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Abstract

Previous work investigated three types of
embryogeny: External, Explicit, and Implicit.
This paper focuses on the two most interesting
embryogenies: explicit and implicit,
investigating the evolvability and scalability of
both embryogenies for morphogenesis. The
problem set is that of evolving certain
predefined shapes - letters of the alphabet. The
results show that both embryogenies are good at
defining different morphologies, but
significantly, the implicit embryogeny incurs no
increase in genotype size as the problem is
scaled.

1 INTRODUCTION
Evolutionary computation (EC) has been a very
successful area of computer science for some time. EC
has grown from several types of evolutionary algorithms
(EAs) which take their inspiration from nature: Genetic
Algorithms, Genetic Programming, Evolutionary
Strategies and Evolutionary Programming (Bentley,
1999). The EAs differ from each other in various ways,
for example, in the use of differing genetic operators and
underlying representations.

An important difference is the distinction between the
genotype (coded parameters and values) and the
phenotype (representation of solutions). GP practitioners
often regard the genotype as the phenotype, as do ES and
EP practitioners. The genetic algorithm (GA) is the only
one of the four EAs that makes the distinction. It is the
omission of this crucial genotype to phenotype mapping
process, known in biology as an embryogeny, which

denies the non-GA practitioner the advantages that
embryogenies bring.

This paper investigates the evolvability of two of the
most interesting types of computational embryogeny,
explicit, and implicit. The paper is organised as follows:
section two gives an extended background, comprising
reviews on both biology and computer science. Section
three introduces the two embryogenies, section four
describes a series of experiments followed by section five
which gives an analysis of the results. Section six
provides conclusions and the paper ends with a synopsis
depicting further work.

2 BACKGROUND
This section gives a background on the related biology
and computer science for the research described in this
paper. The sub-section relating to biology introduces the
important concepts upon which this paper is based,
namely: embryogenies and morphogenesis. The sub-
section on computer science briefly introduces the reader
to the types of computational translation of the biology in
the literature.

2.1 BIOLOGICAL BACKGROUND

The way in which embryos grow to become babies and
then further, into adults, has been the subject of great
debate since as early as Aristotelian times. It was
Aristotle who first suggested that animal embryos
actually grew (epigenesis), rather than being pre-formed
(preformationism).

Biology has moved on considerably since Aristotle,
and an entire new field now known as Developmental
Biology has emerged.  In particular, we now know that
Aristotle’s notion of epigenesis is much closer to the



truth. Developmental Biology and in particular,
Embryology has fast become an exciting and fashionable
subject for research.

Embryology is essentially the study of the controlled
formation and development of animal and plant embryos.
It involves three fundamental processes:
• morphogenesis - which involves the emergence and

change of form (Bard, 1990).

• regional specification - in which
compartmentalisation of the embryo into specific
regions occurs (Slack, 1991).

• cellular differentiation - in which cells become
specialised for particular functions (Wolpert, 1998).

These three processes operate together in different
parts of the embryo, at different times, and in stages
according to a ’recipe’ known as an embryogeny.
Embryogenies have evolved in nature to describe how an
animal should be grown, rather than contain an overall
description of an animal.

Embryology like other subjects has its own set of
problems that need answering. One such problem is that
of positional information i.e. how cells ’know’ where to
grow?  This was addressed by the eminent embryologist
Lewis Wolpert who put forth positional information
theory.

Positional information theory states that cells glean
their positional information from the free diffusion of a
chemical, known as a morphogen, relative to a boundary.
The information is coded in the form of the concentration
value of the diffusing morphogen. This diffusion sets up a
chemical gradient, thus allowing cells to position
themselves relative to the boundary whereupon they can,
if need be differentiate, i.e., become a specialised type of
cell (Wolpert, 1998). This idea is used in the implicit
computational embryogeny described later.

2.2 COMPUTER SCIENCE BACKGROUND

Turing first advocated the use of Morphogenesis for
computer science as early as 1952. Since then
morphogenesis has featured in a number of works, such
as in the evolution of neural network morphologies
(Jakobi, 1995), and evolvable hardware (Koza et al.
1998).

However, to date computer science has used crude
approximations of the natural embryological processes,
paying little attention to the intricate subtleties. For
example, the use of morphogenesis for neural network
topology design (Jakobi, 1995).

