number of such heuristics to be developed, which would be 

of significant advantage when developing neutral mappings for new problems. 

 

The development of problem-specific heuristics can also be aided by these small-scale analyses. 

With an accurate network simulation, many of the lessons learned on small-scale design 

problems would be equally applicable for larger problems. For example, consider the design of 

the revised planning rule in this chapter. This rule was designed to map onto the specifics of the 

call-handling procedures of the network simulation. These procedures would remain the same for 

larger-scale problems and thus the same design principles would likely be equally fruitful. The 

structure of this planning rule is thus a problem-specific heuristic that can be used for related 

problems. This is exactly the approach taken in the following chapter in which larger-scale 

networks are designed using a similar network simulation and similar planning rules.  

 

This chapter has focused on the effect of the developmental process on the structure of the search 

space. Although the ability to evolve network designs was also demonstrated, a more detailed 

analysis of the performance of an evolutionary algorithm using such a process is required to 

demonstrate its utility. In addition, the performance of the approach in comparison to a more 

traditional direct encoding must be ascertained. The small-scale problem considered in this 

chapter does not provide a suitable test-bed for such an analysis as the resulting search spaces are 

relatively trivial. However, the lessons learned in this chapter can be carried forward to larger-

scale problems that would provide a more challenging test-bed and allow meaningful comparison 

to be made between the developmental process and a direct encoding. This is the subject of the 

following chapter. 

 

5.8 Sum m ary 

In this chapter a new method of evolving telecommunications networks has been proposed, 

which genetically encodes the instructions for creating a network rather than the network itself. 

These instructions take the form of planning rules and their application in the context of the 

network’s simulated environment produces the final network design. This process is loosely 

analogous to biological developmental and growth. Its analysis revealed the following key points: 
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• The developmental process biased the search space in favour of a small number of 

phenotypes and imposed enormously tight constraints on evolution.  

• The process introduced neutrality into the search space that was shown to be potentially 

beneficial to evolutionary search; however it also generated local optima. 

• The very best network design was not initially one of the possible phenotypes as poor 

heuristics were embedded into the planning rules.  

• Careful design of the developmental process allowed a more amenable search space to 

be created that included the global optimum and did not contain any local optima. 

• The lessons learned on small-scale problems such as those considered in this chapter 

allow heuristics to be developed that may be useful for related, larger-scale problems. 

 

The following chapter furthers the development of this approach by applying it to more 

challenging network design tasks. The main theme of the chapter is to compare the performance 

of the developmental approach with a more traditional direct encoding. 
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Chapter 6 

 

Growing networks versus direct encoding: a com parative study 

 
 

6.1 Introduction 

The exhaustive enumeration of genotype space performed in the previous chapter allowed precise 

details of the search space created by the developmental process to be ascertained. This enabled 

the design of both the developmental process and the associated genetic encoding to be modified 

to result in a search space with the desired properties; a bias towards a sub-set of phenotypes that 

included the global optimum and an absence of local optima. However, in order to demonstrate 

the utility of the approach, its effectiveness must be investigated on a more realistic scale of 

problem when complete information about the search space is not available. An aim of this 

chapter is to conduct such an investigation. 

 

The main theme of the chapter is to compare the developmental approach with a typical direct 

encoding and to draw out the strengths and weaknesses of each. In order for this comparison to 

be meaningful, the scale and difficulty of the problem was significantly increased. However, it 

shared many of the characteristics with the problem explored in the previous chapter which 

allowed the knowledge gained to be put to use. The focus of the problem was again determining 

the best locations for network nodes from a set of potential sites. In this case, however many 

more sites were made available as potential locations for nodes. In addition, multi-level networks 

were introduced that required optimisation at several different levels of hierarchy. These 

modifications allowed the scalability of each approach to be assessed. 

 

The problem considered is a “green field” network design in which no network infrastructure is 

currently deployed and thus design of the entire network was required. Details of this network are 

given in the following section together with the environment in which it must operate. This 

modified problem also required a modified developmental process consisting of several stages 

that produced each hierarchical layer of the network. Subsequent sections give details of this 

process and of the direct encoding used for comparison. A mutation-based evolutionary algorithm 

is used to evolve networks using both approaches and comparative results are presented and 

discussed. 
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6.2 Network sim ulation 

The problem addressed in this chapter was the design of a data network from an initially clean 

slate. Such “green-field” problems may occur when a telecommunications operator extends its 

network to new countries or areas for example. Although there is no currently deployed hardware 

to consider, the environment places other constraints on the design such as a finite set of potential 

locations for network nodes. The environmental context used in this work is described in the 

following section followed by details of the network that is to operate in that environment. 

 

6.2.1 The environm ent 

The overriding aim of this chapter is to compare the developmental approach with a direct 

encoding. It is possible that a specific environmental configuration could favour one or other of 

these approaches and thus a range of environments were used that shared certain features but 

were otherwise randomly defined. Considering the average performance over a range of such 

generic environments reduces the risk of the results being a consequence of the particular 

characteristics of a specific environment. The environments consisted solely of a number of sites 

that had access to the PSTN and could potentially house a data network node. Each of these sites 

was randomly assigned a demand and a coordinate on a two-dimensional plane; the potential 

ranges of the parameters are given in Table 6.1. 

 

Table 6.1: Parameters for the sites in the simulated environment. 

Parameter Minimum Maximum 

Demand 0 1000 

x coordinate 0 100 

y coordinate 0 100 

 

A site’s demand was chosen according to a uniformly random distribution over the specified 

range. However, in order to simulate geographical clustering of a population and hence demand, 

the locations of the sites were non-uniformly generated. A number of population centres were 

defined within the 100-by-100 grid and the majority of sites were clustered around these 

population centres according to a Gaussian distribution with a definable standard deviation. The 

remaining sites were uniformly randomly distributed in the grid independently from the location 

of the population centres. This process is summarised below for Pc population centres: 

 

1. Divide the sites into (Pc+1) sets of equal size. 

2. Assign a set of sites to each population centre Pc leaving one unassigned set. 

3. Uniformly randomly generate x and y coordinates within the defined range for each of 

the sites in the unassigned set. 
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4. Uniformly randomly generate an x and y coordinate within the defined range for each of 

the Pc population centres. 

5. For all sites assigned to each population centre 

a. Generate random numbers drawn from a Gaussian distribution for both x and y 

coordinates. 

b. Add these values to the x and y coordinates of the population centre to generate 

the sites coordinates. 

6. Uniformly randomly generate a demand for each site with a defined maximum. 

 

Experiments were performed with environments containing 125 sites, 250 sites and 500 sites. The 

number of population centres used within the environments depended on the number of sites. A 

single population centre was used for 125-site environments, 2 population centres for 250-site 

environments and 4 population centres for 500-site environments. An example result of this 

process for an environment consisting of 500 sites and 4 population centres is visualised in Figure 

6.1. 

