
Programming and evolving physical self-assembling systems
in three dimensions

Navneet Bhalla • Peter J. Bentley • Peter D. Vize •

Christian Jacob

� Springer Science+Business Media B.V. 2011

Abstract Being able to engineer a set of components and

their corresponding environmental conditions such that

target entities emerge as the result of self-assembly remains

an elusive goal. In particular, understanding how to exploit

physical properties to create self-assembling systems in

three dimensions (in terms of component movement) with

symmetric and asymmetric features is extremely chal-

lenging. Furthermore, primarily top-down design method-

ologies have been used to create physical self-assembling

systems. As the sophistication of these systems increases, it

will be more challenging to use top-down design due to

self-assembly being an algorithmically NP-complete

problem. In this work, we first present a nature-inspired

approach to demonstrate how physically encoded infor-

mation can be used to program and direct the self-assembly

process in three dimensions. Second, we extend our nature-

inspired approach by incorporating evolutionary comput-

ing, to couple bottom-up construction (self-assembly) with

bottom-up design (evolution). To demonstrate our design

approach, we present eight proof-of-concept experiments

where virtual component sets either defined (programmed)

or generated (evolved) during the design process have their

specifications translated and fabricated using rapid proto-

typing. The resulting mechanical components are placed in

a jar of fluid on an orbital shaker, their environment. The

energy and physical properties of the environment, along

with the physical properties of the components (including

complementary shapes and magnetic-bit patterns, created

using permanent magnets to attract and repel components)

are used to engineer the self-assembly process to create

emergent target structures with three-dimensional sym-

metric and asymmetric features. The successful results

demonstrate how physically encoded information can be

used with programming and evolving physical self-

assembling systems in three dimensions.

Keywords Embodied computation � Evolutionary

computing � Physical information encoding � Rapid

prototyping � Self-assembly � Tile assembly model

1 Introduction

Self-assembly is identified as a fundamental aspect to

achieving embodied computation (Stepney et al. 2005,

2006). Understanding the interplay between program-

mability/controllability and self-organisation is required in

order for engineering emergence in this form of natural

N. Bhalla (&) � P. D. Vize � C. Jacob

Department of Computer Science, University of Calgary,

2500 University Drive N.W., Calgary, AB T2N 1N4, Canada

e-mail: nbhalla@ucalgary.ca

P. D. Vize

e-mail: pvize@ucalgary.ca

C. Jacob

e-mail: cjacob@ucalgary.ca

P. J. Bentley

Department of Computer Science,

University College London,

Malet Place, London WC1E 6BT, UK

e-mail: p.bentley@cs.ucl.ac.uk

P. D. Vize

Department of Biological Sciences,

University of Calgary, 2500 University Drive N.W.,

Calgary, AB T2N 1N4, Canada

P. D. Vize � C. Jacob

Department of Biochemistry and Molecular Biology,

University of Calgary, 2500 University Drive N.W.,

Calgary, AB T2N 4Z6, Canada

123

Nat Comput

DOI 10.1007/s11047-011-9293-6



computing (Li et al. 2008). Theoretical systems executing

algorithms using self-assembly in three spatial dimensions

have been proposed, but the physical construction of

components being able to direct the self-assembly process

in three dimensions has not been achieved (Pelletier and

Weimerskrich 2002). Here we present two methods to

create sets of proof-of-concept components with physically

encoded information which is used to direct the self-

assembly process to achieve three-dimensional target

structures.

As seen throughout nature, the plethora of complex

inorganic and organic system are the result of self-assem-

bly. Complex self-assembled entities emerge from decen-

tralised components governed by simple rules. Natural self-

assembly is dictated by the morphology of the components

and the environmental conditions they are subjected to, as

well as their component and environment physical and

chemical properties—their information (Ball 1999;

Thompson 1942, reprinted 1992). Components, their

environment, and the interactions among them form a

system, which can be described by a set of simple rules.

Coupled with this bottom-up self-assembly construction

process, bottom-up design is used with living organisms

where the process of evolution is displayed through their

genetic rule sets—their DNA. Through transcription to

RNA and translation to proteins, these rules are mapped to

physical shapes representing a transfer of information as

described by the central dogma of molecular biology

(Crick 1970). Proteins, the resulting three-dimensional

shapes, are the primary building blocks of living organ-

isms. One could view entities in nature constituting pro-

grams that are based on the rules present in a given system

(Wolfram 2002). These programs are the interaction and

transformation of physically and chemically encoded

information in a given environment. The process of self-

assembly has been shown to being equivalent to perform-

ing a physical computation (Winfree 1995, 1999), as

information is compared and exploited to build larger

structures.

However, designing and constructing artificial self-

assembling systems, particularly in three spatial dimen-

sions, remains an elusive goal. There are examples of self-

assembling systems in three dimensions. However, these

examples are limited in being able to create structures with

only symmetric features (Douglas et al. 2009; Terfort et al.

1997), using components which are not able to freely move

in three-dimensional space (Zykov et al. 2005), relying on

templates to direct the self-assembly process (Boncheva

et al. 2005; Gracias et al. 2002; Wu et al. 2002), or the

creation of open structures (Boncheva et al. 2003a; Gracias

et al. 2000). Open self-assembly (Whitesides and Gryz-

bowski 2002) refers to the creation of structures which do

not have a defined boundary, in contrast to closed

structures (Whitesides and Gryzbowski 2002). Conse-

quently, understanding how to exploit physical properties

to create self-assembling systems continues to be extre-

mely challenging. To compound this challenge, primarily

top-down design methodologies have been used to create

physical self-assembling systems (Groß and Dorigo 2008).

As the sophistication of these systems increases it will be

more challenging to use top-down design, due to self-

assembly being an algorithmically NP-complete problem

(Adleman et al. 2002). How to design a set of physical

components and their environment, such that the compo-

nents self-assemble into a target structure remains an open

problem.

In pursuit of addressing this open problem, we continue

to build upon our three-level approach for designing self-

assembling systems (Bhalla et al. 2007, 2010, 2011; Bhalla

and Bentley, in press). The three-level approach comprises

of: (1) specifying a set of self-assembly rules, (2) model-

ling these self-assembly rules to determine the outcome of

a system in software, and (3) translating to a physical

system by mapping the set of self-assembly rules using

physical components and environment properties. Our

approach is consistent with the definition of self-assembly

(Whitesides and Gryzbowski 2002), refined here as a pro-

cess which involves components that can be controlled

through their proper design and their environment, and

which are adjustable (components can adjust their position

relative to one another).

Here we extend our three-level approach for designing

self-assembling systems in three spatial dimensions. This

extension includes the development of new self-assembly

rules at level one and new software at level two, which is

distinct from (Bhalla et al. 2007, 2010; Bhalla and Bentley,

in press) where only self-assembling systems in two spatial

dimensions were considered. New components and a new

environment that are suitable for three-dimensional self-

assembly are required at level three, and follow designs

used in (Bhalla et al. 2011). We present how features in

these new components, acting as physically encoded

information with respect to their corresponding environ-

ment, can be exploited to direct the self-assembly process.

In particular, we demonstrate how physically encoded

information can be used to reduce errors and to create

rotational properties during component-to-component

interactions. In contrast to (Bhalla et al. 2011), here we use

the three-level approach exclusively as a programming

approach, and we demonstrate how to direct the self-

assembly process to create a variety of target structures by

using the different forms of component physically encoded

information. In addition, we present a further extension of

our three-level approach that incorporates evolving self-

assembling systems, by incorporating evolutionary com-

puting which is well suited for addressing NP-complete

N. Bhalla et al.

123



problems (Mitchell 1996). Previously we evolved physical

self-assembling systems in two dimensions (Bhalla et al.

2010), which we extend here to three dimensions. The

three-level approach is inspired by the central dogma of

molecular biology, in being able to map a set of self-

assembly rules directly to physical shapes. By incorporat-

ing evolutionary computing into the three-level approach,

it couples bottom-up construction (self-assembly) with

bottom-up design (evolution). The evolutionary approach

is beneficial in that no knowledge of a target structure’s

morphology is required, only its functionality.

The next section provides background material to which

our programming and evolutionary approach is based upon.

Next, the extension of the three-level approach with the

incorporation of evolutionary computing to design and

create physical self-assembling systems in three dimen-

sions is detailed. Eight experiments follow which demon-

strate the creation of programmed and evolved component

sets and their translation, via physically encoded informa-

tion, to physical systems using rapid prototyping (Callicott

2001). We conclude by summarising how this work pro-

vides a proof-of-concept means to programming and

evolving physical self-assembling systems in three

dimensions.

2 Background

Bottom-up self-assembly design (using evolutionary com-

puting or another technique) does not appear to have been

achieved in three-dimensional self-assembly at the time of

writing. To achieve our objective of being able to evolve

self-assembling systems in three dimensions, we present

relevant background material on DNA computing (Păun

et al. 1998), three-dimensional physical self-assembly, and

self-assembly design to support our physical information

encoding approach to bottom-up self-assembly design.

This relevant literature will also be used to differentiate our

contributions to three-dimensional self-assembly.

2.1 DNA computing

Crystallography continues to be an active area in science.

One of the most prolific insights was that of Schrödinger

and his proposed aperiodic crystal for genetic information

encoding, described in his popular science classic What is

Life? (Schrödinger 1944, reprinted 2003). Schrödinger’s

aperiodic crystal predates the discovery of the aperiodic

structure of DNA by Watson and Crick (1953). Crick

acknowledges Schrödinger for providing inspiration to

study the structure of DNA (Murphy and O’Neill 1997). In

addition to understanding how the aperiodic structure of

DNA serves as a genetic information medium in biological

systems, research is being conducted on manipulating

DNA for nanotechnology and embodied computation (Se-

eman 1999, 2007). DNA nanotechnology was invented by

Seeman (Pelesko 2007), a crystallographer, who realised

that three-dimensional lattices could be used to direct

molecules simplifying their crystallographic study. The

first artificial three-dimensional nanoscale objects, created

using self-assembly, were a cube and a truncated octahe-

dron made out of DNA (Chen and Seeman 1991; Zhang

and Seeman 1994). However, these objects were not rigid

enough to create three-dimensional lattices (Pelesko 2007;

Seeman 2004).

Consequently, Adleman (1994) first demonstrated how

computing using self-assembling molecules, DNA, was

possible. In Adleman’s original work, he devised an

algorithm to solve a seven node Hamiltonian path problem

(Garey and Johnson 1979). Single strands of DNA were

created to encode partial sample solutions to the problem

(representing the edges and vertices of the directed graph).

