
Biologically Inspired Evolutionary Development

Sanjeev Kumar and Peter J. Bentley

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
S.Kumar@cs.ucl.ac.uk P.Bentley@cs.ucl.ac.uk

Abstract. We describe the combination of a novel, biologically plausible model
of development with a genetic algorithm. The Evolutionary Developmental
System is an object-oriented model comprising proteins, genes and cells. The
system permits intricate genomic regulatory networks to form and can evolve
spherical embryos constructed from balls of cells. By attempting to duplicate
many of the intricacies of natural development, and through experiments such
as the ones outlined here, we anticipate that we will help to discover the key
components of development and their potential for computer science.

1 Introduction

Talk to any evolutionary biologist and they’ll tell you that the standard genetic
algorithm (GA) does not resemble natural evolution very closely. While our GAs may
evolve their binary genes, most biologists would be horrified to discover that concepts
such as genotype and phenotype are so blurred in evolutionary computation that some
researchers make no distinction between the two. Should you have the courage to go
and talk to a developmental biologist, you’ll have an even worse ear-bashing. You’ll
be told that development is the key to complex life. Without a developmental stage
from genotype to phenotype, all you have is a big DNA or RNA molecule. With
development you can have layer upon layer of complexity, from cells to organs to
organisms to societies.

Of course our motivations in computer science are often very different from the
motivations of biologists. Nevertheless, it has long been the goal of evolutionary
computationists to evolve complex solutions to problems without needing to program-
in most of the solution first. The dream of complex technology that can design itself
requires rejection of the idea of knowledge-rich systems where human designers
dictate what should and should not be possible. In their place we need systems
capable of building up complexity from a set of low-level components. Such systems
need to be able to learn and adapt in order to discover the most effective ways of
assembling components into novel solutions. And this is exactly what developmental
processes in biology do, to great effect.

In this paper we present, for the first time, an overview of a novel biologically
plausible model of development for evolutionary design. This system is intended to
model biological development very closely in order to discover the key components

2 Sanjeev Kumar and Peter J. Bentley

of development and their potential for computer science. The paper is divided into
sub-sections covering different aspects of the Evolutionary Developmental System
(EDS). It begins with an overview of the entire system, followed by sections detailing
individual components in isolation. These individual components are then drawn
together, and how they work as part of the overall developmental system is detailed as
well as the role of evolution and how the genetic algorithm is wrapped around the
developmental core. Finally we present some examples of results generated during
on-going experiments.

2 Background

Development is the set of processes that lead from egg to embryo to adult. Instead of
using a gene for a parameter value as we do in standard EC (i.e., a gene for long legs),
natural development uses genes to define proteins. If expressed, every gene generates
a specific protein. This protein might activate or suppress other genes, might be used
for signalling amongst other cells, or might modify the function of the cell it lies
within. The result is an emergent “computer program” made from dynamically
forming gene regulatory networks (GRNs) that control all cell growth, position and
behaviour in a developing creature [Bentley, 2002].

The field of Computational Development has matured steadily over the past decade
or so, with work touching upon a wide range of aspects of development ranging from
its use for the construction of neural net robot controllers [Jakobi, 1996], to the large
scale modelling of morphogenesis [Fleischer, 1993].

Recently a resurgence of interest into computational development has fuelled much
research. Problems of scalability, adaptability and evolvability have led many
researchers to attempt to include processes such as growth, morphogenesis or
differentiation in their evolutionary systems [Eggenberger, 1996; Haddow et al, 2001;
Bongard, 2002; Miller 2002]. For reviews see [Kodjabachian and Meyer, 1994;
Kumar and Bentley, 2002].