 

 

Figure 6.1: An example of a 500-site environment with 4 population centres. The majority 
of sites are clustered around one of the population centres. Demand at a site is illustrated by 
the fill of the box and is assigned randomly. 
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6.2.2 The netw ork 

In order to satisfy the demand in the above environments, hierarchical networks were employed 

as in the previous chapter. These networks again contained both core and access layers. The 

former consisted of a number of high capacity nodes that were fully meshed i.e. each node was 

connected to every other. The latter consisted of lower capacity nodes that were directly 

connected to their nearest core node. In addition to these two-level networks, more complex 

network design tasks were also defined. This was achieved by extended the network to include a 

third level of hierarchy consisting of so-called minor nodes. These nodes connected directly to 

their nearest access node. As the topology of the network was fixed by these rules, the design 

problem consisted solely of node placement i.e. determining the number of nodes together with 

their location. An example of a three-level network topology is shown in Figure 6.2 and the node 

capacities used for these experiments in Table 6.2. 

 

 

Figure 6.2: An example of the network topology created by the fixed rules used for these 
experiments. The network consists of three types of node, high-capacity core nodes (dark), 
lower-capacity access nodes (medium) and minor nodes (light). 

 

Table 6.2: Parameters for the network nodes. 

Node type Capacity 

Minor 125 

Access 500 

Core 2000 

 

 

6.2.3 Call-handling procedure 

Given the above environmental context and a candidate network design, the ability of the 

network to handle the demand at the various sites within the environment must be ascertained. 

For this reason, a call-handling procedure was defined. This procedure was almost identical to 

that used in the previous chapter and is repeated below: 
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1. All demand at a site without a collocated node is routed via the PSTN to the nearest 

node. This incurs a cost for the PSTN call. 

2. Demand at a site with a collocated access or minor node is handled by that node if there 

is available capacity. 

3. Any remaining demand at a site with a collocated access or minor node is routed to the 

nearest core node via the PSTN. This incurs a further cost for the PSTN call. 

4. Any demand at sites with a collocated core node is handled by that node if there is 

available capacity. 

6. Any remaining demand at a site with a collocated core node is dropped. This incurs a 

cost for each call that is dropped. 

 

6.3 Developm ental Process and Encoding 

The hierarchical nature of the networks described above was mirrored in the developmental 

process through use of a multi-stage approach that progressively built the network layer by layer. 

Three stages were defined; the first was responsible for placing the core nodes, the second for 

placing the access nodes and the third the minor nodes. Similar planning rules controlled each of 

these stages however separate parameters were used in each case. The process is summarised 

below: 

 

1. The following rule was applied to all sites: 

2. All core nodes were connected to one another. 

3. The following rule was applied to all remaining vacant sites: 

 

 

4. All access nodes were connected to their nearest core node. 

5. The following rule was applied to all remaining vacant sites: 

 

 

6. All minor nodes were connected to their nearest access node. 

 

Equation 6.1 
IF (ac < demandi < bc) OR (cc < demand_in _radiusi(dc) < ec)  

THEN Add core node 

IF (aa < demandi < ba) OR (ca < demand_in _radiusi(da) < ea)  

THEN Add access node 

Equation 6.2 

IF (am < demandi < bm) OR (cm < demand_in _radiusi(dm) < em)  

THEN Add minor node 

Equation 6.3 
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Each of the planning rules considers both the demand at a site and the demand within a given 

radius of that site. This structure is very similar to the rule developed in the previous chapter. 

However, in this case two parameters were defined for each condition allowing a range to be 

defined rather just a threshold. These parameters were represented using 10-bit Gray-encoded 

numbers resulting in a possible 210=1024 values. These values were used to quantise the ranges 

shown in Table 6.3.  The use of 10-bit values resulted in a finer quantisation than the encoding 

used in the previous chapter and was employed to discourage the neutral network fragmentation 

that was caused through overly coarse-grained quantisation. 

 

Table 6.3: Parameter ranges for the three-stage developmental process. 

Parameter Min Max 

ac, aa, am, bc, ba, bm 0 1000 

cc, ec 0 10000 

ca, ea, cm, em 0 2500 

dc, da 0 20 

dm 0 10 

 

The full developmental process required 15 parameters and thus a genotype of length 150 bits. 

However for two-level networks experiments only steps 1 to 4 of the developmental process were 

required, which resulted in 10 parameters and a genotype of length 100 bits.  

 

6.4 Direct Encoding 

The direct encoding specified a single gene for each of the sites in the environment, the state of 

which determined the state of the corresponding site. Each gene was assigned a number of alleles 

allowing the specification of all possible states of a site; for three-level networks 4 alleles were 

required whereas only 3 alleles were required for two-level networks. This approach generated no 

neutrality in the genotype-phenotype mapping, each genotype mapped on to a single unique 

phenotype as shown in Figure 6.3.  
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Figure 6.3: The direct encoding for a 3-layer network and 10-site environment. The 
genotype contains a single gene for each site that can adopt one of four values indicating 
whether the associated site will house a core node (0), access node (1), minor node (2) or be 
vacant (3). 

 

6.5 Fitness function 

The fitness of a network was a function of three component costs; hardware, PSTN calls and 

quality of service (QoS). The hardware cost was the sum of the cost of each network node 

together with the links required to connect the nodes into a network The PSTN cost resulted from 

the call-handling procedure being unable to satisfy demand at a given site and “routing” that  

demand to another node. The QoS cost resulted from demand that could not be satisfied by the 

network and was dropped by the call-handling procedure. These costs are quantified in Table 6.4.  

 

Table 6.4: Costs for the extended network design problem. 

Type Symbol Cost 

Minor node Mn 200 

Minor Link Mlk 12 per unit length 

Access node An 800 

Access Link Alk 50 per unit length 

Core node Cn 3200 

Core link Clk 200 per unit length 

Dropped call QoS 10 

PSTN call PSTN 1 

 

The fitness function was a simple summation of these various costs and is shown in Equations 6.4 

and 6.5 for two-level and three-level networks respectively. 

 

10 9 
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1 1 
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)*()*()**()**( PSTNpQoSdcClklCnnAlklAnnf ccaa +++++=  

Equation 6.4 

 

)*()*()**()**()**( PSTNpQoSdcClklCnnAlklAnnMlklMnnf ccaamm +++++++=  

Equation 6.5 

 

Where nx is the total number of nodes of type x and lx is the total length of the links required to 

link nodes of type x according to the defined topological rules. The subscripts m, a and c 

indicating minor, access and core nodes respectively, dc is the number of dropped calls and p the 

total number of PSTN calls. 