These partial solutions were then allowed to interact and

self-assemble based on Watson–Crick complementarity.

The linear double-stranded self-assembled structures rep-

resenting partial solutions were then filtered using bio-

chemistry and molecular biology techniques to identify the

true self-assembled solution.

With the success of Adleman’s experiment, research has

focused on scaling DNA computing to solve larger prob-

lems. As a shift from Adleman’s brute-force approach,

Winfree developed the abstract Tile Assembly Model

(aTAM) to model the self-assembly of molecular struc-

tures, such as DNA tiles (Winfree et al. 1998), on a square

lattice (Rothmund and Winfree 2000; Winfree 1998a).

These tiles use interwoven strands of DNA to create the

square body of a tile (double-stranded) with single strands

extending from the edges of the tiles. A tile type is defined

by binding domains on the North, West, South, and East

edges of a tile. Physical DNA tiles were co-created by

Winfree and Seeman. DNA tiles are based on mathematical

Wang tiles (Wang 1961, 1965), which have been proven to

be Turing Universal (Berger 1966; Culik 1996). The aTAM

is used to bridge crystallography and mathematical tiling

theory using DNA tiles as a method for algorithmic self-

assembly (Winfree 1999), where algorithmic and physical

information encoding schemes are used to direct the self-

assembly process.

In the aTAM, at least one seed tile must be specified to

start the self-assembly process. Tiles cannot be rotated or

reflected. There cannot be more than one tile type that can

be used at a particular assembly location in the growing

structure (although the same binding domain is permitted

on more than one tile type). All tiles are present in the same

environment, a one-pot-mixture. Tiles can only bind toge-

ther if the interactions between binding domains are of

Programming and evolving self-assembling systems in 3D

123



sufficient strength (provided by a strength function), as

determined by the temperature parameter. The sum of the

binding strengths of the edges of a tile must meet or exceed

the temperature parameter. For example, if the temperature

parameter is two, at least two strength-one bonds must be

achieved to assemble a tile, i.e. the temperature parameter

dictates co-operative bonding. The seed tile is first placed

on the square lattice environment. Tiles are then selected

one at a time, and placed on the square lattice if the binding

strength constraints are satisfied. The output is a given

shape of fixed size, if the model can uniquely construct it.

The aTAM has been used to study algorithmic self-

assembly complexity, including the Minimum Tile Set

Problem (MTSP) (Adleman et al. 2002). The goal of MTSP

is to find the lowest number of tile types that can uniquely

self-assemble into a target structure. The MTSP is an NP-

complete problem for general target structures. A decision

problem C is NP-complete if C is in the class NP (condition

one) and every problem in the class NP is reducible to C in

polynomial time (condition two) (Sipser 1997). Condition

one can be met by proving that C can be verified in

polynomial time. To meet condition one, Adleman et al.

(2002) created an algorithm called Unique-Shape that

decides whether a tile system uniquely produces the shape

of a target structure, which they proved can be verified in

polynomial time. Condition two can be met by proving that

an already know NP-complete problem can be reduced to

C (i.e. proving that C is NP-hard). The decision problem

for determining if the variables in a Boolean formula can

be assigned in such a way to have the formula evaluate to

true is referred to as satisfiability (SAT) (Sipser 1997).

SAT was the first decision problem known to be in the

class NP-complete (Cook 1971). One of several special

cases of SAT is where the formulae are in conjunctive

normal form (CNF) (Sipser 1997). The 3CNF-SAT prob-

lem (determining if each clause in a formula is limited to at

least three literals) is known to be in the class NP-complete

(Karp 1972; Sipser 1997). To meet condition two, Adleman

et al. (2002) reduced the 3CNF-SAT problem to the MTSP

by encoding a 3CNF-formula into shapes using two

structures: (1) a tree, for which it is possible to compute the

minimal tile set in polynomial time, and (2) a tree sub-

structure, for which can only be satisfied if and only if the

tree substructure can be assembled using distinct tile types.

By proving that the MTSP is in the class NP and that the

MTSP is in the class NP-hard (by proving that 3CNF-SAT

can be reduced to the MTSP), Adleman et al. (2002)

proved that the MTSP is in the class NP-complete for

general target structures.

In addition to the MTSP, Adleman et al. (2002) also

devised the Tile Concentration Problem (TCP). The goal of

TCP is to find the relative concentrations of tile types that

self-assemble into the target structure using the fewest

assembly steps. The algorithmic complexity of TCP has

only been calculated for specific classes of target struc-

tures. The aTAM and variations of tile-based self-assembly

have also been used to investigate self-assembly com-

plexity classes (Jonoska and McColm 2009) and using self-

assembly to solve NP-complete problems (Brun 2008a, b).

The aTAM has also been used to study Turing Universal

computation via self-assembly. Winfree proved that the

aTAM is Turing Universal in two spatial dimensions at

temperature two (Winfree 1995). The original version of the

aTAM has been extended to three dimensions, using cube-

based tiles (Winfree 1998b). It has been proven that the

aTAM is Turing Universal in three spatial dimensions at

temperature one (Cook et al. 2011). Furthermore, aTAM has

been used to study new algorithmic proposals to performing

mathematical operations, in both two and three dimensions.

In particular, a theoretical algorithm to perform the cyclic

convolution product requires three-dimensional DNA tiles

(Pelletier and Weimerskrich 2002). However, the physical

creation of three-dimensional DNA tiles does not appear to

have been achieved at the time of writing.

2.2 Three-dimensional physical self-assembly

Rothmund (2005, 2006) pioneered a technique to create

two-dimensional DNA structures, referred to as DNA

Origami. This technique uses smaller, linear strands of

DNA to act as scaffolding, which self-assemble to a longer,

linear strand of DNA folding it into a target structure. The

use of folding in DNA Origami has also been extended to

three dimensions (Douglas et al. 2009). Only one example

was shown in Douglas et al. (2009) where the components

created using three-dimensional DNA Origami would then

self-assemble into a three-dimensional target structure. In

this example, all the components were identical and self-

assembled into target symmetrical tetrahedrons.

Physical self-assembly does not need to be at the

nanoscale. Both mesoscale (micrometer to millimetre) and

macroscale (centimetre and above) offer a unique quality in

comparison to molecular and nanoscale self-assembly, in

that components at these scales offer flexibility in design

and access to types of functionality unparalleled in

molecular and nanoscale systems (Boncheva et al. 2003b;

Whitesides and Boncheva 2002, 2005). However, three-

dimensional self-assembly is limited in being able to create

target structures with only symmetric features (Douglas

et al. 2009; Terfort et al. 1997), using components which

are not able to freely move in three-dimensional space

(Zykov et al. 2005), relying on templates to direct the self-

assembly process (Boncheva et al. 2005; Gracias et al.

2002; Wu et al. 2002), or the creation of open structures

(Boncheva et al. 2003a; Gracias et al. 2000) based on

relevant literature.

N. Bhalla et al.

123



Of these three-dimensional mesoscale and macroscale

examples, (Terfort et al. 1997) demonstrates in one system

where all the components used are not identical (two

components, one with a key shape and one with a lock

shape bond together to form a cylinder), and (Gracias et al.

2002) demonstrates in one system where the faces of a self-

assembled cube had patterned faces (four metallic squares

near each corner of a face). In (Gracias et al. 2002), the

resulting cubes were created from a self-assembling fold-

ing technique, where the faces of the cube are initially

attached in a two-dimensional arrangement. Furthermore,

the resulting cubes in (Gracias et al. 2002) are not able to

self-assemble into large structures, and consequently, the

patterning on the faces of the cubes do not direct the self-

assembly process. Physical examples of manipulating

patterning on components for error-encoding and directing

the self-assembly process have been developed using

macroscale, physical components in two spatial dimensions

(Bhalla et al. 2007, 2010; Bhalla and Bentley, in press).

Theoretical examples have been developed at the nano-

scale, where the patterning sequences of nucleic acids are

manipulated in DNA for error-encoding and directing the

self-assembly process as well (Kari and Mahalingam

2010).

2.3 Self-assembly design

As with the three-dimensional self-assembly examples

listed above and further examples based on relevant liter-

ature (Groß and Dorigo 2008), primarily top-down design

methodologies have been used to create physical self-

assembling systems. As the sophistication of self-assem-

bling systems increases, it will be more challenging to use

top-down design, due to self-assembly being an algorith-

mically NP-complete problem. Evolutionary computing is

well suited for such problems (Mitchell 1996), and offers

the potential for a bottom-up design approach to self-

assembly. Evolutionary computing has been applied in

theoretical studies, where chemical compounds were

evolved (Buchanan et al. 2008), and where different co-

operative bonding mechanisms were evolved in the context

of the aTAM (Terrazas et al. 2007). Physical examples,

where evolutionary computing is used in bottom-up self-

assembly design has been demonstrated using robotic units

(Ampatzis et al. 2009) and macroscale components (Bhalla

et al. 2010) in two spatial dimensions.

3 Three-level approach and evolution

Although there has been progress, the design and creation

of self-assembling systems remains challenging. To pro-

vide an alternative design approach to self-assembling

systems, we developed the three-level approach (Bhalla

et al. 2007, 2010, 2011; Bhalla and Bentley, in press). The

three phases in our approach are: (1) definition of rule set,

(2) virtual execution of rule set, and (3) physical realisation

of rule set (Fig. 1). The motivation for the three-level

approach is in finding the fundamental information struc-

tures and rules that enable self-assembly in theory (level

one), testing and refining those self-assembly rules through

simulation (level two), and testing and refining those self-

assembly rules through embodied physical experiments

(level three). The three-level approach provides a bottom-

up method for designing physical self-assembling systems.

This is achieved by being able to directly map a set of self-

assembly rules to a physical system. As a result, evolu-

tionary computing can be incorporated into the three-level

approach to evolve level one self-assembly rules. Results

from the level two modelling are used for evaluation by the

evolutionary algorithm (Fig. 1). After running the evolu-

tionary algorithm, the level one rules can be mapped to a

physical system if the desired results are achieved.

Level 1: Definition of Rule Set

Level 3: Physical Realisation of Rule Set

map rule set to physically-
independent model for 
evaluation

map rule set 
to physically 
encoded 
information

Level 2: Virtual 
Execution of 
Rule Set

Level 1: Definition of Rule Set

Level 3: Physical Realisation of Rule Set

map rule set to physically-
independent model for 
evaluation

Level 2: Virtual 
Execution of 
Rule Set

Evolutionary 
Computing

if desired result 
achieved, then 
map rule set to 
physically 
encoded 
information

evaluate 
modeling 
results

Fig. 1 Three-level approach (left) and incorporating evolutionary computing (right) (Bhalla et al. 2010)

Programming and evolving self-assembling systems in 3D

123



A programming method (which use the three-level

approach exclusively) and an evolutionary method (which

incorporates evolutionary computing) for designing and

creating self-assembling system in three dimensions is

provided in this section. These two design methods using

physically encoded information have the potential to create

target structures with symmetric and asymmetric features.

