
Towards Development in Evolvable Hardware

Timothy G. W. Gordon and Peter J. Bentley
Department of Computer Science

University College London
Gower Street, London

UK, WC1E 6BT
Email: {t.gordon, p.bentley}@cs.ucl.ac.uk, Tel: +44 (0)20 7679 7000

Abstract: Mapping between genotype and phenotype using a model of biological development has been widely
touted as a technique for evolving solutions to large, complex problems [1-3]. Here we describe two test-bed
developmental systems for evolvable hardware problems, and compare each to a naive mapping system. We find
that designing evolvable developmental systems is not a trivial problem, however early analysis of the evolved
structures demonstrates the potential of the generative processes behind development. We also account for the
differences between the results of the two systems, highlighting the importance of search space evolvability over
size.

1. Introduction
As a problem becomes more complex it generally becomes increasingly difficult for an evolutionary algorithm (EA)
to find acceptable solutions. This is known as the scalability problem, and has been reported by many evolvable
hardware researchers as a serious issue that prevents the evolution of large, complex circuits [4-6]. Consequently
finding mechanisms to increase the evolvability of such design spaces is crucial to furthering the field.

Approaches to the scalability problem for evolvable hardware include Function Level Evolution [5], Cartesian
Genetic Programming [4] and Incremental Learning [7]. A new approach that is gaining popularity is to use a model
of biological development to map between genotype and phenotype. Not only does this allow evolution to search for
useful representations, it can introduce the types of features that may aid evolvability, such as redundancy,
modularity and local learning. In the field of evolvable hardware, Koza et al. [2], Hemmi et al. [8] and Lohn and
Columbano [9] have pioneered use of such systems. However there is still much to be understood as to which
features of developmental systems aid evolvability and scalability. This paper presents the progress we have made in
developing test-bed developmental systems for such a purpose, along with early results from two of these systems,
and analysis that demonstrates their potential.

The rest of the paper is structured as follows: section two discusses why development is such a good candidate for
tackling the scalability problem. Section three describes and presents results from the first of two developmental
systems discussed in this paper, along with analysis of the evolved circuits. Section four describes the second
developmental system with results and analysis. Conclusions and plans for future work are given in section five.

2. Improving Scalability
Solving learning problems is a matter of finding a good inductive bias [10]. How this bias is imposed, for instance
through representation or operators, is algorithm specific. However, discovering such biases, and knowing how to
implement them, is often extremely hard.

For example, one common approach to simplifying large evolvable hardware problems has been to reduce the search
to a smaller space. The most common tactic this is to choose primitives that impose a stronger bias to hopefully limit
the search to useful areas of space (but do so without ruling out interesting areas of space). This modification of the
representational bias is the approach of function level evolution, which was developed at ETL [5, 11]. The difficulty
here is in choosing the correct structures to use in the representation. Any abstraction used makes assumptions about
the type of problem. Therefore problem-dependent components may have to be developed again and again. Once
this trade-off has been made, evolution is now limited to search the space of this abstraction, and any innovative
solutions at the lower abstraction will be unattainable. In addition, modules must be chosen that provide a space
tractable to evolution, otherwise we may be even worse off than before. It may be that in some cases abstractions
that transform the space into something of the same size (or bigger) that is more tractable to evolution are more

useful than abstractions that humans find useful, applied blindly to reduce the size of the space. However the
problem of how to find and impose useful biases still remains.

At this point let us consider how the complex features that we possess came about. Certainly it is extremely unlikely
that such highly complex and well-optimised characteristics should arise overnight by chance. Many features tend to
be simpler in organisms that evolved early in the history of life. For instance mechanisms of gene expression are far
less complex, and seem to provide fewer avenues for evolvability in lower organisms. Such reasoning resulted in
Dawkins [12] suggesting that evolvability itself has evolved. In more recent years this idea has become widely
accepted [13-15], and experimental evidence of mechanisms to evolve evolvability have been demonstrated [16]. In
terms of a learning algorithm, we can think of evolution as altering its inductive bias in the hope of finding one more
appropriate to the current environment. So natural evolutionary systems not only possess biases that aid evolvability,
but they possess the ability to shift their bias, thereby performing a meta-search of bias space. Hence they adapt their
search, in addition to their phenotypes, to the prevailing conditions. This is not a lesson that has gone unmissed by
the evolutionary computation community.