 

6.6 Evolutionary Algorithm  

A mutation-based evolutionary algorithm was chosen to allow comparison between the two 

approaches. Only a single individual was used in this algorithm and thus the effects of both 

population size and recombination were not considered. While larger population sizes and 

recombination are likely to have some impact on the results, their absence does not obviously 

favour either approach but allows the number of free variables required to control the algorithm 

to be reduced.  The algorithm is summarised below: 

1. Randomly generate a genotype and calculate its fitness. 

2. Mutate the genotype and calculate the mutant’s fitness. 

3. If the mutant fitness is greater than or equal to the original fitness discard the original 

genotype and keep the mutant. 

4. Repeat from step 2 until a given number of generations has been reached. 

Various mutation rates were used for each encoding that were specified as a function of the 

length of the associated genotype L. A mutation event for the developmental encoding consisted 

of flipping a randomly chosen genotypic bit whereas for the direct encoding an alternative allele 

was randomly chosen for a randomly chosen gene. Four different mutation rates were considered 

in order to allow the most appropriate mutation rates to be ascertained for each approach. These 

rates defined the probability of mutating each gene and were set at 1/L, 2/L, 4/L and 8/L. The 

parameters of the evolutionary algorithm are summarised in Table 6.5. 

 



 113

Table 6.5: Parameters for the evolutionary algorithm used to compare the direct encoding 
and the developmental approach. 

Parameter Value(s) 

Population Size 1 

Generations 5000 

Mutation Rates 1/L, 2/L, 4/L, 8/L 

 

6.7 The Effect of M utation Rate 

The mutation rates that were used in the experiments gave a probability of mutating each gene. 

Thus when averaged over the whole genotype, the mutation rates 1/L, 2/L, 4/L and 8/L gave an 

expected number of mutations per genotype of 1, 2, 4 and 8 respectively. For the direct encoding 

it was guaranteed that each of these mutations would change the network configuration, which 

would almost certainly change the corresponding fitness value as the phenotype-fitness mapping 

was found to exhibit little or no neutrality. Thus, each mutation allowed new phenotypes and 

hence fitnesses to be explored. However, the neutrality inherent to the developmental encoding 

produced some buffering to the effect of mutation. A substantial number of mutations were 

neutral for the developmental encoding and thus did not change the network configuration. In 

effect, the neutrality reduced the exploration of new phenotypes for a given mutation rate. It 

would be expected, therefore, that the most appropriate mutation rate for the developmental 

encoding would be higher than that for the direct encoding to allow sufficient exploration to 

occur. The effect of mutation rate using the developmental encoding for 125-site environments 

with 2-levels of hierarchy is shown in Figure 6.4. These results are averaged over 10 independent 

runs. 

 

These results support the intuition that higher mutation rates are more appropriate when using the 

developmental encoding. Progressive improvements are apparent as the mutation rate is 

increased; the cost of the final networks produced using an 8/L mutation rate are on average 

0.8%, 1.2% and 3.1% lower than those produced using mutation rates of 4/L, 2/L and 1/L 

respectively. In contrast, Figure 6.5 shows that higher mutation rates perform poorly when using 

the direct encoding. Improvements in performance are apparent as the mutation rate is reduced 

from 8/L to 4/L and 2/L. However, if the mutation rate is reduced further to 1/L the performance 

decreases indicating that the exploration rate is not high enough. The cost of the networks 

produced using a mutation rate of 2/L are 2.4%, 3.5% and 14.4% lower than those produced 

using mutation rates of 1/L, 4/L and 8/L respectively. 
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Figure 6.4: The effect of mutation rate using the developmental process for 125-site 
environments. The results are averaged over 10 independent runs. 

 

300000

400000

500000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G enerations

N
e
tw
o
rk
 C
o
s
t

1/L 2/L 4/L 8/L

 

Figure 6.5: The effect of mutation rate using the direct encoding for a 125-site environment. 
The results are averaged over 10 independent runs. 

 

Although the differences are relatively small in some cases and could potentially be the result of 

statistical fluctuations, this effect was consistent across the different environments that were 

explored in these experiments. As the number of sites was increased and an extra level of 
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hierarchy added to the network, 2/L consistently emerged as the most appropriate mutation rate 

for the direct encoding and 8/L for the developmental encoding. The results using these mutation 

rates alone are therefore presented in subsequent comparison of the two approaches.  

 

6.8 Two-level Networks 

The first comparative analysis was performed for networks consisting of two levels of hierarchy. 

Both the direct encoding and the developmental approach were used to evolve networks for a 

range of 125, 250 and 500 site environments and the results are presented below. 

 

6.8.1 125-site environm ents 

The network design task for 125-site environments and 2-level networks was the most simple of 

the problems explored in this chapter. These networks required only core and access nodes and 

hence minor nodes could be disregarded. Thus, only steps 1 to 4 of the developmental process 

highlighted in section 6.4 were used and the direct encoding required only three alleles. A series 

of 10 independent experiments were performed and the average performance of the two 

approaches is shown in Figure 6.6. 
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Figure 6.6: Comparison of direct and developmental encodings for 125 site environments 
and two-level networks.  Results are averaged over 10 independent runs.  

 

The figure shows that the developmental approach allowed the rapid discovery of relatively low-

cost networks. As was seen in the previous chapter, this approach places tight constraints on the 

phenotypes that are available to evolution and emphasises a relatively small set of phenotypes. 
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The results suggest that the set of possible phenotypes included a number of relatively low-cost 

networks that were quickly discovered. These networks were then further refined during the 

evolutionary process. However, the results also suggest that this set of phenotypes may not 

include the best networks. The direct encoding initially produced higher cost networks but these 

were gradually improved upon until they were of a lower cost than those produced by the 

developmental approach. It is possible that further generations would have allowed the 

developmental approach to produce equally good networks but this does not seem likely given 

the small improvements that were evident in the later part of the process.  

 

It is instructive to determine how the network design was modified during the evolutionary 

process. Figure 6.7 shows the number of nodes making up the network throughout the 5000 

generations using the direct encoding. The initial state of the genotype was generated uniformly 

randomly and thus the number of access nodes, core nodes and vacant sites would be expected to 

be roughly equal at the beginning of the run. This is supported by the figure showing that the 

number of both access and core nodes in the initial network design was just over 40 i.e. around 

one third of the available sites. The number of core nodes was then quickly reduced and held 

relatively constant throughout the process. Modification of the location of a core node would 

likely have a significant impact on the network cost as it not only affects the cost of the core 

network but also impacts the access network. All access nodes are connected to the nearest core 

node and thus changing the location of a core node changes the cost of the links for all associated 

access nodes. Such large changes are likely to be detrimental as the quality of the networks 

increases and thus the design of the core network essentially becomes fixed at an early stage in 

the evolutionary process.  