Furthermore, these two design methods use components

which can move freely in three dimensions, and do not rely

on templates in the environment to direct the self-assembly

process. The self-assembly design problem we are con-

cerned with is a combination of the MTSP and the TCP in

three dimensions (including other constraints, which are

described in Sect. 3.4.3).

3.1 Level one: definition of rule set

The specification of self-assembly rules is conducted at

level one. The objective of these rules is to provide an

abstract, high-level description of self-assembling systems.

There are three categories of self-assembly rules, which

define a system: component, environment, and system rules.

3.1.1 Component rules

Component rules specify primarily shape and information.

Components are similar in concept to DNA tiles. Compo-

nents are all cubes of unit size. Each face of a component

serves as an information location, in a six-point arrange-

ment, i.e. Top–Left–Bottom–Right–Front–Back. Informa-

tion is abstractly represented by a capital letter (A–L in this

example). Furthermore, a subscript (using numbers 1–4) is

used with each capital letter (e.g. G4) to indicate the ori-

entation of that information on a component’s face (Fig. 2).

If no information is associated with an information loca-

tion, neutral (meaning where no assembly can take place),

the dash symbol (–) is used. The spatial relationship of this

information defines a component’s type (Fig. 2).

3.1.2 Environment rules

Environment rules specify environmental conditions such

as the temperature of a system and boundary constraints.

The temperature defines the threshold to which the

assembly protocol must satisfy in order for assembly bonds

to occur. Components are confined due to the environment

boundary, but are permitted to translate and rotate in three

spatial dimensions, and interact with one another and their

environment. As a consequence and further differentiation

to the aTAM, components are permitted to be reflected and

to have rotational properties associated with their assembly

information locations. An environment temperature of one

is used in this implementation.

3.1.3 System rules

System rules specify the quantity of each component type,

and component-to-component information interactions (i.e.

assembly interactions) and component-to-environment

interactions (i.e. transfer of energy and boundary interac-

tions). In this implementation there are two types of system

interaction rules referred to as fits rules and breaks rules.

Abstractly, if two pieces of complementary information

come into contact (i.e. they fit together, A fits B), it will

cause them to assemble. This rule type is commutative,

meaning if A fits B, then B fits A. Furthermore, fits rules

encapsulate component-to-component rotational interac-

tions. A subscript (using 360, 180, and 90) is used to

represent if the faces of complementary components can fit

together in either four, two, or in one way respectively (e.g.

A fits360 B). Abstractly, if two assembled pieces of infor-

mation experience a temperature above a certain threshold,

their assembly breaks. The system rules used in this

implementation are specified in Table 1.

3.2 Level two: virtual execution of rule set

At level two, a self-assembly rule set is mapped to an

abstract model. We present an extension to the aTAM, the

RightLeft Front

Top

Bottom

Back E
2

1

3

2 4

Fig. 2 Spatial relationship defining a component (left), and example

of information orientation on a component’s face (right)

Table 1 Component information location labels (A–L) and fits and

breaks systems interaction rules (‘?’ transition, ‘?’ assembly, ‘;’

disassembly, and ‘Temp2’ temperature 2)

Fits rule Breaks rule

A fits360 B ? A?B Temp2 breaks A?B ? A ; B

C fits360 D ? C?D Temp2 breaks C?D ? C ; D

E fits180 F ? E?F Temp2 breaks E?F ? E ; F

G fits90 H ? G?H Temp2 breaks G?H ? G ; H

I fits90 J ? I?J Temp2 breaks I?J ? I ; J

K fits90 L ? K?L Temp2 breaks K?L ? K?L

N. Bhalla et al.

123



three-dimensional concurrent Tile Assembly Model

(3DcTAM). The 3DcTAM is a modelling technique that is

better suited to the type of physical self-assembling sys-

tems we focus on (e.g. using components with rotational

properties in three spatial dimensions). The 3DcTAM is an

extension from two to three spatial dimensions from our

original concurrent Tile Assembly Model (cTAM) (Bhalla

et al. 2010).

There are five differentiating features to the 3DcTAM

from the aTAM and its three-dimensional variant. (1)

There are no seed tiles, meaning that any two compatible

tiles (components) can start the self-assembly process. (2)

Tiles can self-assemble into multiple substructures con-

currently. (3) Tiles can be rotated and reflected in three

spatial dimensions. (4) More than one tile type can be used

at a particular assembly location in a growing structure. (5)

All tiles are present in the same environment, one-pot

mixture. In this implementation, the temperature parameter

is set to one. As a result, 3DcTAM has the capacity of

Turing Universal computation at temperature one, similar

to how aTAM has been proven to have the capacity of

Turing Universal computation at temperature one in three

spatial dimensions (Cook et al. 2011).

The initial set of tiles in the 3DcTAM is a multiset (type

and concentration). In the 3DcTAM (Fig. 3), a single

assembly operation is applied at a time, initialised by

selecting a single tile/substructure with an open comple-

mentary information location, then the location on the first

tile/substructure is labelled unmatchable. If there are tiles/

substructures with open complementary information loca-

tions, all those tiles/substructures are put into an assembly

candidate list. Tiles and substructures are selected at ran-

dom (from the assembly candidate list) until a tile/sub-

structure can be added. If no such tile/substructure can be

added, due to an assembly violation (Fig. 3), then the

location is labelled unmatchable. If a tile/substructure can

be added, the open assembly locations on the two tiles/

substructures are updated, and labelled match (all appli-

cable assembly locations, including their rotational prop-

erties, must match when adding two substructures). The

algorithm repeats, and halts when all assembly locations

are set to match or unmatchable. At the conclusion of the

algorithm, the resulting structures are placed in a single

three-dimensional grid environment to determine if any

environment boundary violations occur. A post-evaluation

of environment constraints is sufficient for this imple-

mentation, as we are more concerned with the set of self-

assembled structures than environmental constraints.

Alternatively, a post-evaluation of the environmental con-

straints can be used to determine the necessary dimensions

of the environment without hindering the self-assembly of

tiles (components).

-

-

-
A1

Uncomplementary
Information 

Step 4Step 3

2 petS1 petS

Neutral Site

Boundary 
Violation

No Assembly Path

-

-

-

A1

-

-
D1

B1 B1

C1

-

-

-

-

-

- -

-

-

-

-A1B1
D1

A1 -

C1
B1

A1 B1

C1
-

-

- -

- B1 A1
D1

-

- -

-

-

A1B1
D1

C1
B1A1

A1

C1

D1
F2E1

-

-
-

-

A1B1D1C1

B1
B1A1

A1

G1

F1
F2

E1

F2

-

- -

-

-

-

-

-

-

-

D1

-

-

-

E1
A1

F2

-

-
-

-

-

-

- -

-

-

B1

-

-

Fig. 3 Example 3DcTAM steps

(top) and assembly violations

(bottom; neutral site between F2

and –, uncomplementary

information between F1 and G1,

boundary violation where the

dashed lines represent the

environment boundary, and

where there is no assembly path

do to translation and rotation),

where a two-dimensional

representation is used to

represent components in a top

view and information labels are

in reference to adjacent

information locations on a

component’s face

Programming and evolving self-assembling systems in 3D

123



3.3 Level three: physical realisation of rule set

Level one rules are mapped to a physical system at level

three. Here we discuss the component design space (set of

physically feasible designs), which is used as part of the

mapping process. Component and environment designs

follow (Bhalla et al. 2011). However, here we further

discuss physical encoding schemes of components in their

corresponding environment, by focusing on component

physical encoding schemes to prevent errors during com-

ponent-to-component interactions and to direct the self-

assembly process to achieve target structures.

3.3.1 Component design space

The component design space is a combination of an

assembly protocol space and a shape space. A 5-magnetic-

bit pattern defines the assembly protocol space (Fig. 4).

The five permanent magnetic discs can be added to a face

of a cube-based component. Of the 32 total 5-magnetic-bit

patterns, there are 6 unique complementary pairs of pat-

terns when considering planar rotation of a component’s

face (Fig. 4). These six codes encapsulate rotational

information for component-to-component interactions,

where two pairs encapsulate 360�, one pair encapsulates

180�, and three pairs encapsulate 90� rotational compo-

nent-to-component interactions.

A key–lock–neutral concept defines the shape space

(Fig. 5). Either a key, lock, or neutral shape is used on each

face of a component. A pair of complementary key and

lock shapes is used to create stable joints between com-

plementary components. A 5-magnetic-bit pattern is placed

within a key or a lock. However, the magnets are not flush

with the surface, creating an air gap, to allow for selective

binding between components by maintaining component-

to-component interactions to be adjustable (Whitesides and

Gryzbowski 2002). In this context, neutral means where no

assembly is possible. To simplify the evaluation of correct

self-assembly bond formations at the conclusion of the

self-assembly process (visually by the user), coloured cir-

cles are used (when possible) on neutral sites to identify

neighbouring 5-magnetic-bit patterns (referred to as inter-

action markers). The design of the components were dis-

covered through extensive preliminary trials and

experiments conducted by the authors, as well as exten-

sions to two-dimensional component designs (Bhalla et al.

2010). Component specifications are detailed in the

Appendix.

3.3.2 Physical component encoding schemes

Two examples are provided to demonstrate how the

assignment of the 5-magnetic-bit patterns to keys and locks,

as well as a further manipulation to the 5-magnetic-bit

A

B

C

D

E

F

G

H

I

J

K

L

360° 360° 180° 90° 90° 90°

Black White Purple Green Orange Yellow

Fig. 4 Six pairs of unique

5-magnetic-bit patterns, where a

closed circle represents

magnetic north and an open
circle represents magnetic

south, along with rotational

properties (360�, 180�, and 90�)

and colours associated with

each pair (used as paint markers

on components to indicate

information associated with

component-to-component

interactions)

Fig. 5 Component shape space (left; showing the base component

with information markers, the minimum component with lock shapes

on all six faces, and the maximum component with lock shapes on all

six faces), and example components (right; a component’s base shape

is 15 mm3 and a maximum height of 20 mm)

N. Bhalla et al.

123



patterns, can be used to reduce component-to-component

interaction errors and to direct the self-assembly process. In

the following two examples, 1 represents magnetic north and

0 represents magnetic south arbitrarily. A linear represen-

tation of the magnets on a component’s face are listed as:

centre, bottom-right, bottom-left, top-left, and top-right.