3 The Evolutionary Developmental System (EDS)

In nature, development begins with a single cell: the fertilised egg, or zygote. In
addition to receiving genetic material from its two parents, the zygote is seeded with a
set of proteins — the so-called ‘maternal factors’ deposited in the egg by the mother
[Wolpert, 1998]. The maternal factors trigger development causing the zygote to
cleave (fast cell division with no cell growth). After cleavage, normal cell division
begins; as cells divide they inherit the state of their parents. To ensure the embryo is
not homogenous, one or two asymmetric divisions occur, resulting in an unequal
distribution of factors to the daughter cells. In doing so, cells become different from
one another.

Development is controlled by our DNA. In response to proteins, genes will be
expressed or repressed, resulting in the production of more (or fewer) proteins. The
chain-reaction of activation and suppression both within the cell and within other

Biologically Inspired Evolutionary Development 3

nearby cells through signaling proteins and cell receptors, causes the complex
processes of cellular differentiation, pattern formation, morphogenesis and growth.

The Evolutionary Developmental System is an attempt to encapsulate many of
these processes within a computer model. At the heart of the EDS lies the
developmental core. This implements concepts such as embryos, cells, cell cytoplasm,
cell wall, proteins, receptors, transcription factors (TFs), genes, and cis-regulatory
regions (see figure 1 for a graphical view of the EDS). Genes and proteins form the
atomic elements of the system. A cell stores proteins within its cytoplasm and its
genome (which comprises rules that collectively define the developmental program)
in the nucleus. The overall embryo is the entire collection of cells (and proteins
emitted by them) in some final conformation attained after a period of development.
A genetic algorithm is wrapped around the developmental core. This provides the
system with the ability to evolve genomes for the developmental machinery to
execute.

Figure 1: A single cell in the Evolutionary Developmental System

DNA

Genome
based cis -
regulatory
region.
Ligands bind
to these sites
& trigger
transcription

Protein
molecules

Coding
Region

Emission of
long-range
signalling
protein

Cell surface receptors
proteins used as
‘sensors’ to detect
signalling proteins by
binding them

Cell
Membrane

4 Sanjeev Kumar and Peter J. Bentley

4 Components of the EDS

The following sections describe the main components of the developmental model:
proteins, genes and cells.

4.1 Proteins

In nature, proteins are the driving force of development. They are macromolecules,
long chains of amino acids that assemble at protein production sites known as
ribosomes. The only function of genes is to specify proteins.

The EDS captures the concept of a protein as an object. Each protein has an ID tag,
which is simply an integer number. The EDS uses eight proteins (although number of
proteins used is a user defined variable in the system). Protein objects contain both a
current and a new state object (at the end of each developmental cycle all protein new
states are swapped with current states to provide “parallel” protein behaviour). These
protein state objects house important protein-specific information, for example, the
protein diffusion co-efficient.

Protein creation, initialisation, and destruction. In the EDS, proteins do not exist in
isolation; they are created and owned by cells. Thus, during protein construction each
protein is allocated spatial co-ordinates inherited from the cell creating the protein.
Handling protein co-ordinate initialisation using this method overcomes the problem
of knowing which cell created which proteins.

A protein lookup table (extracted from the genome, see next section) holds details
about all proteins and is used to initialise each protein upon creation. It has the
following details for each protein:

Rate of Synthesis amount by which the protein is synthesised

Rate of Decay amount by which the protein decays

Diffusion coefficient amount by which the protein diffuses

Interaction strength strength of protein interaction, i.e., activation or inhibition

Protein Type ID tag, e.g., long-range hormone, or short-range receptors

Additionally, each protein keeps the following variables:

Bound? whether or not a receptor protein is currently bound1
Protein Source Concentration the current concentration of the protein

Spatial coordinates the position of the source of the protein

Protein destruction in the EDS is implemented by simply setting the protein’s

source concentration to zero: if the concentration is zero there can be no diffusion,
unless more of the protein is synthesised.

1The bound variable is only operational in receptor proteins.