 

Changes to the network design and hence cost, are subsequently dominated by the access nodes 

which are gradually added to the network. As the number of connections to a core node is not 

considered in the fitness calculation, there is no penalty for connecting a large number of nodes to 

a given core node. Evolution is thus able to fine-tune the access network as decisions about node 

placement can be made relatively independently from other access nodes. The major factor in that 

decision is whether the additional hardware costs are warranted by a reduction in PSTN and 

dropped call costs. This is influenced by whether neighbouring sites contain access nodes as a 

site without a co-located node routes its demand to the nearest node and thus the presence of an 

access node may change the number of calls that are routed between neighbouring sites. 

However, these interactions are much weaker than those for core nodes and thus the access 

network can be more flexibly modified. 

 

 



 117

0

40

80

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generations

N
u
m
 N
o
d
e
s

Core Access Total

 

Figure 6.7: The number of core and access nodes making up a two-level network design for 
the direct encoding. Results are average over 10 independent runs. 
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Figure 6.8: The number of core and access nodes making up a two-level network design for 
the developmental encoding. Results are average over 10 independent runs. 

 

Figure 6.8 reveals a similar pattern for the developmental encoding, the core network quickly 

became established and the access network was subsequently modified. However, in this case this 

process occurs in far fewer generations. This accounts for the rapid discovery of high-fitness 
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networks when using the developmental process. However, the figure also reveals that the same 

degree of access network fine-tuning did not occur. The access network becomes largely 

established early in the process and the number of access nodes is relatively consistent after 

around 700 generations. In contrast to the direct encoding, evolution did not have the flexibility 

to control the addition of individual access nodes. It is this reduced flexibility that accounted for 

the fact that the direct encoding eventually produced better quality networks. Thus in this case, 

the constraints imposed by the developmental process are both advantageous in that they allow 

relatively high quality networks to be quickly discovered but ultimately detrimental in that they 

limit fine-tuning of the network. 

 

6.8.2 250-site environm ents 

In order to test the scalability of each approach, experiments were carried out on larger scale 

environments. That is, environments containing a greater number of sites at which nodes could be 

housed. Figure 6.9 shows the average performance of each approach for 10 independent 

experiments carried out on environments in which the number of sites was doubled to 250. 
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Figure 6.9: Comparison of direct and developmental encodings for 250-site environments 
and two-layer networks. Results are averaged over 10 independent runs. 

 

The pattern of these results is similar to that for the 125-site environments. Relatively low-cost 

networks are quickly discovered using the developmental encoding but the direct encoding 

eventually produces lower cost networks. However, in this case the direct encoding takes many 

more generations to outperform the developmental approach. Lower cost networks are not 

discovered until around 4000 generations.  
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This evidence suggests that the developmental process may scale better than the direct encoding. 

When using the direct encoding, increasing the number of sites also increases the size of the 

search space as more genes are required to specify the state of the additional sites. Thus moving 

from 125 to 250 sites, increases the size of the search space from 3125 to 3250 genotypes. It is this 

effect that causes a corresponding decrease in the speed in which good solutions are found. In 

contrast, increasing the number of sites has no effect on the size of the search space generated by 

the developmental encoding. The same rules are applied to the additional sites as for the original 

sites and the heuristics built into the planning rules bias the search space in a similar way.  

 

6.8.3 500-site environm ents 

Figure 6.10 shows the results for environments in which the number of sites was again doubled to 

500. It can be seen that progress when using the direct encoding was further slowed using these 

larger environments. In this case, the best solutions found using the direct encoding after 5000 

generations were equivalent to those discovered after only several hundred generations using the 

developmental encoding. However, extrapolation of the direct encoding graph suggests that better 

solutions would eventually be discovered in this case also. 
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Figure 6.10: Comparison of direct and developmental encodings for 500-site environments 
and two-layer networks. Results are averaged over 10 independent runs. 

 

As already discussed, increasing the number of sites in the environment increases the size of the 

direct encoding search space. However, it does not fundamentally alter its nature. The ruggedness 

and corresponding difficulty of a search space is heavily influenced by the epistatic interactions 
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between genes. If the contribution each gene makes to fitness is independent of the state of any 

other genes, then there are no epistatic interactions and the search space is entirely smooth 

containing no rugged peaks that lead to local optima. A direct encoding would be expected to 

perform very well on such a landscape, given enough time. However, in most real problems this 

is not the case and the fitness contribution of a gene is typically dependent on the state of a 

number of other genes. In this case there are relatively strong epistatic interactions as the fitness 

contribution of a node is always dependent on the location of other nodes in the network. 

Increasing the scale of the environment does not affect the fundamental nature of these 

interactions and hence does not fundamentally change the nature of the associated search space. It 

would be expected, therefore, that increasing the number of sites would slow down progress 

when using the direct encoding as a larger space must be navigated but would not change the fact 

that better networks would be discovered given enough generations on average. Nonetheless, the 

results for these larger scale environments begin to suggest that the advantages of the constraints 

imposed by the developmental process (quick discovery of relatively good networks) may begin 

to outweigh the disadvantages (reduced flexibility) as larger problems are considered. 

 

6.9 Three-level Networks 

In the previous section, it was suggested that the constraints imposed on evolution through use of 

a developmental process may be more advantageous as the size of the problem was increased. In 

this section, the difficulty of the problem was also increased by adding minor nodes and hence a 

new level of hierarchy to the network. These experiments required all 6 stages of the 

developmental process to be used and the number of alleles required for the direct encoding to be 

increased to 4 to allow specification of the 3 types of node together with a vacant site. 

Experiments were again performed using a series of 125, 250 and 500 site environments. 

 

6.9.1 125-site environm ents 

A series of 10 independent experiments were performed for both the direct encoding and the 

developmental approach using 3-level networks and 125-site environments. The results, shown in 

Figure 6.11, reveal that the developmental encoding again allowed the rapid discovery of 

relatively low-cost networks. However, in this case the direct encoding no longer allowed the 

discovery of lower cost networks as the evolutionary process unfolded. In addition, the direct 

encoding graph appears to have reached an asymptote and there is thus no indication that lower 

cost networks would eventually be discovered given more generations. 
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Figure 6.11: Comparison of direct and developmental encodings for 125-site environments 
and three-layer networks. Results are averaged over 10 independent runs. 

 
 
In the absence of minor nodes, the access layer could be relatively flexibly modified once the 

basic structure of the core network was established. However, the inclusion of minor nodes 

reduced this flexibility as changing the location of an access node could now also impact the 

minor node layer. The effect of adding a new level of hierarchy to the network was thus to 

increase the strength of the epistatic interactions. Such effects created a more challenging search 

space for the direct encoding, which is reflected in the results. 