3.3.2.1 Minimise component key-to-key error interac-

tions In this first example, a single permanent magnet is

used in each location of the 5-magnetic-bit patterns. Using

this magnetic condition, the 5-magnetic-bit patterns can be

assigned to keys and locks to reduce key-to-key error

interactions (Table 2). In this example, the worst possible

match between magnets that can occur is a three out of five

match (e.g. D interacting with F).

3.3.2.2 Minimise component key-to-lock error interac-

tions In this second example, a single permanent magnet is

used in each location of the 5-magnetic-bit patterns which

are assigned to keys, and two permanent magnets are used in

each location of the 5-magnetic-bit patterns which are

assigned to locks. This magnetic condition is used to take

advantage of lock-to-lock interactions not being possible,

and allows for the reduction of key-to-lock error interactions

(Table 3). Although key-to-key interactions will still occur,

the environment temperature can be adjusted to break

magnetically weak key-to-key interactions and maintain

magnetically strong key-to-lock interactions. Furthermore,

there is more than one configuration of 5-magnetic-bit pat-

terns assigned to keys and locks to reduce key-to-lock error

interactions. The configuration in Table 3 is better suited for

use in the programming experiments and evolutionary

experiments as component-to-component interactions can

be reduced with respect to the features of the target structures

(which are provided in Sect. 4).

The corresponding physical environment information to

these two component physical encoding schemes consists

of a jar to provide a boundary for components, the place-

ment of the jar in a rack on an orbital shaker to provide

energy to the system (a parameter in setting environment

temperature), and mineral oil in the jar to allow compo-

nents to freely move in three spatial dimensions. Mineral

oil is used to prevent the permanent magnets from cor-

roding, and to provide the appropriate viscosity. The design

of the environment was discovered through extensive

preliminary trials and experiments conducted by the

authors. Environment specifications are detailed in the

Appendix.

3.4 Evolving self-assembly rule sets

The objective of the evolutionary algorithm is to search for

a good enough solution, i.e. a component set (type and

concentration) able to self-assemble into a single target

structure. Environment and system (fits and breaks) rules

are fixed. The following is an overview of the evolutionary

algorithm used, genotype and phenotype representations,

fitness function, and selection, crossover, and genetic

operators used.

3.4.1 Evolutionary algorithm

A generational evolutionary algorithm (Mitchell 1996) is

used. The evolutionary unit, gene, is a single component. A

databank of gene sequences (linear representation of the

Top–Left–Bottom–Right–Front–Back faces, using A–L

with subscripts 1–4 to indicate information orientation on a

face, and the ‘–’ symbol) is used to identify and compare

genes. There are 1,291,467,969 total and 53,977,737

unique genes (when considering three-dimensional shape

and rotations). In the following experiments, 10,000 gen-

erations and a population size of 100 individuals was used.

Elitism is used, where the top 10% of individuals are

copied to the next generation. The parameter settings of

Table 2 Key/lock designations

to 5-magnetic-bit patterns with

component information location

label (A–L), and system

interaction rules (‘?’ transition,

‘?’ assembly, ‘;’ disassembly,

and ‘Temp2’ temperature 2), to

reduce key-to-key error

interactions

Key/lock 5-Magnetic-bit Label Fits rule Breaks rule

Lock 00000 A A fits360 B ? A?B Temp2 breaks A?B ? A ; B

Lock 10000 C C fits360 D ? C?D Temp2 breaks C?D ? C ; D

Lock 01010 E E fits180 F ? E?F Temp2 breaks E?F ? E ; F

Lock 01100 G G fits90 H ? G?H Temp2 breaks G?H ? G ; H

Lock 11000 I I fits90 J ? I?J Temp2 breaks l?J ? 1 ; J

Lock 01000 K K fits90 L ? K?L Temp2 breaks K?L ? K ; L

Key 11111 B B fits360 A ? B?A Temp2 breaks A?B ? A ; B

Key 01111 D D fits360 C ? D?C Temp2 breaks A?B ? A ; B

Key 10101 F F fits180 E ? F?E Temp2 breaks F?E ? F ; E

Key 10011 H H fits90 G ? H?G Temp2 breaks H?G ? H ; G

Key 00111 J J fits90 1 ? J?l Temp2 breaks J?I ? J ; I

Key 10111 L L fits90 K ? L?K Temp2 breaks L?K ? L ; K

Programming and evolving self-assembling systems in 3D

123



10,000, 100, and 10% were determined from preliminary

experiments conducted by the authors. Parameter settings

in the preliminary experiments of 5,000, 50, and 10%

respectively, as used in (Bhalla et al. 2010) for evolving

two-dimensional self-assembling systems did not lead to

good solutions in the three-dimensional case. However,

parameter settings of 10,000 generations and 100 individ-

uals per generation did lead to good solutions.

3.4.2 Genotype and phenotype representations

An individual’s genotype representation is a variable

length list of genes (Fig. 6). At least two genes define a

genotype (since this is the minimum for self-assembly to

occur). An individual’s phenotype representation is the

resulting set of self-assembled structures. A single geno-

type representation may have more than one phenotype

representation, depending on the set of components and

assembly steps. As a worst-case example, a genotype that

consists of n components with information A on all faces

and n components with information B on all faces would

result in at most 2n! phenotypes. Consequently, it is not

practical to test all the resulting phenotypes corresponding

to a large genotype. Therefore, each individual (genotype)

is evaluated three times, at each generation, to help

determine the fitness of an individual.

3.4.3 Multi-objective fitness evaluation

A multi-objective fitness function is used to evaluate each

individual. The eight objectives can be categorised into

evaluating a general and a refined solution (Fig. 7). The

general solution has six objectives: (1) volume (V), (2)

surface area (S), (3) mean breadth (B), (4) Euler (E), (5) z-

axis, and (6) matches. The volume, surface area, mean

breadth, and Euler are calculated using Eqs. 1–4, where n3

is the number of cubes (components), n2 is the number of

faces, n1 is the number of edges, and n0 is the number of

vertices. Together, these six general objectives are suffi-

cient to describe the three-dimensional shape of the target

structures. The volume, surface area, integral mean cur-

vature, and Euler (connectivity of a shape) are calculated

using 3D Morphological Image Analysis (Blasquez and

Poiraudeau 2003; Michielsen and de Raedt 2000; Soille

2003). The second moment of inertia in the z-axis (Jr. et al.

2009) is calculated to identify either identical structures or

different structures which have similar reflected features.

To distinguish between reflected structures, the number of

matching components between a self-assembled structure

and the target structure is calculated. A refined solution is

accounted for by using two objectives: (7) locations, and

(8) error. We consider a refined solution as one that

minimises the number of remaining open assembly loca-

tions (for the creation of closed target structures), and

Table 3 Key/lock designations

to 5-magnetic-bit patterns with

component information location

label (A–L), and system

interaction rules (‘?’ transition,

‘?’ assembly, ‘;’ disassembly,

and ‘Temp2’ temperature 2), to

reduce key-to-lock error

interactions

Key/lock 5-Magnetic-bit Label Fits rule Breaks rule

Lock 00000 A A fits360 B ? A?B Temp2 breaks A?B ? A ; B

Lock 10000 C C fits360 D ? C?D Temp2 breaks C?D ? C ; D

Lock 01010 E E fits180 F ? E?F Temp2 breaks E?F ? E ; F

Lock 10011 H H fits90 G ? H?G Temp2 breaks H?G ? H ; G

Lock 00111 J J fits90 I ? J?I Temp2 breaks J?I ? J ; I

Lock 10111 L L fits90 K ? L?K Temp2 breaks L?K ? L ; K

Key 11111 B B fits360 A ? B?A Temp2 breaks A?B ? A ; B

Key 01111 D D fits360 C ? D?C Temp2 breaks A?B ? A ; B

Key 10101 F F fits180 E ? F?E Temp2 breaks F?E ? F ; E

Key 01100 G G fits90 H ? G?H Temp2 breaks G?H ? G ; H

Key 11000 I I fits90 J ? I?J Temp2 breaks I?J ? I ; J

Key 01000 K K fits90 L ? K?L Temp2 breaks K?L ??K ; L

(-,-,-,-,C1,-) (-,-,-,-,C1,-) (-,D1,-,-,F1,-) (-,-,-,D1,E1,-)

Fig. 6 Example genotype where brackets are represented as (Top,

Left, Bottom, Right, Front, Back) (bottom), and where the 180

rotational component-to-component interaction for information E and

F (represented as a dark line) can lead to two possible phenotypes as a

result of self-assembly

N. Bhalla et al.

123



potential assembly errors (due to magnetic interactions).

Errors in magnetic interactions is applied to all potential

two-component key-to-lock and key-to-key (all five mag-

nets positions are considered in key-to-key errors, and

partial interactions are not accounted for) in a system. The

potential magnet error is calculated as the sum of the scores

in Table 4, where each cell in the matrix is the sum of

errors occurring between two pieces of information in all

for orientations. The combination of these two objectives

also reduce the number of unique components required, as

well as favouring 5-magnetic-bit patterns with higher

rotational freedom.

V ¼ n3 ð1Þ
S ¼ �6n3 þ 2n2 ð2Þ
B ¼ 3n3 � 2n2 þ n1ð Þ=2 ð3Þ
E ¼ �n3 þ n2 � n1 þ n0 ð4Þ

Each objective is normalised, using the highest and

lowest fitness scores from the current generation (Bentley

and Wakefield 1997). This method has been shown to be

an effective way to calculate multi-objective fitness

(Corne and Knowles 2007). For objective i (where i

varies from 1 to 6) the average normalised objective

(ANOi) over three 3DcTAM evaluations is calculated and

compared to the target objective (TOi) value. For objec-

tive seven, the normalised average over the three

3DcTAM evaluations (ANO7) is calculated. For objective

eight, the normalised objective (NO8) is calculated with

respect to a genotype. The average is not used with

objective 8 as the error calculated is based exclusively on

a genotype, and does not vary over the three 3DcTAM

evaluations. The objectives are then weighted and sum-

med to give a final fitness score F (Eq. 5). The weights

were selected from preliminary experiments, and based

on experiments conducted by the authors using similar

objectives that are appropriate for self-assembling sys-

tems in two spatial dimensions (Bhalla et al. 2010). It

was found that a weighting where the refined objectives

accounted for more than 10% of the overall fitness

function did not lead to good solutions.