2.1 Development
Development can be thought of as one of biology’s representational bias search mechanisms. Biological
development essentially maps genotype to phenotype through a complex process of regulated gene expression. As
the developmental process itself results merely from expression of genes in a given environment, it is also under the
control of evolution. But development’s basic mechanism, gene expression, allows the formation of complex gene
regulatory networks (GRNs). These are networks of gene products that regulate the expression of each other. Such
networks form modular, iterative and recursive patterns. When some of these gene products are involved in (or
trigger) the formation of some biological function or structures, modular, iterative and recursive morphologies can
arise. Variation of genes within a module allows space to be searched in “leaps” involving this module, rather than
the small steps of its components. If a master control gene is expressed multiple times, the module is reused [14].
Multiple iterations across time are possible through feedback loops within a module or between modules.

Another form of iteration is across space. In multicellular organisms these processes occur in a distributed manner.
The environment of particular cells results in different genes, hence perhaps different modules, being activated. This
allows the generation of regular, iterative patterns across space as cells differentiate according to their environment.
Recursive patterns across both space and time are also possible, through the same processes.

Hence modules can impose a strong representational bias, biasing evolution to work with more complex primitives,
but allowing re-use, iteration and recursion of these primitives, either across the structure of the organism, or across
time to allow regulatory patterns to form. It is this re-use that is of most interest in any study that centres on
improving scalability. A developmental module that is re-used more and more often in good solutions as the
problem scales leaves less and less of the problem that has to be learned from scratch. Hence as problem complexity
scales, finding a solution becomes increasingly easier relative to a system that cannot re-use such a module.

2.2 Development in Evolutionary Algorithms
Developmental systems have been used in EAs since Dawkins [12] demonstrated that an explicit genotype-
phenotype map could easily be used to affect evolvability. He presented several handcrafted developmental systems
that altered the morphology of geometrical patterns he dubbed ‘biomorphs’. He also noted that these mappings could
be evolved, and were likely to be evolved in natural systems. Since then the idea of evolving a developmental
system rather than the phenotype itself has been explored in a number of directions. Bentley and Kumar [17] noted
that these can be divided into two approaches, explicit and implicit.

2.2.1 Explicit Approaches

Explicit approaches use a mapping that explicitly provides the properties of hierarchical modularity, iteration and
recursion that make development so useful. Such is the approach taken by Cellular Encoding, which was first
developed by Gruau to develop ANN architectures [18] but is perhaps better known through Koza et al.’s evolution
of analogue circuits [2]. The basic technique is to evolve trees of developmental steps using genetic programming.
Each developmental step, encoded as a GP node, explicitly codes for a phenotype modification. A fixed ‘embryonic’
phenotype is ‘grown’ by applying a tree of rules to it. ADFs can explicitly provide modularity, and ADLs and ADIs

to provide iteration. Lohn and Columbano use a similar approach [9], but with a linear mapping representation
which is applied to an embryonic circuit in an unfolding manner, rather than a circuit modifying one.

2.2.2 Implicit Approaches

The perhaps more elegant implicit approach uses sets of production rules rather than explicit mechanisms for
generating modularity, iteration and recursion. The idea behind these is that complex objects can be defined by
successively rewriting a symbolic description of a simple object according to the set of production (or rewriting)
rules. A program to map between genotype and phenotype is specified by a start symbol (or set of symbols) for the
rule rewriting process. Usually this is fixed and the grammar is evolved. Hence the fixed program is implicitly
evolved though alteration of its grammar. The dynamics of an evolutionary system working on a set of grammar
rules is clearly quite different from that of a program-modifying system, and there is empirical evidence to suggest
that such an approach may be more scalable for at least a limited set of problems [17, 19]. One example of a system
that uses production rules to evolve hardware is [8]. Here rules were evolved to generate hardware description
language (HDL) descriptions of circuits. It is an interesting approach that has the potential to evolve extremely large
circuits, albeit at a very high-level abstraction that leaves little room for low-level hardware innovations.

Many of these systems are based around class of production rules called Lindenmayer systems (L-systems), which
were proposed specifically to model plant development [20]. This class of systems is defined by the parallel
application of the complete set of rules at each rewriting timestep, rather than the sequential application used by
more traditional production rule systems [21]. Such an approach models the parallel division of cells in nature more
closely. Thus L-systems achieve the complexity, iteration and recursion, inherent to hierarchical mapping systems,
that has been identified as a key component of biological development. In light of this, they have been applied to a
number of evolutionary design problems [22, 23] and have been proposed for evolving circuits [1, 24]. One recent
approach of particular interest is the use of parametric context-free L-systems (P0L-systems) that allow external
environmental parameters to guide development [22], unlike traditional context-free systems. Work on these is at an
early stage, but this type of L-system looks promising.