 

It is again instructive to determine the make-up of the network during the evolutionary process. 

Figure 6.12 shows the average number of core, access and minor nodes when using the direct 

encoding. The pattern of core and access node usage was very similar to that for the two-level 

networks. The number of core nodes was quickly reduced and then held relatively constant, 

access nodes were then added to the network. The flexibility with which the access nodes were 

added may be surprising given the presence of the minor nodes. It may have been expected for 

the access network to become relatively fixed earlier in the process in a similar way to the core 

network due to the presence of minor nodes. However, the number of minor nodes was low 

throughout the process. The majority of high demand sites were serviced by either a core or an 

access node and thus the number of sites with a high enough demand to warrant the hardware 

costs of a minor node was relatively small. This in turn meant that the average number of minor 

nodes connected to each access node was also low. In the later stages this average was only 

approximately 0.4, which reduced the impact of an access node change on other network nodes 

and hence reduced the strength of the epistatic interactions. The effect on the search space 

remained strong enough however to be detrimental to the direct encodings comparative 

performance. 
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Figure 6.12: The number of core, access and minor nodes making up a three-level network 
design for the direct encoding. Results are averaged over 10 independent runs. 

 

The developmental process achieved a similar balance between the three types of nodes but in far 

fewer generations due to the heuristics embedded in the planning rules. These results are shown 

in Figure 6.13.  
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Figure 6.13: The number of core, access and minor nodes making up a three-level network 
design for the developmental encoding. Results are average over 10 independent runs. 
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6.9.2 250-site environm ents 

The scalability of both approaches was again tested by increasing the number of sites in the 

environment to 250. The results averaged over 10 independent runs are shown in Figure 6.14. 
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Figure 6.14: Comparison of direct and developmental encodings for 250-site environments 
and three-layer networks. Results are averaged over 10 independent runs. 

 

 

The figure reveals a similar pattern as for the 125-site environments. Increasing the number of 

sites to 250 increased the size of the direct encoding search space from 4125 to 4250, which again 

slowed evolutionary progress. After 5000 generations the quality of the networks produced using 

the direct encoding was equivalent to those produced by the developmental process. However, 

the latter discovered such networks in a very much smaller number of generations. 

 

6.9.3 500-site environm ents 

Increasing the number of sites to 500 further decreased the speed at which good solutions were 

found using the direct encoding, which was not able to match the performance of the 

developmental encoding over 5000 generations as shown in Figure 6.15. However, extrapolation 

again suggests that similar quality networks would eventually be discovered. These results 

support those from the two-level network experiments in suggesting that the direct encoding does 

not scale to larger scale problems as well as the developmental approach. 
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Figure 6.15: Comparison of direct and developmental encodings for 500-site environments 
and three-layer networks. Results are averaged over 10 independent runs. 

 

6.10 Discussion 

The results presented above do not and could not offer conclusive proof of the superiority of 

either the direct encoding or the developmental approach. Each has their own strengths and 

weaknesses and is appropriate in different situations. If a relatively smooth landscape can be 

created through use of a direct encoding then it would be sensible to adopt such an approach. The 

emphasis of certain phenotypes produced by the developmental approach may allow relatively 

good phenotypes to be quickly discovered but the rewards are not likely to justify the risk of 

disallowing the best phenotypes given that the direct encoding is likely to produce very good 

solutions given enough time. However, as both the scale and complexity of the problem increases 

then the direct encoding may no longer be the most prudent option. 

 

The evidence presented above suggested that the relative performance of the direct encoding 

could not be maintained as the scale of the problem was increased. As larger problems were 

tackled, progress using the direct encoding slowed. For very large problems, the size of the 

search space may become too large to be successfully negotiated in any reasonable time scale. As 

the fundamental complexity of the problem and hence search space increases, the difficulties are 

exacerbated and the use of some form of heuristic is likely to become a necessity. The approach 

explored in this work is a very promising method of using such heuristics. Embedding planning 

rules within the developmental process allowed good phenotypes to be emphasised in the search 

space and made them likely outcomes of evolution rather than isolated solutions in vast search 

spaces.  
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The utility of the developmental approach is dependent on the design of the planning rules. It was 

shown in the previous chapter how inappropriate choice of both the planning rules and the ranges 

of the associated parameters had a detrimental effect on the nature of the search space. However, 

very good solutions were still easily accessible and were of only slightly lower fitness than the 

very best solutions possible. It is possible that the planning rules used in this chapter may not 

have allowed the generation of the global optimum. However, they allowed phenotypes to be 

very quickly produced that were comparable to or better than those produced by the direct 

encoding after a far larger number of generations. In realistic problems, specialised knowledge 

would be available in the form of existing and proven planning rules that would likely further 

enhance the developmental approach. 

 

Addition of a third-level of hierarchy to the network increased the difficulty of the problem by 

increasing the strength of the epistatic interactions when using the direct encoding; the location of 

access nodes could no longer be modified without the likelihood of affecting the fitness of the 

minor node layer. The fact that the number of minor nodes was typically very low reduced this 

effect but did not remove it. The relative performance of the direct encoding for 3-level networks 

was reduced such that it could no longer produce designs of a higher quality than those produced 

after only several hundred generations by the developmental approach. For more realistic 

problems, many more issues would need to be considered in a network design. For example, the 

performance of the network as it routes data packets, the physical space available at various sites, 

the proximity to other networks etc. These factors would increase the difficulty of the problem 

and would likely cause additional difficulties for the standard direct encoding. However, the 

developmental approach would allow further heuristics to be captured in the planning rules with a 

view to fundamentally biasing the search space in favour of phenotypes that effectively deal with 

the various issues. 

 

In order to achieve this, a more suitable balance may need to be struck between the constraints 

imposed on evolution by the developmental process and the flexibility that evolution has to create 

new solutions. In this chapter, the structure of the planning rules was precisely specified such that 

only the parameters of the rules were under evolutionary control. This imposed very tight 

constraints on the phenotypes that were available to evolution. In the previous chapter it was 

shown that over 99.9% of feasible phenotypes could not be generated by the developmental 

process. It is this effect that allowed the rapid discovery of very good network designs. However, 

such tight constraints place a lot of pressure on the design of the planning rules. If these rules do 

not allow the production of the required phenotypes then evolution can never generate them. This 

lack of flexibility allowed the direct encoding to eventually produce better solutions for two-level 

networks. It may be desirable therefore to loosen the constraints imposed by the developmental 

process. This could be achieved by allowing the structure of certain rules to be evolved along 

with the associated parameters. A combination of fixed rules that capture the domain expertise of 
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the network designers and evolved rule structures may provide a better balance between 

phenotypic constraint and flexibility. While this remains a topic for future work, the evidence to 

date suggests that the developmental approach compares very favourably to a direct encoding. It 

expedites evolutionary progress and scales well to larger and more complex problems. 