A1B1
B1

A1
A1

-

-

-

-

-

-

D1

I

II

III IV

Fig. 7 Fitness objective examples: structure I (n3 = 3, n2 = 16,

n1 = 28, and n0 = 16), structures II and III have the same moment of

inertia, the number of matches between structures II and III which

have similar reflected features is 3, the number of open locations is 2

(indicated using black circles in IV; two-dimensional top view

corresponding to Fig. 3), and the potential error score in IV is 8

(Table 4)

Table 4 Magnetic error

interactions matrix (in reference

to Table 3), where the numbers

are the sum of all errors between

information in the four

orientations (using the number

of magnets, i.e. two or one, in

each mismatched location), and

where N/A is in reference to

lock-to-lock interactions not

being possible

A B C D E F G H I J K L

A N/A

B 0 0

C 12 32 N/A

D N/A 8 0 0

E N/A 36 N/A 24 N/A

F 36 24 24 24 6 16

G 24 24 36 16 24 24 16

H N/A 24 N/A 36 N/A 24 21 N/A

I 36 24 12 32 36 16 24 24 12

J N/A 24 N/A 12 N/A 36 24 N/A 27 N/A

K 12 32 36 24 24 24 16 36 20 30 12

L N/A 12 N/A 24 N/A 24 36 N/A 30 N/A 27 N/A

Programming and evolving self-assembling systems in 3D

123



F ¼ 0:15
X6

i¼1

TOi � ANOij j
 !

þ 0:05 ANO7 þ NO8ð Þ

ð5Þ

3.4.4 Selection, crossover, and genetic operators

The fitness scores for each individual are used during

selection. Roulette-wheel selection is used to select two

parents (favouring lowest fitness scores). The two parents,

using a variable-length crossover operator, are used to

create two children. Each common gene (determined by the

gene databank) between the two parents is copied to each

child. Each uncommon gene, for example the gene from

parent one, has a 90% probability of being copied to child

one (likewise for parent two and child two). After cross-

over is performed to create two children, the genetic

operators duplication, deletion, and mutation are applied to

each child. There is a 10% probability of a single gene,

chosen at random, of being duplicated, and likewise being

deleted. For each information location in a gene, there is a

10% probability of being mutated (equal probability A–L

in all four orientations, and –). The parameter settings for

crossover, duplication, deletion, and mutation were deter-

mined based on experiments in two spatial dimensions that

use the same parameter settings conducted by the authors

(Bhalla et al. 2010).

4 Experiments and results

We present eight experiments to demonstrate how self-

assembling systems can be designed in three dimensions,

using the three-level approach as a programming design

method (five experiments) and incorporating evolutionary

computing into the three-level approach as an evolutionary

design method (three experiments). The programming

experiments are used to test our three-dimensional physical

information encoding scheme. The evolutionary experi-

ments are used to test the three-level approach for the

bottom-up generation of self-assembling systems using the

functionality of the target structures.

4.1 Programming three-dimensional self-assembling

systems

Our hypothesis for the programming experiments was,

given the attributes of a target structure, information

encoded in the components can be used to enable those

components to self-assemble into a three-dimensional tar-

get structure. The three-level approach was used to test our

hypothesis. A target structure was assigned to each

experiment (Fig. 8). For each experiment, enough com-

ponents were supplied to create up to three target struc-

tures. Ten trials were run for each experiment. A virtual

trial (level two) was evaluated as successful if all three

target structures were created. A physical trial (level three)

was evaluated as successful if at least one target structure

was created. The difference in the number of created target

structures for successful evaluation is due to physical self-

assembly being more challenging than modelling. The

experimental procedure and results for the programming

experiments are described in terms of the three-level

approach.

4.1.1 Level one: definition of rule set for programming

experiments

These five target structures were chosen since they offer

degrees of complexity in terms of the number of compo-

nents and their concentration, and symmetric/asymmetric

features in the target structures. Consequently, the five

target structures cannot be created by using the underlying

Fig. 8 Target structures for the

programming experiments

(experiments 1–5 from left to
right)

N. Bhalla et al.

123



cubic-grid pattern of component formations exclusively.

Therefore, it is appropriate to determine if the information

encoded in the components is sufficient to achieve the

target structures by self-assembly.

In these experiments, the independent variable is the set

of components, defined by their type and concentration.

The dependent variable is the resulting set of self-assem-

bled structures. For each experiment, a designed compo-

nent set is specified along with a randomly generated

component set, in order to test the independent variable.

For the designed component sets, component types and

concentration were specified to create a single target

structure. After this initial set was specified, the quantity of

each component type was multiplied by three in order to

increase the chances of being able to create up to three

examples of the target structures. For the randomly gen-

erated component sets, component types were specified by

selecting with uniform probability the information (A–L

and their orientation 1–4 on a component’s face, and –)

assigned to each information location. Then the quantity of

each component type was multiplied by three in order to

increase the chances of being able to create up to three

examples of the target structures. This method for creating

the designed and randomly generated component sets was

chosen as part of our experimental set-up with the aim of

providing proof-of-concept evidence to our programming

approach, by conducting a statistical significance test

(details provided in the level two and three experimental

results). A summary of the component rules used for each

experiment is provided in Table 5.

4.1.2 Level two: virtual execution of rule set

for programming experiments

3DcTAM was used to evaluate the ability of each self-

assembly rule set (designed or random) to create its

respective target structures. The level two experimental

set-up and results are provided.

4.1.2.1 Level two: experimental set-up The component

sets from Table 5 were mapped to an abstract representa-

tion for 3DcTAM. Each component’s shape was a unit

cube. The size of the environment was represented as 4 by

4 by 4 units (width, depth, and height). These environment

dimensions are related to the physical dimensions of the

environment as a ratio between the physical components

and environment, and rounded down to the nearest unit.

Since 3DcTAM selects tiles/substructures at random to step

through the self-assembly process, a different random seed

was used to initialise 3DcTAM for each trial. Ten trials

were conducted for each experiment.

4.1.2.2 Level two: experimental results Each designed

component set successfully created three of their applicable

target structures (Fig. 8). These results show that even

without a tile (component) acting as a seed, it is still possible

to create multiples of the same target structure, when

appropriate component information is used. In contrast, none

of the randomly generated component sets successfully

created at least one target structure, in each experiment. The

reasons for the unsuccessful randomly generated component

sets include components having uncomplementary infor-

mation within their component sets (experiments two and

five), component sets not being able to consistently create

structures due to rotational information (experiments three

and four), and components creating structures consisting of

at most two components (experiment one). Fisher’s Exact

Test (Cox and Snell 1989) (one-sided) for analysing binary

data was used to analyse the results of the level two pro-

gramming experiments (Table 6). The results are statisti-

cally significant, with a p value of 0. These successful results

provide evidence to support our hypothesis at level two.

4.1.3 Level three: physical realisation of rule set

for programming experiments

With the success of each system using a designed com-

ponent set at level two, a level three translation was

Table 5 Designed and

randomly generated component

sets [represented as (Top, Left,

Bottom, Right, Front,

Back) 9 #, where the directions

refer to component information

locations and the # symbol

represents quantity] for the

programming experiments

(PEX1–PEX5)

Experiment Designed/random Component set

PEX1 Designed (A1,–,–,–,–,–) 9 9, (B1,–,–,B1,B1,–) 9 3

Random (G3,–,H1,–,B1,–) 9 9, (K2,–,–,L4,–,–) 9 3

PEX2 Designed (C1,–,–,–,–,–) 9 9, (E1,–,–,–,D1,–) 9 3, (F2,D1,–,D1,–,–) 9 3

Random (–,A1,–,C1,C1,–) x 9,(–,–,–,C1,–,G3) x 3,(F2,–,–,L2,J4,–) x 3

PEX3 Designed (B1,–,–,–,–,–) 9 6, (H1,–,–,–,–,A1) 9 3, (G1,–,–,A1,–,–) 9 3

Random (–,–,H1,F1,K2,–) 9 6, (–,A1,E2,K1,–,–) 9 3, (G4,–,K1,L3,–,–) 9 3

PEX4 Designed (D1,–,–,–,–,–) 9 6, (l1,–,–,–,C1,–) 9 3, (J1,–,–,–,C1,–) 9 3

Random (B1,–,–,–,–,I4) x 6, (–,–,–,H1,J1,E2) x 3, (G4,–,–,A1,–,F1) x 3

PEX5 Designed (B1,–,–,–,–,–) x 6, (L1,–,–,–,–,A1) x 3, (K1,–,–,–,A1,–) x 3

Random (I3,I4,–,–,A1,–) 9 6, (–,–,–,C1,–,–) 9 3, (H4,F2,–,K1,–,–) 9 3

Programming and evolving self-assembling systems in 3D

123



performed to test if the translated component set of each

experiment could self-assemble into its respective target

structure. A level three translation was not performed on

the systems using a randomly generated component set,

since they were not successful. The level three experi-

mental set-up and results are provided.

4.1.3.1 Level three: experimental set-up For each

experiment trial, components were randomly placed in a jar

of mineral oil, and placed on an orbital shaker (their

environment). Details on the physical experimental set-up

are provided in the Appendix. Each system was shaken for

20 min (similar to Bhalla et al. 2011), after which the state

of each system was recorded, including observations for:

the number of target structures created, the number of

matching errors (between conflicting components), the

number of rotation errors (between complementary

components), and the number of assembly errors (partial

attachment where no fits rule is applicable).

4.1.3.2 Level three: experimental results Each experi-

ment was successful in creating at least one target structure

(Fig. 9). Figure 10 shows an example of a successful trial

from each experiment. In experiment one and two, there

were no matching and rotation errors (as this was not

possible due to the 5-magnetic-bit patterns present), and no

assembly errors. Figure 11 shows the rotation errors for

experiments three, four, and five. There were no matching

and assembly errors in experiments three, four, and five.

Fisher’s Exact Test (one-sided) for analysing binary data

was used to determine the statistical significance of creat-

ing target structures in each experiment (Table 7). All five

programming experiments are statistically significant at the

0.01 level (i.e. there is a 99% percent certainty the results

are not due to chance). These successful programming

experiments provide evidence to support our hypothesis

that given the attributes of a target structure, information

encoded in the components could be used to direct the

components to self-assemble into a three-dimensional tar-

get structure.

4.2 Evolving three-dimensional self-assembling

systems

Our hypothesis for the evolutionary experiments was,

given the attributes of a target structure, an evolutionary

algorithm can be used to evolve a set of component rules,

which can be mapped to a physical system consisting of an

environment containing those components that are able to

self-assemble into the three-dimensional target structure.