A number of similar approaches have also arisen from the study of biological systems. Some of the earliest
developmental systems used cellular automata (CA) model the interaction between cells. The CA rules specify how
each cell should react to the states of the surrounding cells. This sort of approach has many similarities with context
driven L-systems. However there are some differences. First, the product of the rule interaction is usually not a
program to generate the solution, but the solution itself. This models biological systems more closely. Secondly, and
perhaps most importantly, CA is inherently driven by spatial context. Several researchers have reported promising
results using CA-based biological techniques. For instance, de Garis [25] used a CA model of biological
development to ‘grow’ ANN architectures. However rather than evolving the CA rules he used hand-coded rules,
and evolved the CA starting conditions. The use of CA to evolve hardware has also been advocated by those at
EPFL [26]. Our work focuses on this approach rather than a more mathematically rooted L-system approach.

3. A Differentiation-based Developmental System
We have decided to model our systems on biological development rather than a strict mathematical re-writing
approach. The first developmental system we explore here aims to model features of cellular differentiation in order
to generate circuits. Cellular differentiation an aspect of biological development exhibited by all Metazoan
organisms [27], and is one of nature’s key methods of generating complex iterative structures. The developmental
systems reported here use rule rewriting systems.

Transcription from DNA involves the following steps [28]. First a protein called RNA polymerase binds to a site at
the start of the gene sequence called the promoter. Once bound, the RNA polymerase travels along the sequence,
generating the RNA. The rate at which genes are transcribed (hence expressed) is controlled by the presence of more
proteins called transcription factors. These are called activators or repressors, depending on whether they increase or
decrease the rate of gene transcription. They work by binding to specific sequences of DNA upstream of the gene,
and then modulate the ability of RNA polymerase to bind to the promoter. Typically many transcription factors are
needed to stabilise the binding of RNA polymerase to the promoter. All the transcription factors are proteins that are
coded for by other genes. Thus a dynamic network of gene products specifies which genes are expressed.

3.1 The Rule Design
This process has been modelled in the developmental system formulated here. The element corresponding to a
biological gene is a rule. Each rule has two parts, a prefix and a postfix. The prefix determines which of a number of
proteins are transcription factors for the rule, i.e., which proteins are needed for the rule to be activated, or
expressed. Within the prefix each protein is specified by a two bit locus. If the protein should be present, the locus
has the binary value 11. Hence the protein acts as an activator. If the protein should not be present, the locus has the
value 00. Hence the protein acts as a repressor. The locus values of 01 or 10 are “don’t care” terms where the protein
has no effect. The postfix is simply a key for a lookup table that determines the effect that gene expression has on
the phenotype. An example rule is shown in Fig. 1.

A present

11 10 01 00 11 0111001

(Don't Care)

D not present E present Generate protein BIf and and then

Fig. 1: An example developmental rule.

With this model of transcription, developmental modules can be formed through the dynamic network of gene
expression. It is up to evolution to generate functional modules through the network if it so needs. Each individual
contains a fixed number of rules, but specification of the rules is unconstrained. Therefore several rules may have
identical prefixes or postfixes, allowing for redundancy at the genetic level. Genes are expressed at each of a series
of developmental timesteps. The effects of gene expression can be split into two classes, those that generate more
proteins and those that affect the function of the circuit. The mechanism by which changes are made to the circuit
function is based on the process of cellular differentiation.

3.2 The Cell Design
In order to demonstrate iteration across space we modelled the circuit design space as a cellular structure, consisting
of a number of identical functional units. We intended to evaluate developed circuits using a Field Programmable
Gate Array (FPGA). As these consist of an array of identical functional units called configurable logic blocks
(CLBs), it was decided that each cell to be evolved map to a distinct CLB. Each cell has an input, a function, an
output, a protein generator and a protein detector. The protein generator tracks the proteins the cell generates, while
the protein detector detects the concentrations of proteins from the surrounding cells. If the majority of the
neighbouring cells are producing a protein, it is detected by the cell. We can think of this as a type of environmental
interaction - we have created an environment of cells and proteins. A cell is affected by its context - the nature of the
surrounding cells, as a result of the protein interactions.