Biologically Inspired Evolutionary Development 5

Protein Diffusion. Diffusion is the process by which molecules spread or wander due
to thermal motions [Alberts et al., 1994]. When molecules in liquids collide, the result
is random movement. Protein molecules are no different: they diffuse.

The average distance that a molecule travels from its starting point is proportional
to the square root of the time taken to do so. For example, if a molecule takes on
average 1 second to move 1 µm, it will take 4 seconds to move 2 µm, 9 seconds to
move 3 µm, and 100 seconds to move 10 µm. Diffusion represents an efficient
method for molecules to move short distances, but an inefficient method to move over
large distances. Generally, small molecules move faster than large molecules (Alberts
et al., 1994).

Protein diffusion in the EDS models this behaviour. Diffusion is implemented by
using a Gaussian function centred on the protein source. The use of the Gaussian
assumes proteins diffuse equally in all directions from the cell.

In more detail: the source concentration records the amount of the current protein.
Every iteration, its value is decremented by the corresponding ‘rate of decay’
parameter. If expressed by a gene, its value is also incremented by the corresponding
‘rate of synthesis’ parameter. To calculate the concentration of a protein at a distance
x from the protein source:

2

2

2d

x

sionconcentrat
−

×= e

Where: d is the diffusion coefficient of the current protein.
 x is distance from protein source to current point
 s is the current protein source concentration.

Figure 2 illustrates the way protein concentration changes according to the three

variables: distance, diffusion coefficient and source concentration.

Figure 2. Plot of protein concentration against distance from source, where: d = 0.5
and s = 1.0 (left), d = 0.5 and s = 2.0 (middle), and d = 1.5 and s = 1.0 (right).

4.2 Genes

The EDS employs two genomes. The first contains protein specific values (e.g.,
synthesis, decay, diffusion rates, see above). These are encoded as real floating-point
numbers. The second describes the architecture of the genome to be used for
development; it describes which proteins are to play a part in the regulation of
different genes. It is this second genome that is employed by each cell for
development; the information evolved on the first genome is only needed to initialise
proteins with their respective properties.

6 Sanjeev Kumar and Peter J. Bentley

In Nature, genes can be viewed as comprising two main regions: the cis-regulatory
region [Davidson, 2001] and the coding region. Cis-regulatory regions are located just
before (upstream of) their associated coding regions and effectively serve as switches
that integrate signals received (in the form of proteins) from both the extra-cellular
environment and the cytoplasm. Coding regions specify a protein to be transcribed
upon successful occupation of the cis-regulatory region by assembling transcription
machinery. Currently, the EDS’s underlying genetic model assumes a “one gene, one
protein” simplification rule (despite biology’s ability to construct multiple proteins);
this aids in the analysis of resulting genetic regulatory networks. To this end, the
activation of a single gene in the EDS results in the transcription of a single protein.
This is currently ensured by imposing the following structure over genes: each gene
comprises both a cis-regulatory region and a consequent protein-coding region.

A novel genome representation (based on eukaryotic genetics) was devised for
development in the EDS. This genome is represented as an array of Gene objects (fig.
3). Genes are objects containing two members: a cis-regulatory region and a protein-
coding region. The cis-regulatory region contains an array of TF target sites; these
sites bind TFs in order to regulate the activity of the gene.

Figure 3. An arbitrary genome created by hand. Genes consist of two objects: a cis-regulatory
region and a coding region. Cis-regulatory regions consist of transcription factor target sites
that bind TFs, triggering transcription of the coding region. Each number denotes a protein.

The gene then integrates these TFs and either switches the gene ‘on’ or ‘off’.
Integration is performed by summing the products of the concentration and interaction
strength (weight) of each TF, to find the total activity of all TFs occupying a single
gene’s cis-regulatory region:

where: a is the total activity, i is the current TF,

d is the total number of TF proteins visible to the current gene,
 conci is the concentration of i at the centre of the current cell,
 interaction_strengthi is the strength of protein interaction for the current TF
(see previous section).