The three-level approach with the incorporation of evolu-

tionary computation was used to test our hypothesis. A

Table 6 The number of successful and unsuccessful trials for each

designed and random programming experiment (PEX1–PEX5) at

level two, with corresponding p value calculated using Fisher’s Exact

Test (one-sided) for analysing binary data

Experiment Designed/

random

Successful Unsuccessful p value

PEX1 Designed 10 0 0

Random 0 10

PEX2 Designed 10 0 0

Random 0 10

PEX3 Designed 10 0 0

Random 0 10

PEX4 Designed 10 0 0

Random 0 10

PEX5 Designed 10 0 0

Random 0 10

Fig. 9 Number of target

structures created in each of the

10 trails (TR1–TR10), for each

of the five programming

experiments (PEX1–PEX5) at

level three

N. Bhalla et al.

123



target structure was assigned to each experiment (Fig. 8).

As with the programming experiments, enough compo-

nents were supplied to create up to three target structures,

and 10 trials were run for each experiment. A trial was

evaluated as successful if all three target structures were

created for a virtual trial (at level two), and if at least one

target structure was created for a physical trial (at level

three). The three-level approach is used to describe the

experimental procedure and results for the evolutionary

experiments.

Fig. 10 Photographs of

successful level three

programming experiment trials

(PEX1–PEX5)

Fig. 11 Number of rotation

errors in each of the 10 trails

(TR1–TR10), for the last three

programming experiments

(PEX3–PEX5) at level three

Programming and evolving self-assembling systems in 3D

123



4.2.1 Level one: definition of rule set for evolutionary

experiments

These three target structures were chosen for the same

reasons as the target structures for the programming

experiments. In these experiments, the independent vari-

able is the set of components, which are defined by their

type and concentration. In these experiments, the depen-

dent variable is the resulting self-assembled structures. To

test the independent variable, an evolved component set is

generated along with a randomly generated component set.

The initial individual (genotype) length was set to the

required number of components to create one target

structure. Ten runs were conducted for each evolutionary

experiment. For the randomly generated component set,

components were created by selecting the information

associated with each site with uniform probability. The

number of components randomly generated were equal to

the required number of components to create one target

structure.

Although multiple solutions were evolved for each

experiment, the selected solutions were based on those

which used component designs previously used by the

authors (in order to reduce the rapid prototyping financial

costs). The number of components specified (evolved and

random) were multiplied by three in order to increases the

chances of being able to create up to three examples of the

target structures. This method for creating the evolved and

randomly generated component sets was chosen as part of

our experimental set-up with the aim of providing proof-of-

concept evidence to our evolutionary approach, by con-

ducting a statistical significance test (details provided in the

level two and three experimental results). The component

sets used in the evolutionary experiments is provided in

Table 8.

4.2.2 Level two: virtual execution of rule set

for evolutionary experiments

3DcTAM was used to evaluate the ability of each self-

assembly rule set (evolved or random) to create its

respective target structures. Although the 3DcTAM is used

by the evolutionary algorithm, it used to verify the creation

of three target structures (Fig. 12). The level two experi-

mental set-up and results are provided.

4.2.2.1 Level two: experimental set-up With the excep-

tion of component mapping following Table 8, the same

level two experimental set-up from the programming

experiments was used for the level two evolutionary

experiments.

4.2.2.2 Level two: experimental results Table 9 provides

the results of the evolutionary experiments at level two.

Each evolved component set successfully created all three

target structures, whereas the randomly generated compo-

nents sets were unsuccessful in generating any target

structures. Along with the level two programming experi-

ments, these evolved results further support that seed tiles

(components) are not required to create target structures.

The causes for the unsuccessful randomly generated results

follow the same reason as the level two programming

experiments of component sets having uncomplementary

information (experiments one and two), and component

sets not being able to consistently create structures due to

rotational information (experiment three). To analyse the

Table 7 Number of successful and unsuccessful trials for the pro-

gramming experiments (PEX1–PEX5) at level three, with corre-

sponding p values [calculated using Fisher’s Exact Test (one-sided)

for analysing binary data, with respect to 0 successful and 10

unsuccessful trials for the random sets for each programming

experiment from their level two results]

Experiment Successful Unsuccessful p value

PEX1 10 0 0

PEX2 7 3 0.002

PEX3 9 1 0

PEX4 7 3 0.002

PEX5 9 1 0

Table 8 Evolved and randomly generated component sets [represented as (Top, Left, Bottom, Right, Front, Back) 9 #, where the directions

refer to component information locations and the # symbol represents quantity] for the evolutionary experiments (EEX1–EEX3)

Experiment Evolved/random Component set

EEX1 Evolved (–,A1,–,A1,–,–) x 3, (–,–,B1,–,–,–) x 6

Random (–,–,E2,–,A1,A1) x 3, (D1,H1,–,–,–,–) x 6

EEX2 Evolved (–,–,D1,–,–,–) 9 12, (–,–,–,E2,C1,C1,) 9 3, (C1,–,C1,–,–,F1) 9 3

Random (A1,–,A1,–,K2,J3) x 12, (–,K4,D1,–,–,–) x 3, (–,–,A1,D1,-,-) x 3

EEX3 Evolved (–,–,–,–,–,B1) 9 9, (–,K1,A1,–,A1,–) 9 3, (A1,–,–,–,L4,–) 9 3

Random (–,G3,F1,–,F1,–,) 9 9, (–,E1,B1,–,–,–) 9 3, (–,D1,–,–,–,E2) 9 3

N. Bhalla et al.

123



evolutionary results, Fisher’s Exact Test (one sided) for

analysing binary data was used. These successful results

provide evidence to support our hypothesis at level two.

4.2.3 Level three: physical realisation of rule set

for evolutionary experiments

Each system using an evolved component set was suc-

cessful at level two. As a result, a level three translation

was performed to test if the translated component set of

each evolved system could self-assemble into its respective

target structure. Since the results were unsuccessful, a level

three translation was not performed on the random systems.

The level three experimental set-up and results are

provided.

4.2.3.1 Level three: experimental set-up The same level

three physical experimental set-up used in the program-

ming experiments was used for the level three evolutionary

experiments, with the exception of jar placements on the

orbital shaker (see Appendix). At the conclusion of each

physical evolutionary experiment trial, the state of system

was recorded (number of target structures created, match-

ing errors, rotation errors, and assembly errors).

4.2.3.2 Level three: experimental results Figure 13

shows the results for each evolutionary experiment at level

three. Figure 14 shows an example of the final state of a

successful trial, for each experiment. Rotation errors did

not occur in experiment one and two, but did in experiment

three (one rotation error in trial one). Matching and

assembly errors did not occur in all three evolutionary

experiments. Fisher’s Exact Test (one-sided) for analysing

binary data was used to determine the statistical signifi-

cance of creating target structures in each experiment

(Table 10). All three evolutionary experiments are statis-

tically significant at the 0.01 level. These successful evo-

lutionary experiments provide evidence to support our

hypothesis that given the attributes of a target structure, an

evolutionary algorithm could be used to evolve a set of

component rules, which can be mapped to a physical sys-

tem consisting of an environment containing components

that are able to self-assemble into the three-dimensional

target structure.

4.3 Discussion

Here we summarise the experimental results, consider

areas of future work to improve our self-assembly design

approach, and consider applications of our work.

4.3.1 Experiment results summary

Eight experiments were conducted to demonstrate two

design methods using the three-level approach, program-

ming (five experiments) and evolution (three experiments).

At level two, all of the designed (programmed) and

evolved component rule sets were successful in creating

Fig. 12 Target structures for

the evolutionary experiments

(experiments 1–3 from left to
right)

Table 9 The number of successful and unsuccessful trials for each

evolved and random evolutionary experiment (EEX1–EEX3) at level

two, with corresponding p value calculated using Fisher’s Exact Test

(one-sided) for analysing binary data

Experiment Designed/

random

Successful Unsuccessful p value

EEX1 Designed 10 0 0

Random 0 10

EEX2 Designed 10 0 0

Random 0 10

EEX3 Designed 10 0 0

Random 0 10

Programming and evolving self-assembling systems in 3D

123



their respective target structures. In contrast, all of the level

two randomly generated component sets (for both pro-

gramming and evolutionary experiments) were unable to

create a single respective target structure. At level three, all

of the designed and evolved component rule sets were able

to create at least one respective target structure. The level

three physical results are at least statistically significant at

the 1% level for both the programming and evolutionary

experiments. These successful results add to those previ-

ously achieved by our three-level approach to self-assembly

design (Bhalla et al. 2007, 2010, 2011; Bhalla and Bentley,

in press). As well, these successful results support our proof-

of-concept three-dimensional physical systems, including

techniques to: encode component rotational informa-

tion, reduce component-to-component error interactions,

and direct the self-assembly process in three spatial

dimensions.

4.3.2 Future work

To improve upon our proof-of-concept results, we consider

a number of areas related to our self-assembly design

approach as future work. These areas include improve-

ments to the evolutionary algorithm used, simulation

methods at level two, and extensions to the physical sys-

tems (considering both the environment and components).

Improvements to the evolutionary algorithm include

conducting experiments to determine if there are better

parameter settings for the number of generations, population

size, and number of genotype evaluations, as well as for the

Fig. 13 Number of target

structures created in each of the

10 trails (TR1–TR10), for each

of the three evolutionary

experiments (EEX1–EEX5) at

level three

Fig. 14 Photographs of

successful level three

evolutionary experiment trials

(EEX1–EEX3)

N. Bhalla et al.

123



selection, crossover, and genetic operators. Similarly,

investigations into objective weightings, and new objectives

(e.g. when considering refined solutions), should also be

conducted to improve multi-objective fitness evaluations.

Lastly, enhancements to the canonical genetic algorithm

used here should also be considered, as another method to

improve the evolved results. As future work we look to being

able to evolve multiple target structures simultaneously.

An overall improvement to the three-level approach

would be augmentations of the level two modelling. Such

an augmentation includes the use of both an abstract, tile-

based model (e.g. 3DcTAM) for computationally efficient

evaluation of a set of self-assembly rules, along with a

physics-based model for evaluation of a translated set of

self-assembly rules. For example, only self-assembly rule

sets that are successful in the tile-based model would be

evaluated using the physics-based model for a more effi-

cient use of computational resources. Such an augmenta-

tion would be beneficial when evolving self-assembling

systems, as a better assessment of the complexity of the

evolved structures while minimising the number of physi-

cal evaluations could be conducted.