The cell design has three basic functional components - inputs, LUTs and outputs, and is based on the Xilinx Virtex
architecture [29]. Previous work used the design shown in Fig. 2a. Each cell had four inputs, which correspond to
the four inputs of a Virtex LUT. Each input could be connected to the cell output from the north, east, south or west.
However the Virtex CLB is split into two slices, each containing two LUTs labelled the F and G LUTs. Hence to
make better use of the hardware, the cell design was altered to incorporate two LUTs, each with an independent
output as shown in Fig. 2b. Each cell maps directly to a Virtex CLB, and these cells are arranged as an array to make
the evolved area, as shown in Fig. 2c. The north, south, east and west connections are mapped to manually selected
single lines from the respective directions that can be routed to the each of the four inputs. The LUT outputs are
each mapped through half the CLB outputs to single lines manually selected to carry signals in the required
directions without causing contention with neighbouring outputs. The second slice of the CLBs and the carry logic
and flipflops from the first slice are not evolved. This arrangement potentially allows for the evolution of circuits
outside conventional design spaces as the digital design rules of synchrony have been relaxed. In addition no clock
has been provided. (Although the signal used to clock the configuration and data transfer interface circuits pervades
the FPGA and may be sequestered by unconventional means to allow synchronisation.)

Inp 1

Inp 2

Inp 3

Inp 4

OUTLUT

G
OUT

G LUT

F
OUT

F LUT

Inp 1

Inp 2

Inp 3

Inp 4

CLB CLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB

Fig 2a: The original developmental cell.
Dashed connections are fixed.

Fig 2b: The final developmental cell.
Dashed connections are fixed.

Fig 2c: An array of the final cells
each mapped to a Virtex CLB

3.3 Cell Development
In the Virtex architecture, inputs from different directions should not be routed to a given LUT input concurrently.
Hence the source of each of the four inputs is determined by a competition between the eight possible inputs, two
from each of the four surrounding cells, as shown in Fig. 3. An input source scores a point when a rule with a postfix
corresponding to that particular source is fired. The element with the highest score at any timestep is selected as the
current input. In the event of a draw the winner is selected arbitrarily. The two LUTs share the same four winning
cell inputs. The LUT functions are controlled by a related scoring method, also again shown in Fig. 3. A score is
kept for each of the sixteen P-terms of each four-input LUT. At any developmental timestep the state of each LUT
P-term entry is determined by the value of the corresponding P-term score. If the score is above a threshold value,
the LUT entry is set to true. If it is below a threshold value the LUT entry is set to false. Again, firing a particular
postfix key increases the LUT P-term score. The threshold value for both LUTs is set to the expected P-term score if
a set of random rules were fired. Hence it is dependent on the number of proteins and rules used. Each of the two
outputs of the cell can connect to all four output directions simultaneously. Hence its configuration is dealt with in a
similar manner to the LUTs. In this way the cell can be mapped to the Virtex architecture at any point during its
development, using the JBits API.

6

0

0

0

0

0 0

0

0

FN GN

FE

GE

FS GS

FW

GW

B Present

D Present

If D and !A then Inp2 -> West G-LUT

If B then Inp2 -> East F-LUT

If !C then Inp2 -> East F-LUT

0002

0 4 6 6

8

0

0 3 0

050

0002

0 4 5

8

0

0 3 0

040

If D and !A then G LUT -> P-term 15

If B then Inp2 -> P-term 1

2

0

0

0

1 0

0

0

FN GN

FE

GE

FS GS

FW

GW

G LUT G LUT

0000

0 0 1 1

1

0

0 0 0

000

G LUT

Apply
threshold=6

Input 2

Protein
Generator

Find Max
Score

Input 2 =
East F-LUT

Input 2

Fig. 3: An input differentiates towards two possible sources, but the East F-LUT finally wins. Also a LUT differentiates, and then
is thresholded to yield its final function.

3.4 Experiments - Evolving Two Bit Adders
The evolution of adders has been well studied in the past [30-33] and the adder design space is very well understood,
particularly in the digital domain. We have suggested that one of the primary uses of development is the learning of
a bias that embodies a useful design abstraction. It is known that this problem can be described using such a design
abstraction - as a combinational circuit that makes no use of feedback or memory. So while a naive evolutionary

system working at a low design abstraction may struggle to solve this problem (especially as the size of the problem
is scaled) we know that there is a useful bias that an evolutionary system with a suitable developmental process can
use to simplify its search, if the system discovers it. Hence we have focused on the evolution of adders for our initial
experiments. The experiments presented here set out to evolve two bit adders with carry using a genetic algorithm
(GA). A 2x5 cell area of the chip was selected for evolution using both the current developmental system and a
naive genotype/phenotype mapping system using the same circuit components. This area was selected to expose a
similar reconfiguration area as used successfully in [10]. The naive 52 bit representation for one cell is shown in
Table 1. Thus the concatenation of 10 cells yields a naive chromosome length of 520 bits. In order to prevent
contention and reduce noise, inputs and outputs on the edges of the evolved area other than those specified by the
problem were forced off. The five cells on the west edge were provided with five input signals of the two bit adder
with carry problem, A0, A1, B0, B1 and CIn, as their eastbound signals. The task was to evolve a circuit that
mapped inputs to the three outputs Sum0, Sum1 and COut in accordance with the two bit adder with carry truth
table. Fitness was measured as the total correct output bits across all input combinations, which in this case gives a
maximum fitness of 96.