This sum provides the input to a logistic sigmoid threshold function (a hyperbolic

tangent function), which yields a value between –1 and 1. Negative values denote
gene repression and positive values denote gene activation:

1 4 7
 Cis-sites

4

cis-reg region

2 6 1
 Cis-sites

7

1 4 4
Cis-sites

1

3 7 2
 Cis-sites

1

Gene 1 Gene 2 Gene 3 Gene 4

Transcription direction

cis-reg region cis-reg region cis-reg region

∑
=

=
d

i
ii strengtheractionconca

1

_int*

Biologically Inspired Evolutionary Development 7

aa

aa

ee

ee
aag

−

−

+

−
≡≡)tanh()(

Figure 4 illustrates this sigmoid calculation used to determine whether a gene is
activated and produces its corresponding transcription factor or not.

Figure 4. A gene showing the various positive and negative inputs received in the form of
transcription factors, with their respective affinities (weights), and concentrations of 0.24, 0.87,
and 0.11 respectively. Internally, the gene integrates these TFs and decides whether or not to
switch the gene ‘on’ or ‘off’. TF1 and TF3 are both activators, whereas TF2 is a repressor,
denoted by a ‘-‘ symbol.

4.3 Cells

Cells can be viewed as autonomous agents. These agents have sensors in the form of
surface receptors able to detect the presence of certain molecules within the
environment. Additionally, the cell has effectors in the form of hundreds and
thousands of protein molecules transcribed from a single chromosome able to affect
other genes in other cells. Cells resemble multitasking agents, able to carry out a
range of behaviours. For example, cells are able to multiply, differentiate, and die.

Like protein objects, cell objects in the EDS have two states: current and new.
During development, the system examines the current state of each cell, depositing
the results of the protein interactions on the cell’s genome in that time step into the
new state of the cell. After each developmental cycle, the current and new state of
each cell is swapped ready for the next cycle.

The EDS supports a range of different cell behaviours, triggered by the expression
of certain genes. These are currently: division (when an existing cell “divides”, a new
cell object is created and placed in a neighbouring position), differentiation (where the
function of a cell is fixed, e.g., colour = “red” or colour = “blue”), and apoptosis
(programmed cell death).

The EDS uses an n-ary tree data structure to store the cells of the embryo, the root
of which is the zygote. As development proceeds, cell multiplication occurs. The
resulting cells are stored as child nodes of the root in the tree. Proteins are stored
within each cell. When a cell needs to examine its local environment to determine
which signals it is receiving, it traverses the tree, checks the state of the proteins in
each cell against its own and integrates the information.

TF1 0.45

-TF2 -0.31

TF3 0.02

‘on’

‘off’

OUTPUT INPUTS

0

8 Sanjeev Kumar and Peter J. Bentley

4.4 Evolution

A genetic algorithm (GA) is “wrapped around” the developmental model. The GA
represents the driving force of the system. Its main roles are to:

1. provide genotypes for development;
2. provide a task or function, and hence a measure of success and failure; and
3. search the space of genotypes that give rise to developmental programs

capable of specifying embryos, correctly and accurately according to the task
or function.

Individuals within the population of the genetic algorithm comprise a genotype, a
phenotype (in the form of an embryo object), and a fitness score. After the population
is created, each individual has its fitness assessed through the process of development.
Each individual is permitted to execute its developmental program according to the
instructions in the genome. After development has ended a fitness score is assigned to
the individual based upon the desired objective function.

The EDS uses a generational GA with tournament selection (typically using ¼ of
population size), and real coding. Crossover is applied with 100% probability. Creep
mutation is applied with a Gaussian distribution (small changes more likely than large
changes), with probability between 0.01 and 0.001 per gene.

Figure 5. Isopatial coordinates permit twelve equidistant neighbours for each cell
(left) and are plotted using six axis (right).