Regional specification, which plays an important part
in the early stages of embryogenesis has to the authors
knowledge not been investigated, despite its obvious
advantages for the creation of form, such as
compartmentalisation (which can be viewed as reducing

the problem down to smaller units).
Previous work (Bentley & Kumar, 1999), categorized

the notion of embryogenies into three different types. To
summarise, there are three types of computational
embryogeny, namely: external, explicit, and implicit.

Most external embryogenies are hand-designed and
are defined globally and externally to genotypes. For
example, Evolutionary Art systems often use
embryogenies defined by fixed, non-evolvable structures
which specify how phenotypes should be constructed
using the genes in the genotypes (Bentley, 1999).
Similarly, Richard Dawkins’ Blind Watchmaker program
(Dawkins, 1987), used a simple external embryogeny, to
create biomorphs, using the eye-of-the-beholder as a
fitness function, and the genetic operator mutation along
with selection. Dawkins suggests a simple 1-to-1
mapping as an embryogeny and concludes that this sort
of embryogeny is a ‘naive’ way of achieving the aims. He
proposes improvements via constraints and thus
introduces the notion of a constrained embryogeny.
Dawkins (Dawkins, 1987) also points out advantages of
using embryogenies, why they are so important, and
perhaps most interestingly, that different embryogenies
can lead to different results. For example, different
embryogenies allow different areas of ‘solution space’ to
be searched and thus in doing so constrain themselves to
different types of shapes or designs (not necessarily a bad
thing as Dawkins shows, relative to what he calls naïve
pixel-peppering).

An explicit embryogeny specifies each step of the
growth process in the form of explicit instructions. In
computer science, an explicit embryogeny can be viewed
as a tree containing a single growth instruction at each
node. Genetic Programming (GP) uses tree structures to
represent its genotypes. GP therefore, offers a simple and
concise way to evolve explicit embryogenies. Typically,
the genotype and the embryogeny are combined and both
are allowed to evolve simultaneously. Examples of
explicit embryogenies include Coates (1997) who uses
Lindenmayer systems to evolve architectural form. Koza
et al (1999) use an explicit embryogeny in the form of
cellular encoding for the evolution of analogue circuits.
Sims (1999), uses an explicit embryogeny with the idea
of directed graphs to specify the nervous systems (neural
networks), and morphologies of virtual creatures.

An implicit embryogeny does not explicitly specify
each step of the growth process. Instead, the growth
process is implicitly specified by a set of rules or
instructions, similar to a 'recipe', which govern the
growth of a shape. For example, de Garis (1999)
describes an implicit embryogeny to evolve convex and
concave shapes using a cellular automata approach along
with the notion of cellular differentiation. He has reported
encouraging results, as well as highlighting problems that



need to be tackled in order to improve upon them (de
Garis, 1999).

3 EVOLVING EMBRYOGENIES
Previous work (Bentley & Kumar, 1999), compared the
performance and scalability of different evolved
computational embryogenies for the representation of
tessellating tiles. Subsequent experiments have shown
that significant questions remain concerning the
evolvability of different embryogenies. Specifically,
evolved implicit and explicit embryogenies show
inconsistent abilities to define specific morphologies.
Consequently, it was decided that further investigation
was necessary to help explore and understand these issues
of evolvability.

3.1 EVOLVING PREDEFINED SHAPES

In order to assess the change in performance of the two
embryogenies, a number of fixed shapes were specified
as targets for evolution. Since shapes with distinct and
useful characteristics were desired (e.g. convex, concave,
solid, hollow, curved and linear), a subset of the alphabet
was selected. Six letters were chosen: C, E, G, L, O, and
R, as shown in figure 1. (The fact that these letters also
allow us to spell the word ’GECCO’ is purely incidental.)

Figure 1: The pre-defined six target shapes.

These 6 letters were selected based upon how much of
the alphabet they were representative of. For example, the
diagonal in the letter R forming the bottom right portion
of the letter is characteristic of the letters M, N, W, X, Y,
Z. Likewise, the semi-circle is characteristic of the letter
P,R,B. The Letters E and L with their up-right stem are
characteristic of P,T,D,F.

To judge how closely each evolving shape matched
the targets, a fitness function based on the number of
incorrectly filled squares was employed. The fitness score
is incremented by one whenever an element in the
evolving shape differs from the corresponding element in
the current target, see figure 2. To assess scalability, three

different phenotype grid sizes of 4x4, 8x8 and 16x16
cells were used.

         [a]      [b] [c]

Figure 2: Calculating the fitness of an 8x8 evolving shape. [a]
shows the target, [b] shows the shape to be judged, [c] shows

the incorrect elements identified by the fitness function.