Locus Component Bits (Representation) Locus Component Bits (Representation)
0-2 Input 1 3 (GN,GS,GE,GW, FN,FS,FE,FW) 45 Output GS on 1
3-5 Input 2 2 (GN,GS,GE,GW, FN,FS,FE,FW) 46 Output GE on 1
6-8 Input 3 2 (GN,GS,GE,GW, FN,FS,FE,FW) 47 Output GW on 1

9-11 Input 4 2 (GN,GS,GE,GW, FN,FS,FE,FW) 48 Output FN on 1
12-27 GLUT 16 (16 P-terms) 49 Output FS on 1
28-43 FLUT 16 (16 P-terms) 50 Output FE on 1

44 Output GN on 1 51 Output FW on 1
Table 1: Equivalent naive representation for the 2 bit problem.

The current developmental system uses 5 distinct proteins. Hence each rule precondition is coded in 10 bits. All
circuit-modifying rule postconditions can be coded in 7 bits. 80 rules are used, yielding 1360 bits for the rule section
of the chromosome. Currently initial protein concentrations are also evolved. A bit signifying the initial
concentration of each protein for each cell yields an additional 5x10 = 50 bits, making a total chromosome length of
1410 bits. Each individual was allowed to develop for 30 steps. These values have been chosen as the observed best
parameters during informal experimentation across a range of settings.

The genetic parameters, held constant for both representations followed earlier experiments to evolve a two bit
adders [10]. Two-member tournament selection was used. A tournament selection pressure as described by Miller
[31] was also introduced, and set to 0.8, meaning that the winner of each tournament was selected only with 80%
probability. One-point crossover and simple mutation were used. The population size was set to 100, and the
mutation rate was set to an expected five mutations per individual. The first generation of each run was randomly
generated. Evolution was halted after 2500 generations.

In order to ensure generalisation across any order of input sequences the order of presentation was randomised for
each evaluation. The genetic representation allows for circuits that may not generate the same fitness when
evaluated twice - the outputs may exhibit dynamical variations unrelated to the inputs. Although such circuits are
not useful final solutions they may contain valuable information about how to solve part of the problem, or how to
traverse the fitness landscape. Because of this each individual was evaluated five times, and its worst fitness selected
rather than discarding these solutions.

Early results for both the developmental system and the naive representation are shown in Table 2. Runs using
random search across the same number of evaluations are also presented here for both representations.

System Mean Fitness of Best Solns. Std. Dev. of Best Solns. Best Soln. Found
Developmental Evolution 80.20 3.30 84
Naive Evolution 91.60 4.10 96
Developmental Random Search 71.90 0.74 73
Naive Random Search 63.00 3.92 72
Table 2: Results from 5 runs of 2 bit adder evolution with and without a developmental system, and 5 runs of random search

with and without a developmental system.

The results show that the developmental system does not evolve as good solutions as the naive mapping system, and
unlike the naive system, it has not succeeded in finding a fully functional two bit adder with carry. Note the

difference between the improvement in mean fitness of the best solutions (bestf) as we move from random search

to the GA search. When using a naive representation this increase is large. When using the developmental system,
this is much smaller. This suggests that the reason for the low performance of the developmental system is that it is
not as evolvable as the naive mapping system on the two bit adder problem. This is not completely surprising, as
there are some disadvantages to this kind of system. Firstly, any additional layer of mapping from genotype to
phenotype is likely to bring about increased epistatic interactions if a phenotypic feature relies on the presence of
more than one gene product. In addition, although rule-based systems provide an advantage in robustness through
the distribution of computation and the resultant possibility for redundancy, the fixed lengths of the rules in this
system ensure that building blocks composed of more than one gene product will have defining lengths of at least
two rules. Hence if the rule is long, they have a fixed, and reasonably high, minimum probability of disruption by
crossover. But the most important impediment to evolvability is that we are introducing extra work for the GA by
allowing it to search bias space. This means that evolution must find a representation that is evolvable before
evolution can operate to find a successful solution. The results suggest that at least for this problem, evolution has
not done so before the stopping conditions are reached.