 

6.11 Sum m ary 

This chapter has compared the developmental approach with a typical direct encoding on network 

design problems of varying scale and difficulty. The key findings are highlighted below: 

  

• The developmental approach consistently allowed the discovery of high quality 

networks very much more quickly than the direct encoding. 

• For the simplest problems explored in this chapter involving two-level hierarchical 

networks and small-scale environments, the direct encoding eventually discovered 

higher quality networks indicating that the very best designs may not have been possible 

using the developmental approach. 

• As the scale of the problem was increased evolutionary progress using the direct 

encoding significantly slowed whereas the developmental approach again allowed very 

rapid discovery of high quality networks. 

• As the difficulty of the problem was increased to consider three-level hierarchical 

networks, the relative performance of the direct encoding was significantly impaired. 

The direct encoding no longer allowed better quality networks to be discovered. 

• The developmental approach was better able to scale to larger and more complex 

problems. The benefits of this approach may thus outweigh the risks of loosing the very 

best phenotypes. 

 

The following chapter summarises the results from all the previous chapters and presents the 

overall conclusions together with suggestions for future work. 
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Chapter 7 
 

Conclusions 

 

This thesis has investigated the use of self-organising genotype-phenotype mappings in artificial 

evolutionary systems. Several abstract genotype-phenotype mappings were developed and the 

impact of the inherent neutrality was analysed in depth. A novel approach to the evolutionary 

design of telecommunications was also developed that employed both evolution and self-

organisation. This approach was applied to a simplified version of a real network design problem. 

The resulting search space was exhaustively enumerated and the impact of the design choices 

ascertained. The approach was then applied to a more realistic scale of problem and comparison 

made to a typical encoding in which the network design was directly encoded in the genotype. In 

the following section, the results of this work are summarised and discussed with a view to 

evaluating whether the objectives highlighted in the Introduction were achieved. 

 

7.1 Sum m ary and discussion 

The primary objective of this work was to determine whether the efficacy of an evolutionary 

algorithm could be enhanced through the coupling of self-organisation and evolution. This broad 

objective was composed of two more specific sub-objectives. The first of which was to determine 

whether self-organising genotype-phenotype mappings could be developed that resulted in search 

spaces that shared the desirable properties found in natural search spaces. The second sub-

objective was to determine whether the use of such mappings in an evolutionary algorithm could 

provide any advantage over a typical direct encoding.  

 

The studies of RNA molecular self-organisation, highlighted in chapter 2, were an important 

influence for this work. These studies revealed four main properties of the resulting search spaces 

that provide a useful guide for interpreting the results presented in this thesis. The four properties 

were large-scale neutrality, neutral networks, common structures and shape-space covering. The 

first two properties indicate that many genotypes mapped onto the same phenotype and were 

largely connected by single-point mutations. The latter two properties indicate that only a 

relatively small sub-set of potential structures or phenotypes were commonly discovered and the 

neutral networks associated with these common structures covered the search space i.e. they were 

within a relatively small radius from any arbitrary location in the space.  

 

These spaces were shown to be very amenable to evolutionary search. The expansive neutral 

networks associated with each of the common structures percolated throughout the search space 

and drift on these neutral networks allowed the constant discovery of new phenotypes. This 
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reduced the possibility of an evolving population becoming isolated in sub-optimal regions of the 

landscape. In addition, the property of shape-space covering increased the probability of neutral 

drift allowing the rapid discovery of higher fitness phenotypes. Assessing whether similarly 

amenable artificial evolutionary search spaces were created in this work forms the basis of this 

discussion. 

  

7.1.1 Abstract genotype-phenotype m appings 

In chapter 4, self-organising genotype-phenotype mappings based on both a cellular automaton 

and a random Boolean network were introduced. The philosophy behind these mappings was to 

encourage the desirable properties described above into artificial evolutionary search spaces 

through use of computationally efficient models of natural processes. Both the mappings 

succeeded in introducing large-scale neutrality into the search space, a very large set of genotypes 

produced each of the possible phenotypes. In addition, these sets were connected into expansive 

neutral networks through single-point mutations. This was demonstrated by performing random 

walks on the neutral networks in order to simulate neutral drift. Extensive movement through 

genotype space was possible on such walks indicating that the associated neutral networks 

percolated throughout much of the space. 

 

In order to be beneficial to evolutionary search, neutral drift must allow access to phenotypes that 

would otherwise not have been possible. The statistics collected during the random neutral walks 

indicated that phenotypic accessibility was dramatically increased through use of the mappings. 

As for the RNA-folding landscapes, neutral drift allowed constant discovery of new phenotypes. 

Thus, the probability of evolutionary search becoming isolated in regions of genotype space from 

which higher fitness transitions were not possible was greatly decreased. This conjecture was 

supported by performing adaptive fitness walks which extended the random neutral walks to 

include steps to higher fitness phenotypes whenever possible. Several fitness functions were 

employed that created challenging search spaces containing many local optima. Use of the 

mappings allowed much higher fitnesses to be achieved than through use of a direct encoding for 

which the adaptive walks readily became trapped at local optima. 

 

These results suggest therefore that the primary objectives were achieved by these mappings. 

Neutral networks were introduced into genotype space that allowed the constant discovery of new 

phenotypes. As a result the efficacy of a simple evolutionary algorithm was enhanced in 

comparison to a direct encoding. However a key simplification was made for this analysis - the 

consideration of only single-point mutations. Thus, only small movement was possible within 

genotype space at any given reproductive event. It was argued that this restriction was necessary 

to make the analysis computationally tractable and that higher mutation rates or more complex 

genetic operators would only enhance the extent of the neutral networks. However, realistic 

evolutionary algorithms typically allow greater movement in genotype space which may allow 

shallow local optima to be negotiated when using a direct encoding. Thus, consideration of 
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single-point mutations alone may have artificially hampered evolutionary progress when using a 

direct encoding. Work was reviewed that compared the random Boolean network mapping with a 

direct encoding using varying mutation rates and larger search spaces [46]. This work suggested 

that performance using the direct encoding was at least as good as that for the random Boolean 

network mapping when higher mutation rates were used. Use of the mappings did not therefore 

appear to increase the efficacy of a more realistic evolutionary algorithm in comparison to a 

direct encoding. 