3.2 EXPLICIT

This first system used genetic programming (GP) (Koza,
1992) to evolve explicit embryogenies in the form of
program trees. Beginning at a seed or zygote cell placed
in the phenotype grid, the embryogeny defines the
direction of growth at every point. Four functions were
used: LEFT, RIGHT, UP and DOWN, with each node in
the tree allowed up to four branches. Paths of growth
were permitted to overlap. Figure 3 shows an example
genotype defining the explicit embryogeny. The root
node has two parts: x and y for the co-ordinates of the
seed.

RIGHT

root

DOWN

DOWNDOWN UP

LEFT

RIGHT

RIGHT

RIGHT DOWN
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RIGHT

RIGHT

ROOT
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Figure 3: An example explicit embryogeny defined by a tree of
nine nodes, and its corresponding 4x4 phenotype.

The GP system used steady-state selection and a
crossover designed to minimise disruption by crossing
parents at points of similarity in the two trees. Further
details of this system and crossover operator can be found
in (Mallinson & Bentley, 1999 and Bentley & Wakefield,
1996). As with all GP systems, bloat occurred, so an
additional fitness function penalised genotypes with more
nodes. This system differed from the one presented in
(Bentley & Kumar, 1999), in that it evolved the co-
ordinates of the seed.



3.3 IMPLICIT

The second system was an advanced variable length
chromosome GA that evolved implicit embryogenies.
Each genotype comprised a variable number of rules
(usually between four and eight). Each rule had a
precondition and an action. Each precondition had six
fields: LEFT, RIGHT, UP, DOWN, X, Y. A specific rule
can take the following values for each precondition field
(where # is don’t care, 0 is empty, 1 is filled, 0,1,2,3,4,5,6,7
are gradient zones):

LEFT
0,1,#

RIGHT
0,1,#

UP
0,1,#

DOWN
0,1,#

X
0-7,#

Y
0-7,#

For a rule to be fired, values in at least four of the six
fields in the precondition must be matched. (This
provides the equivalent of disjunction for rule
preconditions.) The action of a rule can be: DIE,
UPDATE, or grow LEFT, RIGHT, UP or DOWN.

Growth takes place in a phenotype grid, which as
usual can be 4x4, 8x8 or 16x16 elements. In order to
permit evolution of specialised rules that can provide
detail in specific areas of the phenotype, the grid has two
’gradients’ - one in the x direction, one in the y direction.
In a similar way to the gradients used to provide
positional information in eggs and wombs of nature
(Wolpert, 1998, Slack, 1991, Lawrence, 1995), the
gradients divide the grid into 8 zones per axis (as opposed
to 4 in previous work), regardless of the number of
elements in the phenotype grid.

LEFT  RIGHT    UP  DOWN   X  Y

x-gradient

y-
gr

ad
ie

nt

RULE 0        0      0       #     0       #  #         down
RULE 1        #      0       0     0       #  #         right
RULE 2        0      1       0     0       1  3         left
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Figure 4:  Example of a three-rule implicit embryogeny and its
corresponding phenotype after two iterations.

At iteration zero, a seed cell is placed in the phenotype
grid. To model biological cell growth, the rules are then
applied for a fixed number of iterations to each filled
element in the current embryonic phenotype grid. (This is
unlike traditional cellular automata, where rules are
applied to empty or filled grid elements.) Depending on
whether the neighbouring elements of the current element
exist or not, and on the strength of the two gradients at
that point, the rules may be activated, causing growth or
cell death in the phenotype. Rules are applied ‘in parallel’
so that the results of applying the rules to each filled

element only take effect at the end of each iteration step.
However, a rule which performs the UPDATE action
causes all activated rules in the current iteration to be
applied. By prematurely placing cells in the phenotype
grid in this way, evolution can increase the number of
rules applied in each iteration and provide extra growth
where needed. This new type of rule action was added to
the embryogeny because during the development of the
system, the number of iterations was found to be overly
critical. Finally, the system was also given the ability to
evolve the seed co-ordinates. Figure 4 shows the growth
of a target shape, defined by three rules.

4 EXPERIMENTS

4.1 OBJECTIVES AND PARAMETERS

The experimental objectives were three-fold: firstly to
investigate the use of both embryogenies for efficiency of
search in terms of fitness. Secondly, to investigate the
scalability of both embryogenies for evolving different
morphologies, and finally, to see how the evolution of the
two embryogenies differs in defining different
morphologies.