We also see that random search on the developmental search space outperforms the random search on the naive
search space by some margin. This suggests that even though the developmental space is not as evolvable as the
naive system, the density of better solutions may higher in the developmental space than the naive space.

Despite lower mean fitnesses, the developmental system did demonstrate significant results because of the way it
solved the problem. Fig. 4 shows various elements of the best circuit discovered with the first run, in various states
of the development. The fully developed F-LUTs for each cell are shown in Fig. 4a. Each LUT is represented by a
K-map, with white representing a true state and black a false. Two different K-map configurations can be identified,
laid out in a regular, symmetrical pattern. These are the kinds of patterns one might expect to see if we had hand-
designed K-maps for a traditional ripple-carry adder. However in this case the patterns have been created with a
handful of rules activated by the presence or absence of proteins. If we increased the number of cells available to
development the rules are such that the pattern would repeat indefinitely. This is precisely what would be needed if
we wished to design a large ripple-carry adder. Hence here we see one of the key advantages of generative processes
in action - the ability to generate large iterative structures. With this in mind it could be argued that generating larger
adders would not tax evolution much more than our two-bit with carry example. In fact we anticipate that the ratio
of best evolved fitness to perfect fitness may increase as we move to larger adders, because the proportion of the
circuit where symmetry must be broken to achieve a perfect score (in this case the top and the bottom) is reduced.

The two distinct patterns shown in the final K-maps suggest that the process has indeed differentiated the cells,
which were all originally identical in function, to two different functions. We can corroborate this by examining the
development of the cell protein concentrations. Fig. 4b shows the initial starting conditions, where each horizontal
stripe corresponds to one of the proteins, a white stripe denoting the protein is present in the cell. Little regularity
can be picked out amongst the plethora of different cell states. Fig. 4c shows the final concentrations. Again two
distinct states can be seen. The distribution of these matches the two distinct LUT functions shown in Fig. 4a. This
reaffirms the suggestion that the process of development has differentiated all the cells into two distinct types, and
no other precursor cell types remain.

4. Incorporating Aspects of Growth
One possible factor contributing to the evolvability of the developmental system we discussed above is the length of
the rules. There were three possible methods of reducing rule length. Firstly the precondition size could be reduced,
either by reducing the number of proteins, or encoding the proteins in less than two bits each. Informal experiments
with the first cell representation suggested that these options had little effect on the performance of the system.
Secondly the postcondition size could be reduced, by reducing the number of postcondition keys. To investigate this
possibility, a new LUT development representation was devised. The original development system used a unique
rule postcondition for each P-term of each LUT. Hence 32 rules were needed for LUT rules alone. This system had
been selected to employ as little bias as possible in the patterns of LUT P-terms that development used. As rules had

to fire many times before a P-term became active, it also provided a mechanism for gradual change in the state of
the LUT, modelling natural differentiation processes.

Fig. 4a: F-LUTs of the best

evolved adder
Fig. 4b: Protein states of the

undifferentiated cells
Fig. 4c: Protein states of the

final differentiated cells

The new postcondition system resembles growth rather than differentiation. Rules corresponding to individual P-
term activation were removed. Instead the LUT was modelled as a Karnaugh map with only one active P-term at any
given time. Rules were introduced to change the active P-term by moving it up, down, left or right by one step on
the K-map. A final rule sets the active P-term as true in the final, developed circuit. (At developmental step 0 the
active P-term always begins at P-term 0.) An example growth step is given in Fig. 5.

10

0000

0 0 0 0

0

0

0 0 0

000

0000

0 0 0

0

0

0 0 0

000

If D then G LUT -> Move up

If B and !A then G LUT ->Move right

G LUT G LUT

0000

0 0 0

0

0

0 0 0

000

If !C then G LUT ->Set

G LUT

Fig 5: Two rules fire to move to P-term 13, then a rule fires to set it in the final K-Map.

With these rules development can generate a function by navigating the K-map, setting P-terms as it goes. The
reduction from 32 rules to 10 rules (5 for each LUT) allow the complete set of postcondition keys to be coded in six
bits rather than the previous seven, reducing the rule length by one bit to 16b and the chromosome length from
1410b to 1330b. (Note that this system introduces an initial bias towards functions represented by P-terms set near
the edges of a K-map, centred at P-term 0.) The experiments to evolve two bit adders were repeated with this
change. The results are shown in the Table 3.