We are also considering extensions to the physical sys-

tems, to both the environment and components, for more

robust results. Although it was qualitatively observed that

structures would assemble, disassemble, and new structures

would emerge periodically, a better experimental set-up to

record quantitative environment observations would assist in

making improvements to the environment. New experiments

for testing the various environment variables (e.g. shaking

speed and duration) would also lead to more robust physical

results. Evaluating the resulting environment data would be

required to also consider future experiments where changes

in the environment (such as fluctuations in temperature)

could be used to direct the self-assembly process (referred to

as temperature programming; Kao and Schweller 2006). As

well, we look to further investigate self-assembling systems

in three dimensions featuring higher complexity, using

components with more sophisticated morphologies

(including shape spaces and higher-order magnetic-bit

patterns).

4.3.3 Applications

In general, the advantages of three-dimensional self-

assembly include the creation of structures that make a more

efficient use of volume, as well as shorter interconnections

between components (Whitesides and Gryzbowski 2002).

Specifically, we envision our three-level approach being

applicable to the design of structures (including at the nano

and microscale), circuit fabrication, modular and swarm

robotics control systems, synthetic biology, and DNA com-

puting using self-assembly. For example, three-dimensional

DNA computing has been proposed, but the required com-

ponents have not existed at the time of writing (Pelletier and

Weimerskrich 2002). Furthermore, potential applications for

three-dimensional self-assembly includes the creation of

hybrid rapid prototyping technologies that make use of self-

assembly at larger physical scales (Hiller and Lipson 2009),

and potentially at the nanoscale (Gates et al. 2005).

5 Conclusions

We presented an extension of our three-level approach to

address the shortcomings of designing and creating self-

assembling systems in three spatial dimensions. The work

presented here progresses techniques to solve an open

problem in self-assembly, of being able to create a set of

components and their environment, such that the compo-

nents self-assemble into a target structure. The contribu-

tions of this work includes the development of new self-

assembly rules that include rotational information, the

creation of the 3DcTAM which is Turing Universal at

temperature one, and the demonstration of new physical

components to create target structures with symmetric and

asymmetric features in three dimensions. We presented

eight proof-of-concept experiments to demonstrate design

methods for three-dimensional self-assembly. The suc-

cessful results demonstrate how the three-level approach,

by incorporating evolutionary computation, can be used for

programming and evolving physical self-assembling sys-

tems in three dimensions.

Acknowledgments We would like to thank the two anonymous

reviewers for their thoughtful and insightful comments.

Appendix

The following is a list of the materials and methods for

constructing physical components and their corresponding

environment, as well as the physical experimental proce-

dure (at level three, using the three level approach) for the

programming and evolution experiments.

Table 10 Number of successful and unsuccessful trials for the evo-

lutionary experiments (EEX1–EEX5) at level three, with corre-

sponding p values [calculated using Fisher’s Exact Test (one-sided)

for analysing binary data, with respect to 0 successful and 10

unsuccessful trials for the random sets for each evolutionary experi-

ment from their level two results]

Experiment Successful Unsuccessful p value

EEX1 10 0 0

EEX2 7 3 0.002

EEX3 8 2 0

Programming and evolving self-assembling systems in 3D

123



Component materials and methods

The materials, including tools, used for constructing com-

ponents include:

• Eden 333 Polyjet rapid prototyping machine

• Vero Gray resin

• Neodymium (NdFeB) disc magnets; 1/1600 9 1/3200

(diameter 9 height), grade N50

• Magnetic pole identifier

• Magnet placement tools

• Vice; built from a PanaVise bench clamp mount, a

PanaVise low profile base, and a PanaVise low profile

head

• Sharpie paint pens; oil based, fine point (colours: black,

white, purple, yellow, green, and orange) and extra fine

point (colours: red and blue)

• Rhino3D version 4.0 computer-aided design (CAD)

software

The method for constructing the components has the

following eight steps:

1. Create the CAD files using Rhino3D for the magnet

placement tool (specifications provided in Fig. 15) and

for the components, based on the specifications in

Fig. 16 and in association with the components’ shape

space (to determine key, lock, and neutral information

locations on each component, as well as any compo-

nent interaction markers on neutral shapes adjacent to

information locations).

2. Fabricate four magnet placement tools (two with a

magnet in the centre, and two with a magnet in the

corner) and the components using an Eden 333 Polyjet

rapid prototyping machine with Vero Gray resin and

the CAD files.

3. Insert three neodymium disc magnets in each magnet

placement tool, to create one tool with magnetic north

polarity and the other with magnetic south polarity

(identify polarity using the magnetic pole identifier).

4. Paint the magnet placement tools, using the sharpie

paint pens (blue for magnetic north and red for

magnetic south), to complete the construction of the

magnet placement tools.

5. Insert magnets into the components by first identifying

the appropriate 5-magnetic-bit pattern for each key and

lock, and then placing magnets on the appropriate

magnet placement tool (two magnets for a key shape

and three magnets for a lock shape) and using the vice

to insert the magnets into the appropriate location in

the 5-magnetic bit pattern (Fig. 17).

6. Remove the magnet placement tool and component

from the vice and separate the component placement

tool and the component (the extra magnet will dislodge

and create an air gap on the component where the

magnets were inserted; this follows the component

physical encoding scheme for minimising key-to-lock

error interactions provided in Table 3).

7. Repeat steps seven and eight until all magnets have

been inserted into all the components.

8. Paint, using the sharpie paint pens, the magnets that

have been placed in the components (blue for magnetic

north and red for magnetic south) and any component

interaction markers (refer to Fig. 4 to use the appro-

priate colours), to complete the construction of the

components.

Environment materials and methods

The materials, including tools, used for constructing the

environment include:

• Trotec Speedy 300 Laser Engraver laser cutting

machine

• Acrylic sheet; transparent, 3 mm in height

• Mill board; 0.8 mm in height

• Screws; first type (5/800 in length, pan head, 6-32 UTS,

18-8 grade stainless steel), second type (1/400 in length,

pan head, 6-32 UTS, 18-8 grade stainless steel)

• Hex nuts; 6-32 UTS, 18-8 grade stainless steel

1.00

2.
50

15
.0

0
2.

55
0.

50

13.00

15.00

7.50
5.95

R0.80

R1.53

R0.80

Fig. 15 Magnet placement tool specifications (counter-clockwise

from top right: perspective, top, front, right views), with all

construction units in mm; note two magnet locations are shown at

the top of the component (centre and corner), however only one

magnet location should be used per tool (two locations are show here

to reduce the number of technical drawings)

N. Bhalla et al.

123



• Glue; Loctite, regular, gel

• Angle brackets; 100, stainless steel

• New Brunswick Scientific Excella E1 Platform Shaker

• Adobe Illustrator Creative Suite 4

The method for constructing the environment has the

following six steps:

1. Create the CAD files using Adobe Illustrator for the jar

rack parts (Fig. 18).

2. Fabricate the jar rack parts (two bottom parts a and b,

two side parts, and one top part) using a Trotec Speedy

300 Laser Engraver laser cutting machine using mill

board for the jar sleeve and acrylic for the remaining

environment jar rack parts, and the CAD files.

3. Glue the three bottom jar rack parts together (bottom

parts a both below bottom part b).

4. Construct the jar rack by using the screws, hex nuts,

and corner braces to secure the bottom, sides, and top

parts of the jar rack, and using the screws and hex nuts

to secure the jar sleeve to the top of the jar rack.

5. Fold the overhang pieces of the jar rack sleeve over the

holes for the jars in the top par of the jar rack.

6. Place the jar rack on the shaker (Fig. 19), and secure

the jar rack to the shaker using the screw on the side of

shaker’s platform (these screws are supplied with the

shaker), to complete construction of the environment.

Physical experimental procedure

The materials required to conduct the physical experi-

mental procedure include:

• Graduated cylinder

• Mineral oil; Rogier Pharma light grade

• Stopwatch

• Jars; VWR clear glass wide mouth, plastic lid with

rubber liner, 500 ml capacity, 91 mm by 95 mm

(diameter by height)

R1.52

7.
50

7.50R1.53

R1.52

R1.520.50
2.

20

7.50

13.00
1.

35
2.

50
13

.0
0

15
.0

0

13.00
15.00

Fig. 16 Component

specifications showing the base

component dimensions, key

shape, lock shape, and

interaction markers (counter-

clockwise from top right:
perspective, top, front, right

views), with all construction

units in mm

Fig. 17 Example of constructing a component during a vice press,

and magnet placement tool (left) and component (right) inside the

vice

Programming and evolving self-assembling systems in 3D

123



The physical experimental procedure, for both the pro-

gramming and evolutionary experiments, has the following

seven steps:

1. Create the CAD files using Adobe Illustrator for the

jar rack parts (Fig. 19, specifications provided in

Fig. 18).

2. Measure 325 ml of mineral oil using the graduate

cylinder for each jar used in the programming

experiments (five jars) and the evolutionary experi-

ments (3 jars).

3. Place the jars of mineral oil in the jar rack (Fig. 20).

4. Randomly place the components for each experiment

into the appropriate jar, and secure the jar lid.

5. Turn the shaker on by setting the speed to 32.5

rotations per minute, and start the stopwatch.

6. Stop the shaker after 20 min.

7. Record the state of each system.

Fig. 18 Environment parts for jar rack (from top left to bottom: bottom part A, bottom part B, top part A, jar sleeve, and side part), with all

construction units in mm

N. Bhalla et al.

123



References

Adleman L (1994) Molecular computation of solutions to combina-

torial problems. Science 266(5187):1021–1024

Adleman L, Cheng Q, Goel A, Huang M-D, Kempe D, de Espanés

PM, Rothemund PWK (2002) Combinatorial optimization

problems in self-assembly. In: 34th ACM international sympo-

sium on theory of computing, New York

Ampatzis C, Tuci E, Tuci V, Christensen AL, Dorigo M (2009)

Evolving self-assembly in autonomous homogeneous robots:

experiments with two physical robots. Artif Life 15(4):1–20

Ball P (1999) The self-made tapestry pattern formation in nature.