Figure 6. Examples of proteins with their associated cell (at centre). Left: single cell emitting a
long-range hormone-type protein. Middle: single cell emitting a short range (local) protein.
Right: single cell emitting four proteins of various spread, reflected by the radius of each
protein sphere.

Biologically Inspired Evolutionary Development 9

4.6 Coordinates and Visualisation

The underlying co-ordinate system used by the EDS is isospatial. All coordinate
systems have inherent biases towards different morphologies; the isospatial system is
no different. However, the isospatial system bias results in what can only be described
as more natural (biologic) morphologies than its Cartesian counterpart [Frazer, 1995].
Isospatial co-ordinates permit a single cell to have up to twelve equidistant
neighbours defined by 6 axis (fig. 5), Cartesian co-ordinates only permit 6.

The EDS automatically writes VRML files of developed embryos, enabling three-
dimensional rendered cells and proteins to be visualised. Cells are represented by
spheres of fixed radius; proteins are shown as translucent spheres of radius equal to
the extent of their diffusion from their source cells. In order to place a cell in VRML
its Cartesian co-ordinates need to be defined: to this end, isospatial co-ordinates are
converted to Cartesian. Figure 6 illustrates how cells and proteins appear when
rendered.

5 Experiments

Because of the complexity of the system, numerous experiments can be performed to
assess behaviour and capabilities. Here (for reasons of space) we briefly outline two:
1. The ability of genes and proteins to interact and form genomic regulatory

networks within a single cell.
2. The evolution of a 3D multi-cellular embryo with form as close to a prespecified

shape as possible.

5.1 Genetic Regulatory Networks

In order to assess the natural capability of the EDS to form GRNs independently of
evolution, genomes of five random genes were created and allowed to develop in the
system for ten developmental steps. The cell was seeded with a random set of eight
proteins (maternal factors).

Figure 7 (top) shows an example of the results of this experiment. The pattern
shows gene four exhibiting autocatalytic behaviour having initially bound to protein
zero. (Gene four is activated when in the presence of protein zero, and produces
protein zero when activated.)

Figure 7 (bottom) shows an example of the pattern that results when the initial
random proteins (initial conditions) are varied very slightly, but the genome is kept
constant. Again, gene four shows the same autocatalytic behaviour, but now the GRN
has found an alternative pattern of activation. These two runs illustrate the difference
the initial proteins can make on the resulting GRN.

10 Sanjeev Kumar and Peter J. Bentley

Genome: { [2 | 1], [6 | 2], [5 | 7], [0 | 0], [1 | 7] }

1 x . . x .
2 . . . x x
3 . . . x x
4 x . x x .
5 . . . x .
6 . . . x x
7 x . x x .
8 . . x x .
9 . . . x .
10 x . . x x

Genome: { [2 | 1], [6 | 2], [5 | 7], [0 | 0], [1 | 7] }

1 x . . x .
2 x . . x .
3 x . . x .
4 x . . x .
5 . . x x .
6 x . x x .
7 x . x x .
8 x . x x .
9 . . . x .
10 x . x x .

Figure 7. Gene expression patterns for a run of a randomly created genome seeded with a
random subset of proteins. The left side shows the raw output from the system where an ‘x’
means the gene in that column is ‘on’ and ‘.’ means the gene is ‘off’. The right side depicts this
text pattern as a graphical output viewed as a 1D CA iterated over ten time-steps. Note, gene 4,
i.e., [0 | 0] is autocatalytic.

5.2 Morphogenesis: Evolving a Spherical Embryo

In addition to GRNs, the other important capability of the EDS is cellular behaviour.
The second experiment focuses on morphogenesis, i.e., the generation of an embryo
with specific form, constructed through appropriate cellular division and placement,
from an initial single zygote. For this experiment, the genetic algorithm was set up as
described previously, with the fitness function providing selection pressure towards
spherical embryos of radius 2 (cells have a radius of 0.5).