A total of 50 runs were performed with each target
shape (letters C, E, G, L, O and R) for each grid size.
Population sizes of 100 and a total of 100 generations
were used for each run. The explicit embryogeny system
used an initial tree depth of 4 for the 4x4, 5 for the 8x8
and 6 for the 16x16 grids. All trees were created
randomly.

The implicit system used random rule initialisation for
both the initial population and for each new rule
evolved1. The variant on the cellular automata presented
in this work used iteration values of 4 for the 4x4, 8 for
the 8x8, and 14 for the 16x16 grids. Both systems used
random crossover for offspring creation. The explicit
system employed a mutation probability rate of 0.001 per
bit, whereas preliminary experiments revealed that the
implicit system required an increased bit mutation rate of
0.05, along with a rule mutate rate of 0.5.

4.2 RESULTS

A summary of the results from the experiments is given
in Table 12. As shown in the table, both embryogenies
attained good fitnesses for all 4x4 target letters. However,
relative performances between the two approaches were
inconsistent. For example, the explicit embryogeny
outperformed the implicit for the letters C and L, whilst
the reverse was true for the other targets.
                                                       
1 This is as opposed to copying an existing rule as in previous work
(Bentley & Kumar 1999).
2 Because of time constraints, average values given for the 16x16 targets
using the implicit embryogeny were based on only 10 experiments per
target.



Table 1: Results for the target shapes. Values in italics denote the results for the implicit
embryogeny. Solution sizes are measured in tree nodes for the explicit, and rules for the

implicit embryogeny.

4x4 8x8 16x16

Shape
Mean

Soln. Size
Mean

Fitness
Mean

Soln. Size
Mean

Fitness
Mean

Soln. Size
Mean

Fitness

C
14.28
12.70

0.92
1.64

57.70
11.47

13.20
12.82

309.40
10.00

84.1
53.7

E
24.22
11.42

1.28
0.32

168.44
11.96

9.54
5.89

693.58
6.700

81.40
49.40

G
18.88
13.86

1.2
0.78

59.52
10.98

12.72
12.84

302.12
6.000

76.34
52.90

L
9.52
11.22

0.26
0.58

71.04
9.02

3.56
6.38

235.46
8.200

39.46
38.40

O
20.20
11.60

1.31
0.18

81.29
13.29

15.76
9.00

293.00
6.400

104.33
48.70

R
18.78
12.98

1.35
0.60

121.53
12.33

7.88
9.92

513.43
6.900

76.16
55.80

For the 8x8 grid, fitness scores were reduced, on
average for both methods. For example, the explicit
embryogeny managed 3.55 at best for the letter ‘L’ and at
worst 15.76 for the ‘O’. The implicit faired similarly on
the 8x8 targets achieving a fitness of 5.89 for the 'E' and
only 12.84 for the 'G'. Again, relative performances
varied, this time with each embryogeny providing better
scores for 3 of the letters.

When the problem was scaled up to the 16x16 grid, the
results show that the implicit embryogeny outperformed
the explicit, in terms of fitness. The figures are, however,
a little deceptive. For these targets, many of the shapes
evolved by the implicit embryogeny were solid blocks.
Because of the simple nature of the fitness function, such
shapes were awarded higher fitness scores compared to
the attempts of the explicit. (Nevertheless, it should be
noted that the forms generated by the explicit rarely
resembled the desired targets, either.)

Execution times were noticeably different for the two
techniques. As the scale of the problem was increased,
both methods took longer to grow shapes, but of the two,
the implicit required the most computation time. For
example, evolution time of six hours for one run of the
implicit was not uncommon, compared to less than an
hour for the explicit.

Perhaps the most significant results shown in Table 1
are the solution sizes. It is clear that the explicit
embryogeny required ever-increasing tree sizes as the
scale of the target shapes were increased. However, the
reverse seems to be true for the implicit embryogeny,
where the number of rules actually appears to decrease as
the problems are scaled up. This lack of increase of
solution size corroborates and confirms the results

obtained in previous work which reported similar
findings (Bentley & Kumar, 1999).