  

The reasons for the relative lack of performance of the RBN mapping in this case were elucidated 

in chapter 4 by returning to the four identified properties of the RNA-folding landscapes. Two of 

these properties, large-scale neutrality and neutral networks, were successfully introduced into 

the landscapes as described above. The analysis also revealed that the mappings successfully 

introduced the property of shape-space covering. All the neutral networks were readily 

discovered both during the random neutral walks and when the global features of the search space 

were probed using a series of random samples. However it was also found that each of the neutral 

networks was equally likely to be discovered, use of the mappings had not therefore introduced 

any large-scale biases into the search space. Thus, only three of the four identified properties of 

RNA self-organisation were generated through use of these mappings. 

 

It was argued that it was this lack of common structures or phenotypes that limited the efficacy of 

the RBN mapping. In the absence of any bias or structure in genotype space, each of the neutral 

networks is equally likely to be discovered from any location within the space. The evolutionary 

process thus reduces to random search with elitism and as the size of the search space is increased 

the performance would quickly become unacceptable. To increase the efficacy of an evolutionary 

algorithm in large spaces therefore, the mappings must introduce some structure into genotype 

space. It was shown that localised structure was apparent but that this structure was heavily 

influenced by the direct encoding i.e. the more probable phenotype discoveries were those that 

would have been allowed for through use of a standard direct encoding. It was argued that a more 

fundamental restructuring of the space was required that emphasised certain phenotypes and thus 

generated large-scale biases in the search space. 

 

The cellular automaton and random Boolean network have the ability to generate such biases. 

They are both discrete dynamical systems that settle into attractors as they are iterated. Not all 

final states are therefore possible as the system naturally tends towards one of a relatively small 

number of final behavioural patterns. However, this ability was effectively removed during the 

design of the mappings. Both models were updated for a fixed number of iterations and the 

resulting state was interpreted as the phenotype. This approach alleviated the difficulties in 

identifying the attractors and assigning each attractor to a suitable phenotype. However, 

modifying the underlying “physics” of the models in this way resulted in removal of the key 

property of common phenotypes and ultimately reduced the efficacy of the mappings.  
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This highlights a fundamental difficulty in developing abstract genotype-phenotype mappings. It 

may be possible to emphasise certain phenotypes, however doing so arbitrarily is not likely to be 

a fruitful approach. Any biases must be introduced with due consideration to the problem at hand 

so that the common phenotypes tend to be of high fitness. Design of effective self-organising 

genotype-phenotype mappings is thus likely to require the use of domain knowledge. This is the 

subject of the following section. 

 

7.1.2 G row ing telecom m unication netw orks 

In chapter 5 the work was extended to address a real-world application, the evolutionary design 

of telecommunications networks. A self-organising mapping was introduced that made use of 

domain knowledge in the form of planning rules that are used by network designers. These rules 

were used to iteratively modify a network design based on the locally perceived condition of the 

current network and its simulated environment. In effect, the rules allowed a network to be 

“grown” using instructions that were encoded in the genotype. The parameters of the rules were 

encoded into a binary genotype and it was shown that many encoded rules produced the same 

network design i.e. neutrality was introduced into the search space. Exhaustive enumeration of 

this space revealed that neutral networks had also been created. However, the extent of these 

networks was restricted due to fragmentation which limited neutral drift and ultimately created 

local optima. The analysis revealed that the root cause of this fragmentation was the choice of a 

binary encoding which caused similar parametric values to be large distances apart in genotype 

space. Adoption of a Gray encoding was shown to remove this fragmentation and the associated 

local optima. 

 

In contrast to the abstract mappings, this approach introduced very strong biases into the search 

space. The vast majority, over 99.9%, of feasible network designs could not be generated through 

use of the growth process. The relatively small-scale of the initial problem allowed the fitness of 

every feasible network design to be calculated. This analysis revealed that the domain knowledge 

inherent to the mapping ensured that those that could be generated included very high quality 

network designs. They did not, however, include the very best network designs. It was shown that 

this was due to the design of certain features of the planning rules at the heart of the self-

organising process. In effect, misleading domain knowledge was encoded into the mapping 

which had a detrimental effect on the search space and resulted in the global optimum being 

impossible to generate. When the planning rules were re-designed such that the inherent domain 

knowledge more closely reflected the properties required of high quality networks, the resulting 

growth process was able to generate the global optimum. This demonstrated an important point 

when designing genotype-phenotype mappings of this nature. Domain knowledge must be used 

with great care in order to ensure that the resulting biases in the search space are in favour of 

phenotypes of high fitness. 
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The above analysis demonstrated that amenable evolutionary search spaces could be created 

through use of a self-organising growth process. However, in order to demonstrate the efficacy of 

the approach it was also necessary to shown that it compared favourably with more traditional 

approaches on challenging problems. Chapter 6 presented results of such a comparison. Larger 

scale and more complex network design problems were tackled using both the self-organising 

approach and an encoding in which the network structure was directly represented in the 

genotype. It was discovered that the biases created by the self-organising process allowed 

evolution to very rapidly discover high quality network designs. In contrast, evolutionary 

progress was dramatically slowed through use of the direct encoding. On relatively small scale 

and low complexity problems, the direct encoding eventually allowed the discovery of higher 

quality network designs. However, this was no longer the case as the scale and complexity of the 

problem was increased. 

 

For the most challenging problems considered in this work, the fitness of the network designs 

discovered through the coupling of evolution and the self-organising genotype-phenotype 

mapping was higher than those discovered through use of evolution alone. It is possible that 

comparable quality designs would eventually have been discovered using the latter approach 

given enough time. However, the relative performance of evolution using the direct encoding 

progressively decreased as the scale and complexity of the problem was increased and it is likely 

that this trend would continue with further such increases. The advantages of the self-organising 

approach would thus be further emphasised. This conjecture can be supported by examining the 

nature of the search space created through use of a direct encoding. As the problem is directly 

represented in the genotype, an increase in the scale of the problem produces a corresponding 

increase in the size of the genotype and hence that of the search space. This has a detrimental 

effect on the speed of evolution as evidenced by the dramatic slowing of evolutionary progress as 

the scale of the problem was increased in this work. In addition, increasing the complexity of the 

problem typically results in increasing the strength and number of competing constraints. As 

discussed in chapter 6, this typically increases the epistatic interactions between the genes of a 

direct encoding and increases the ruggedness of the associated search space. The end result is to 

exacerbate the problem of local optima and thus reduce the effectiveness of the direct encoding.  

  

In contrast, the self-organising approach need not suffer from either of these fundamental 

difficulties. The information encoded in the genotype does not directly represent the problem and 

therefore its size is not directly proportional to the size of the problem. As the scale of the 

problem was increased in this work, the genotype encoding the planning rules was unchanged 

and thus the size of the search space remained constant. In addition, use of the self-organising 

approach opens up the possibility of more effectively handling the competing constraints inherent 

to more complex problems. The knowledge of how to do so can be represented in the planning 

rules which are subsequently encoded in the genotype. The competing constraints are thus 
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effectively handled by the growth process and any detrimental effects on the search space are 

reduced. The self-organising approach thus compares very favourably with the direct encoding. It 

expedites evolutionary progress and scales well to larger and more complex problems. 