Mean Fitness of Best Solns Std. Dev. of Best Solutions Best Solution Found
75.6 2.61 80.0

Table 3: Results from 5 runs of 2 bit adder evolution with LUT growth rather than LUT differentiation

The results suggest that the introduction of the growth system has resulted in a small drop in performance. (A t-test
revealed 97% probability that there was a significant difference between the mean best fitnesses.) This demonstrates
that reducing the search space does not necessarily increase performance - a more important factor is the
evolvability of the landscape as defined by the biases we use for the search. Here the additional bias we have
introduced does not seem conducive to discovery of adder functions.

It is worth taking a subjective look at the patterns generated by the two different systems. Fig. 6 shows K-maps of
the F-LUTs of typical circuits generated by both systems. We see that the pattern for the differentiation LUTs (Fig.
6a) the P-terms that are set are fairly evenly distributed. In the case of the growth LUTs (Fig 6b) it is interesting to
note that more regular patterns are evident, in particular continuous lines. These lines are quite easily generated
through the reuse of ‘move’ and ‘set’ rules throughout development. Such patterns are typical of the K-maps
generated by the growth system. The ability to generate regular patterns like these is potentially useful. For instance
if we wished to evolve logic that is to be mapped to traditional gate technologies or gate-based programmable logic,
we may find that lower fanin, more gate-efficient solutions evolve when using these types of rules, as evolution will
favour more minimised forms of logic.

Fig. 6a: F-LUTs generated by a typical run of

the differentiation-based system
Fig. 6b: F-LUTs generated by a typical run of

the growth-based system

5. Conclusions and Future Work
The problem of scalability is one of great importance if evolvable hardware is ever to achieve much impact in the
real world. In this paper we have focused on the approach of evolving developmental systems. This approach allows
evolution to search for good inductive biases for solving large-scale complex problems as it generates inherently
modular, iterative structures that exist in many real-world circuit designs, but at the same time allows evolution to
search innovative areas of space where it sees fit. We have presented two developmental systems that allow us to
model the features of modularity and local interaction in biological developmental systems, but for an engineering
use. The results have demonstrated the ability of a developmental process to generate coherent and useful patterns of
differentiated cells in circuit designs. There still remain problems of evolvability of these systems, which current
work is addressing. Nevertheless, this work provides the first crucial steps towards applying the generative power of
development to solving large circuit design problems in the future.

References

[1] P. C. Haddow and G. Tufte, "Bridging the Genotype-Phenotype Mapping for Digital FPGAs," in Proceedings of the
3rd NASA / DoD Workshop on Evolvable Hardware, Pasadena, California, U.S.A., 2001.

[2] J. Koza, F. H. I. Bennett, D. Andre, and M. A. Keane, Genetic Programming III. San Francisco, California, U.S.A.:
Morgan-Kauffmann, 1999.

[3] A. Thompson, Hardware Evolution. London, U.K.: Springer Verlag, 1998.
[4] V. K. Vassilev and J. F. Miller, "Scalability Problems of Digital Circuit Evolution," in Proceedings of the 2nd

NASA/DOD Workshop on Evolvable Hardware, Los Alamitos, California, U.S.A., 2000.

[5] W. X. Liu, M. Murakawa, and T. Higuchi, "ATM cell scheduling by function level evolvable hardware," in Evolvable
Systems: From Biology to Hardware, vol. 1259, Lecture Notes in Computer Science, 1997, pp. 180-192.

[6] I. Kajitani, T. Hoshino, M. Iwata, and T. Higuchi, "Variable length chromosome GA for Evolvable Hardware," in
Proceedings of the Third International Conference on Evolutionary Computation, Nagoya, Japan., 1996.

[7] J. Torresen, "Scalable Evolvable Hardware Applied to Road Image Recognition," in Proceedings of the 2nd
NASA/DoD Workshop on Evolvable Hardware, Silicon Valley, USA., 2000.

[8] H. Hemmi, J. Mizoguchi, and K. Shimohara, "Evolving Large Scale Digital Circuits," in Proceedings of the Fifth
International Workshop on the Synthesis and Simulation of Living Systems, Nara, Japan, 1996.

[9] J. D. Lohn and C. S.P., "Automated Analog Circuit Synthesis Using a Linear Representation," in Proceedings of the
2nd International Conference on Evolvable Systems, Lausanne, Switzerland., 1998.

[10] T. G. W. Gordon and P. J. Bentley, "On Evolvable Hardware," in Soft Computing in Industrial Electronics, S. Ovaska
and L. Sztandera, Eds. Heidelberg, Germany.: Physica-Verlag, 2002, To appear.