1 2 3 4 5

Iterations

1 2 3 4 5

Iterations

Biologically Inspired Evolutionary Development 11

Figure 8. Six random initial embryos.

Figure 9. Two “spherical” embryos. Using the equation of a sphere as a fitness function
with sphere of radius 2.0.

Figure 8 shows examples of the initially random embryos with their corresponding

proteins produced by the GRNs. Figure 9 shows two examples of final “spherical”
embryos. As well as having appropriate forms, it is clear that the use of proteins has
been reduced by evolution. Interestingly, analysis indicates that evolution did not
require complex GRNs to produce such shapes. It seems likely that it is the natural
tendency of the EDS to produce near-spherical balls of cells, hence evolution simply
did not need to evolve intricate GRNs for this task. Further experiments to evolve
more complex morphologies are under way.

12

6 Summary

The staggering complexities of nature result from a combination of evolution and
development. This work has described the combination of a novel, biologically
plausible model of development with a genetic algorithm. We have shown how an
Evolutionary Developmental System can be constructed based on an object-oriented
model of proteins, genes and cells. We have also described how this system permits
intricate genomic regulatory networks to form and can evolve spherical embryos
constructed from balls of cells. By attempting to duplicate many of the intricacies of
natural development, and through experiments such as the ones outlined here, we
anticipate that we will help to discover the key components of development and their
potential for computer science. Further experiments and analysis are ongoing.

Acknowledgements

Many thanks to Lewis Wolpert and Michel Kerszberg for helpful advice and
criticism. Thanks also to Tom Quick and Piet van Remortel for helpful suggestions.

References

1 Alberts et al. (1994) Molecular Biology of the Cell. 3rd edition. Garland Publishing.
2 P. J. Bentley (2002) Digital Biology. Simon and Schuster, New York.
3 J. Bongard (2002) Evolving Modular Genetic Regulatory Networks. In Proceedings of the
IEEE 2002 Congress on Evolutionary Computation.
4 E.H. Davidson (2001). Genomic Regulatory Systems. Academic Press.
5 P. Eggenberger (1996) Cell interactions as a control tool of developmental processes for
evolutionary robotics. In Maes, P. et al.(Eds) From Animals to Animats 4. Cambridge, MA:
MIT Press.
6 K. Fleischer and A. Barr (1993). A simulation testbed for the study of multicellular
development: The multiple mechanisms of morphogenesis. In C. Langton, editor, Artificial life
III, pages 389--416. Addison-Wesley, 1993.
7 J. Kodjabachian and J.-A. Meyer (1994). Development, learning and evolution in animats.
In Perception To Action Conference Proceedings, P. Gaussier and J.-D. Nicoud, Eds. 1994, pp.
96--109, IEEE Computer Society Press.
8 J. Frazer (1995). An Evolutionary Architecture. Architecture Association, London.
9 P. C. Haddow, G. Tufte, and P. van Remortel (2001) “Shrinking the Genotype: L-Systems
for EHW?” In Proc. Of 4th Int. Conf. On Evolvable Systems: From Biology to Hardware,
Tokyo, Japan.
10 N. Jakobi (1996c). Harnessing morphogenesis. In Proceedings of the International
Conference on Information Processing in Cell and Tissue.
11 S. Kumar and P. J. Bentley (2002). Computational Embryology: Past, Present and Future.
Invited chapter in Ghosh and Tsutsui (Eds) Theory and Application of Evolutionary
Computation: Recent Trends. Springer Verlag (UK).
12 J. F. Miller (2002) “What is a Good Genotype-Phenotype Mapping for the Evolution of
Computer Programs?” Presented at the Software Evolution and Evolutionary Computation
Symposium, EPSRC Network on Evolvability in Biology & Software Systems, University of
Hertfordshire, Hatfield, U.K.7-8 February 2002.
13 L. Wolpert (1998), Principles of Development, Oxford University Press.