 

These results suggest therefore that the primary objectives were achieved by this approach. For 

the initial small-scale problem, exhaustive enumeration revealed that the self-organising 

genotype-phenotype mapping generated amenable evolutionary search spaces with strong biases 

towards high-fitness phenotypes. These spaces contained large sets of genotypes mapping onto 

each phenotype that were connected into neutral networks. These networks allowed access to 

higher fitness phenotypes and local optima were removed from the search space. In addition, 

consideration of more complex problems revealed that the approach resulted in numerous 

advantages over a typical direct encoding. These results are very promising and suggest that 

further investigation of the approach would be warranted. A natural next step for such 

investigations is presented in the following section. 

 

7.2 Future W ork 

Self-organisation’s constraining effect on evolution was particularly striking in the genotype-

phenotype mapping created for the evolutionary design of telecommunication networks. Less 

than 0.1% of feasible phenotypes were possible outcomes of the mapping. These constraints were 

several orders of magnitude stronger than were found in the RNA-folding landscapes. In addition, 

some of the phenotypes that could be generated by the mapping were represented by relatively 

few genotypes and thus could not be considered as common phenotypes. This suggests that the 

genotype-phenotype mapping created for this work may have imposed too tight a constraint on 

evolution. This lack of flexibility was evident in the results presented in chapter 6 in which the 

direct encoding was eventually able to discover better quality networks for the simpler problems. 

Use of the self-organising process allowed evolution to very quickly discover high quality 

networks but then did not allow it the flexibility to perform the necessary fine-tuning of these 

networks. This relative lack of flexibility is inherent to the approach as it essentially employs 

heuristics to disallow many network designs. However, increasing evolutionary flexibility by 

relaxing some of the constraints imposed by the self-organising process has the potential to 

further increase the efficacy of the approach. A method of achieving this is presented in the 

following section. 

 

7.2.1 Evolving planning rule structure 

The approach introduced in chapter 5 and further explored in chapter 6 used a small number of 

planning rules with a fixed structure that was not under evolutionary control. Thus, only the 

parameters of these rules were encoded in the genotype. For the initial problem explored in 

chapter 5 only three parameters were eventually encoded and modification of these parameters 

allowed evolution to tune the growth process. However with such a small number of parameters 
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the tuning was very limited and thus the range of possible phenotypes was reduced. More 

complex problems would require a larger number of planning rules and would inevitably result in 

a larger number of encoded parameters. A total of 15 parameters were encoded for the most 

complex problems explored in chapter 6. However, the options available to evolution were still 

severely restricted. In order to increase the flexibility with which evolution could tune the growth 

process and hence increase the number of possible phenotypes, the structure of certain planning 

rules could be placed under evolutionary control along with the associated parameters. 

 

One method of achieving this would be to maintain a set of observable conditions about the 

network and its environment together with a set of possible actions that can be carried out in that 

environment. In addition, a set of operators would be required that enabled these conditions and 

actions to be combined to produce the planning rules. The genetic encoding would thus consist of 

a number of indexes into these sets which would together define the encoded planning rule. 

Figure 7.1 shows a very simple example of such an encoded rule. The table that the indexes refer 

to would be defined by their placement within the genotype i.e. a prescribed sequence of encoded 

parameters would be defined. More complex planning rules would also be possible by defining a 

fourth table that included logic operators such as AND and OR that allowed a number of 

conditions to be combined into a single rule. The genotype would thus be composed of a number 

of sections that each defined a planning rule with a given number of conditions. Encoding the 

section type would enable the number of conditions and the sequence of associated parameters to 

be ascertained by the growth process. It would also be necessary to define the number of encoded 

rules of each type. One method of doing this would be to fix the number of each type and allow 

rules to be enabled or disabled through use of a genetic switch. In addition, gene duplication or 

deletion events could be employed to allow the number of rules of each type to be placed more 

fully under evolutionary control. 

 

 

Figure 7.1: An example of a genetically encoded rule structure. The genotype encodes 
indexes into tables of observable conditions, operators and actions together with the 
associated parameters to form a planning rule. 

 

Index Condition 
0 Demand 
1 Proximity 
2 Radius 

demand 
 

Index Operator 
0 = 
1 != 
2 > 
3 < 

 

Index Action 
0 Remove node 
1 Add node 
2 Increase node 

capacity 
 

0 2 X 1 

IF (Demand > X) THEN (Add node) 
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This approach would significantly increase the options open to evolution and would undoubtedly 

allow a greater number of phenotypes to be produced by this approach. However, a balance needs 

to be struck between flexibility and constraint. Removing all planning rule structure would 

effectively remove much of the domain knowledge that allowed very good networks to be rapidly 

discovered by evolution. If high quality and proven planning rules exist for a particular scenario 

then it would be prudent to make good use of this knowledge. The most fruitful approach would 

likely therefore be a combination of rules with fixed structure and evolved rules. This would also 

open up the possibility of tuning the balance between flexibility and constraint by modifying the 

number of each type. 

 

This method is one of a number of ways that the structure of the planning rules could be evolved. 

Another possibility is classifier systems that provide much of the machinery required to evolve 

rule sets for a given task [105]. In this approach, a population of rules is maintained with a 

number of conditions that are matched to the current environmental context. The rules that match 

this context are triggered and become candidates for execution. The strongest candidate is 

typically chosen for such a fate and its associated action is carried out. The classifier system also 

includes a system for rewarding rules that resulted in beneficial actions and the better rules tend 

to produce offspring that take the place of poorer quality rules within the population. In this way 

the structure of the rule set becomes better matched to the task at hand. Incorporation of 

techniques such as these would create a sophisticated method of evolving network designs with 

the potential to yield significant advantages over more traditional approaches. 

 

7.3 Concluding rem arks 

The coupling of evolution and self-organisation has enormous consequences both for theories of 

biological evolution and the design of artificial evolutionary systems. The introduction of 

neutrality into the search space is but one such consequence, however, this alone fundamentally 

challenges our views of evolutionary adaptation. The use of these concepts in the design of 

genotype-phenotype mappings for evolutionary network design has been shown to be a very 

promising approach that generates significant advantages. It is likely that the efficacy of 

evolution for many other problems within the communications domain and beyond can be 

significantly enhanced through due consideration of self-organisation and neutrality. The first 

steps along this path have been taken and the route leads to a more complete emulation of the 

creative power of biological evolution within our artificial systems – an enticing goal indeed to 

fill us with energy for the journey ahead. 
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