4.3 ANALYSIS

The results show interesting behaviours of both
embryogenies for all grid sizes. For the 4x4 grid, because
of the size of the targets, the ability of both methods to
find good solutions is not surprising. The explicit
embryogeny uses small trees to define its solutions, but
the implicit often seems to evolve more rules than are
necessary. More specifically, a larger number of rules are
evolved than are actually used during the growth process.
The reason for the inefficiency for such small targets
seems to be to do with the search process - it is very hard
for evolution to find the correct rules for specific shapes.
Clearly the 'add rule' mutation plays an important, but
excessive role for these smaller problems. Rules are
added until an appropriate collection exists to define the
target, but the unused rules are not removed by mutation,
much like bloat in GP.

The same searching mechanism is also evident for
larger grid sizes with the implicit embryogeny, with
similar levels of redundancy observed. However, because
the number of rules did not increase much beyond 12,
such redundancy becomes a more acceptable compromise
for larger problems.

So how does evolution fine-tune solutions to make
them match the target letters? Both types of embryogeny
seem to begin by filling a large part (or all) of the
phenotype grid, and then 'pruning away' unnecessary
elements, see figures 5 and 6. The explicit embryogeny
achieves this by pruning branches of its trees; the implicit
embryogeny makes use of 'kill' rules to remove elements.
Of the two, the implicit embryogeny goes to the furthest



extreme with this technique - often by evolving a
completely solid block and then picking out the odd
element, see figure 6.

The fitness function may be to blame for the ’carving
letters from a solid block’ approach - for it awards
considerably higher fitnesses for solid shapes than for
emptier ones.

TARGET GEN. 0 GEN. 10 GEN. 20

GEN. 30 GEN. 40 GEN. 50 GEN. 100

Figure 5: The evolution of an ’E’ using the explicit
embryogeny. The best new shapes grown in the population are

shown every 10 generations (except where no change occurred).
The final shape has a fitness of 8 and a soln. size of 251 nodes.

TARGET GEN. 0 GEN. 10 GEN. 20

GEN. 30

GEN. 80 GEN. 100GEN. 90

GEN. 40 GEN. 60 GEN. 70

Figure 6:  The evolution of an ’E’ using the implicit
embryogeny. The best new shapes grown in the population are

shown every 10 generations (except where no change occurred).
The final shape has a fitness of 7 and a solution size of 11 rules.

As Dawkins (1987) points out, certain embryogenies
are better than others at producing certain morphologies.
This observation seems to be echoed in this work too.
The explicit embryogeny found morphologies such as C’s
and O’s difficult, whereas the implicit was able to handle
these morphologies with relative ease. This can be
attributed to the fact that the implicit need only generate a
few general growth rules for specific directions, and in
doing so, can start from a single seed and grow to
encompass all four sides of the grid whilst leaving (or
killing), for example in the case of the letter 'O',  a hole in

the middle. This is difficult for the explicit embryogeny
as it must evolve a long and difficult growth path around
the edge of the grid, whilst keeping the centre of the
shape free of elements.

The way in which evolution attempted to generate
morphology indicates two points: firstly that the implicit
embryogeny seems to have considerable potential
because of its impressive scalability, perhaps more so
than the explicit embryogeny. Secondly, the
representation used for the implicit embryogeny is not as
amenable to evolution as we would desire. This may be
caused by:
• the representation, which allows dissimilar

phenotypes to be close together in the solution-space,
providing a discontinuous search-space of solutions
and thus causing problems for evolution.

• ineffective positional rules. Although the notion of
‘zones’ improved the quality of solution for the
implicit more than without, it is clear that positional
information is hard to glean using the current
implicit system, making the evolution of specific
rules difficult, leading in turn to bad fitness results.

5 CONCLUSIONS

This paper has looked at the evolvability and scalability
of two different embryogenies (explicit and implicit) for
the problem of evolving shape morphologies.

The behavioural analysis of these two embryogenies
has shown that both are good at growing different shape
morphologies, and that evolutionary computation can
benefit from the use of embryogenies.

In addition, this work highlights some of the problems
that require attention with regard to designing evolvable
embryogenies. For example, biological concepts such as
positional-information, as echoed in this work in the form
of zones, can assist in the evolution of shape
morphologies, but need to be very carefully designed.

Nature has been successfully evolving complex
animals for millions of years. It is the concept of an
embryogeny (which itself evolved in nature) that has
allowed the evolution of these complex designs. It should
be clear that evolutionary computation can benefit a great
deal from computational embryology.

Further Work

Work is in progress on developing a new representation
for a parallel implicit embryogeny. In which, the
fundamental mechanisms behind biological concepts
such as, regional specification, and cellular differentiation
are to be employed, with a view to studying emergent
phenomena.
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