[11] M. Murakawa, S. Yoshizawa, T. Adachi, S. Suzuki, K. Takasuka, M. Iwata, and T. Higuchi, "Analogue EHW chip for
intermediate frequency filters," in Evolvable Systems: From Biology to Hardware, vol. 1478, Lecture Notes in
Computer Science, 1998, pp. 134-143.

[12] R. Dawkins, "The evolution of evolvability," in Proceedings of Artificial Life: The Quest for a New Creation, Santa Fe,
U.S.A., 1989.

[13] L. Altenberg, "The Evolution of Evolvability in Genetic Programming," in Advances in Genetic Programming, K. E.
Kinnear, Ed. Cambridge, MA, U.S.A., 1994, pp. 47--74.

[14] G. Wagner and L. Altenberg, "Perspective---complex adaptations and the evolution of evolvability," Evolution, vol. 50,
pp. 967-976, 1996.

[15] P. Marrow, "Evolvability: Evolution, Computation, Biology," in Proceedings of the 1999 Genetic and Evolutionary
Computation Conference Workshop Program, Orlando, FL, U.S.A., 1999.

[16] P. D. Turney, "Increasing evolvability considered as a large-scale trend in evolution," in Proceedings of the Genetic
and Evolutionary Computation Conference Workshop Program, Orlando, Florida USA, 1999.

[17] P. J. Bentley and S. Kumar, "Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary
Design Problem.," in Proceeding of the Genetic and Evolutionary Computation Conference (GECCO '99), Orlando,
Florida USA,, 1999.

[18] F. Gruau, Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm, PhD Thesis, Ecole Normale
Supirieure de Lyon, 1994.

[19] S. Kumar and P. J. Bentley, "The ABCs of Evolutionary Design: Investigating the Evolvability of Embryogenies for
Morphogenesis.," in Genetic and Evolutionary Computation Conference (GECCO '99) Late Breakers, Orlando, Florida
USA,, 1999.

[20] A. Lindenmayer, "Mathematical models for cellular interactions in development I Filaments with one-sided inputs,"
Journal of Theoretical Biology., vol. 18, pp. 280-289, 1968.

[21] N. Chomsky, Syntactic Structures. The Hague: Moutin and Co., 1957.
[22] G. S. Hornby and J. B. Pollack, "The advantages of generative grammatical encodings for physical design," in

Proceedings of the Congress on Evolutionary Computation., Seoul, South Korea, 2001.
[23] E. J. W. Boers and H. Kuiper, Biological metaphors and the design of modular artificial neural networks, PhD Thesis,

Leiden University, 1992.
[24] H. Kitano, "Challenges of evolvable systems: Analysis and future directions," in Evolvable Systems: From Biology to

Hardware, vol. 1259, Lecture Notes in Computer Science, 1997, pp. 125-135.
[25] H. de Garis, L. S. Kang, Q. M. He, Z. J. Pan, M. Ootani, and E. Ronald, "Million module neural systems evolution -

The next step in ATR's billion neuron artificial brain ("CAM-Brain") Project," in Artificial Evolution, vol. 1363,
Lecture Notes in Computer Science, 1998, pp. 335-347.

[26] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Heidelberg: Springer-
Verlag, 1997.

[27] M. Kirschner and J. Gerhart, "Evolvability," Proceedings of the National Acadamy of Science, vol. 95, pp. 420-8427,
1998.

[28] P. Raven and G. Johnson, Biology, 6th ed: McGraw-Hill Higher Education, 2001.
[29] Xilinx_Inc., Virtex 2.5 V Field Programmable Gate Arrays Data Sheet: http://direct.xilinx.com/partinfo/ds003.pdf,

2001.
[30] S. J. Louis and G. J. E. Rawlins, "Designer Genetic Algorithms: Genetic Algorithms in Structure Design," in

Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, CA, U.S.A, 1991.
[31] J. F. Miller, P. Thomson, and T. C. Fogarty, "Designing Electronic Circuits using Evolutionary Algorithms. Arithmetic

Circuits: A Case Study," in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent
Advancements and Industrial Applications, D. Quagliarella, J. Periaux, C. Poloni, and G. Winter, Eds. London, U.K.:
Wiley, 1997.

[32] C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre, "Towards automated evolutionary design of combinational
circuits," Computers & Electrical Engineering, vol. 27, pp. 1-28, 2001.

[33] G. Hollingworth, S. Smith, and A. Tyrrell, "The Safe Intrinsic Evolution of Virtex Devices," in Proceedings of the
Second NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA, U.S.A., 2000.