Oxford University Press, Oxford

Bentley PJ, Wakefield JP (1997) Finding acceptable solutions in the

pareto-optimal range using multiobjective genetic algorithms. In:

Chawdry PK, Roy R, Pant RK (eds) Soft computing in

engineering design and manufacturing. Springer Verlag London

Limited, Heidelberg, pp 231–240

Berger R (1966) Memoirs of the american mathematical soceity—the

undecidability of the domino problem. American Mathematical

Society, Providence

Bhalla N, Bentley, PJ. Programming physical self-assembling systems

via physically encoded information. In: Doursat R, Sayama H,

and Michel O (eds) Morphogenetic engineering: toward pro-

grammable complex systems. NECSI ‘‘Studies on Complexity’’

Series. Springer-Verlag (in press)

Bhalla N, Bentley PJ, Jacob C (2007) Mapping virtual self-assembly

rules to physical systems. In: Proceedings of the international

conference on unconventional computing (UC 2007), Bristol

Bhalla N, Bentley PJ, Jacob C (2010) Evolving physical self-

assembling systems in two-dimensions. In: Proceedings of the

international conference on evolvable systems (ICES 2010)

Bhalla N, Bentley PJ, Vize PD, Jacob C (2011) Staging the self-

assembly process using morphological information. In: Proceed-

ings of European conference on artificial life, Paris, France

Blasquez I, Poiraudeau J-F (2003) Efficient processing of Minkowski

functionals on a 3D binary image using binary decision

diagrams. J WSCG 11(1)

Boncheva M, Bruzewicz DA, Whitesides GM (2003a) Formation of

chiral, three-dimensional aggregates by self-assembly of helical

components. Langmuir 19:6066–6071

Boncheva M, Bruzewicz DA, Whitesides GM (2003b) Millimeter-

scale self-assembly and its applications. Pure Appl Chem

75(5):621–630

Boncheva M, Andreev SA, Mahadevan L, Winkleman A, Reichman

DR, Prentiss MG, Whitesides S, Whitesides GM (2005)

Magnetic self-assembly of three-dimensional surfaces from

planar sheets. Proc Natl Acad Sci 102(11):3924–3929

Brun Y (2008a) Constant-size tileset for solving an NP-complete

problem in nondeterministic linear time. In: Garzon MH, Yan H

(eds) DNA. Springer, Berlin, pp 26–35

Brun Y (2008b) Solving NP-complete problems in the tile assembly

model. Theor Comput Sci 395:31–46

Buchanan A, Gazzola G, Bedau MA (2008) Evolutionary design of a

model of self-assembling chemical structures. In: Krasnogor N,

Gustafson S, Pelta DA, Verdegay JL (eds) Systems self-

assembly: multidisciplinary snapshots. Elsevier, Amsterdam

Callicott N (2001) Computer-aided manufacture in architecture: the

pursuit of novelty. Architectural Press, Oxford

Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with

the connectivity of a cube. Nature 350:631–633

Cook SA (1971) The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on theory of

compuitng (STOC), pp 151–158

Cook M, Fu Y, Schweller R (2011) Temperature 1 self-assembly:

deterministic assembly in 3D and probabilistic assembly in 2D.

In: Proceedings of the 22nd annual ACM-SIAM symposium on

discrete algorithms (SODA 2011)

Corne D, Knowles J (2007) Techniques for highly multiobjective

optimisation: some nondominated points are better than others.

In: Lipson H (ed) Genetic and evolutionary computing confer-

ence, London, pp 773–780

Cox DR, Snell EJ (1989) Analysis of binary data. Chapman and Hall/

CRC Press, London

Crick FHC (1970) Central dogma of molecular biology. Nature

227:561–563

Culik K (1996) An aperiodic set of 13 wang tiles. Discr Math

160:245–251

Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009)

Self-assembly of DNA into nanoscale three-dimensional shapes.

Nature 459:414–418

Fig. 19 Photograph of the environment with the jar rack secured to

the shaker, and a jar with mineral oil containing components as an

example (jars of mineral oil are used to finalise the component’s

environment; details are provided in physical experimental

procedure)

PEX2

PEX5PEX1

PEX4

PEX3

EEX1

EEX3

EEX2

Fig. 20 Jar configuration (top view) for the programming experi-

ments (left, PEX1–PEX5) and the evolutionary experiments (right,
EEX1–EEX3), where the labels is the figure correspond to the

experiment numbers provided in Tables 5 and 8, respectively

Programming and evolving self-assembling systems in 3D

123



Garey M, Johnson DS (1979) Computers and intractability: a guide to

the theory of np-completeness. W.H. Freeman and Company,

San Francisco

Gates BD, Xu Q, Stewart M, Ryan D, Wilson CG, Whitesides GM

(2005) New approaches to nanofabrication: molding, printing,

and other techniques. Chem Rev 105:1171–1196

Gracias DH, Tien J, Breen TL, Hsu C, Whitesides GM (2000)

Forming electrical networks in three dimensions by self-assem-

bly. Science 289(5482):1170–1172

Gracias DH, Kavthekar V, Love JC, Paul KE, Whitesides GM (2002)

Fabrication of micrometer-scale, patterned polyhedra by self-

assembly. Adv Mater 14(3):235–238

Groß R, Dorigo M (2008) Self-assembly at the macroscopic scale.

Proc IEEE 96(9):1490–1508

Hiller J, Lipson H (2009) Design and analysis of digital materials for

physical 3D voxel printing. Rapid Prototyp J 15(2):137–149

Jonoska N, McColm GL (2009) Complexity classes for self-assem-

bling flexible tiles. Theor Comput Sci 410:332–346

Jr ERJ, Eisenberg E, Mazurek D (2009) Vector mechanics for

engineers: statics. McGraw-Hill Higher Education, New York

Kao M-Y, Schweller R (2006) Reducing tile complexity for self-

assembly through temperature programming. In: Proceedings of

the 7th annual ACM-SIAM symposium series on discrete

algorithms, Miami, FL, pp 571–580

Kari L, Mahalingam K (2010) Watson–crick palindromes in DNA

computing. Nat Comput 9:297–316

Karp RM (1972) Reducibility among combinatorial problems. In:

Miller RE, Thatcher JW (eds) Complexity of computer compu-

tations. Plenum Press, New York, pp 85–103

Li L, Siepmann P, Smaldon J, Terrazas G, Krasnogor N (2008)

Automated self-assembling programming. In: Krasnogor N,

Gustafson S, Pelta DA, Verdegay JL (eds) Systems self-

assembly: multidisciplinary snapshots. Studies in multidisciplin-

ary, vol 5. Elsevier, Amsertdam, pp 281–307

Michielsen K, de Raedt H (2000) Morphological image analysis.

Comput Phys Commun 132:94–103

Mitchell M (1996) An introduction to genetic algorithms. MIT Press,

Cambridge

Murphy MP, O’Neill LAJ (1997) What is life?: the next fifty years:

speculations on the future of biology. Cambridge University

Press, Cambridge

Păun G, Rozenberg G, Salomaa A (1998) DNA computing—new

computing paradigms. Springer, New York

Pelesko J (2007) Self assembly: the science of things that put

themselves together. Chapman and Hall/CRC Press, Boca Raton

Pelletier O, Weimerskrich A (2002) Algorithmic self-assembly of

DNA tiles and its applications to cryptanalysis. In: Proceedings

of the international conference on genetic and evolutionary

computation (GECCO 2002)

Rothmund PWK (2005) Design of DNA origami. In: Proceedings of

the international conference on computer-aided design (ICCAD

2005)

Rothmund PWK (2006) Folding DNA to create nanoscale shapes and

patterns. Nature 440:297–302

Rothmund PWK, Winfree E (2000) The program size complexity of

self-assembled squares. In: ACM symposium on theory of

computing (STOC 2000)

Schrödinger E (1944, reprinted 2003) What is life? with mind and

matter and autobiographical sketches. Cambridge University

Press, Cambridge

Seeman NC (1999) DNA engineering and its application to

nanotechnology. Trends Biotechnol 17(11):437–443

Seeman NC (2004) Nanotechnology and the double helix. Sci Am

290(6):64–75

Seeman NC (2007) An overview of structural DNA nanotechnology.

Mol Biotechnol 3(37):246–257

Sipser M (1997) Introduction to the theory of computation. PWS

Publishing Company, Boston

Soille P (2003) Morphological image analysis. Springer, Berlin

Stepney S, Braunstein SL, Clark JA, Tyrrell T, Adamatzky A, Smith

RE, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge

D (2005) Journeys in non-classical computation I: a grand

challenge. Int J Parallel Emerg Distrib Syst 20(1):5–19

Stepney S, Braunstein SL, Clark JA, Tyrrell T, Adamatzky A, Smith

RE, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge

D (2006) Journeys in non-classical computation II: initial

journeys and waypoints. Int J Parallel Emerg Distrib Syst

21(2):97–125

Terfort A, Bowden N, Whitesides GM (1997) Three-dimensional self-

assembly of millimeter-scale components. Nature 386:162–164

Terrazas G, Gheorghe M, Kendall G, Kranogor N (2007) Evolving

tiles for automated self-assembly design. In: Proceedings of the

2007 IEEE congress on evolutionary computation (CEC2007)

2001–2008

Thompson, D. W. (1942, reprinted 1992). On growth and form. In:

Bonner JT (abridged ed). Cambridge University Press,

Cambridge

Wang H (1961) Proving theorems by pattern recognition. Bell Syst

Tech J 40(1):1–41

Wang H (1965) Games, logic and computers. Sci Am 213:98–106

Watson JD, Crick FHC (1953) Molecular structure of nucleic acids—

a structure for deoxyribose nucleic acid. Nature 171(4356):

737–738

Whitesides GM, Boncheva M (2002) Beyond molecules: self-

assembly of mesoscopic and macroscopic components. PNAS

99(8):4769–4774

Whitesides GM, Boncheva M (2005) Making things by self-assembly.

MRES Bull 30:736–742

Whitesides GM, Gryzbowski G (2002) Self-assembly at all scales.

Science 295:2418–2421

Winfree E (1995) On the computational power of DNA annealing and

ligation. DNA Based Comput 27:199–221

Winfree E (1998a) Simulations of computing by self-assembly. In:

Proceedings of 4th international meeting on DNA based

computers

Winfree E (1998b) Algorithmic self-assembly of DNA. PhD disser-

tation, California Institute of Technology, Pasadena

Winfree E (1999) Algorithmic self-assembly of DNA: theoretical

motivations and 2D assembly experiments. J Biomol Struct Dyn

11(2):263–270

Winfree E, Liu F, Wenzier LA, Seeman NC (1998) Design and self-

assembly of two-dimensional DNA crystals. Nature 394(6):

539–544

Wolfram S (2002) A new kind of science. Wolfram Media,

Champaign

Wu H, Thalladi VR, Whitesides S, Whitesides GM (2002) Using

hierarchical self-assembly to form three-dimensional lattices of

spheres. J Am Chem Soc 124(48):14495–14502

Zhang Y, Seeman NC (1994) Construction of a DNA-truncated

octahedron. J Am Chem Soc 5(116):1661–1669

Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Self-reproducing

machines. Nature 435(7038):163–164

N. Bhalla et al.

123


	Programming and evolving physical self-assembling systems in three dimensions
	Abstract
	Introduction
	Background
	DNA computing
	Three-dimensional physical self-assembly
	Self-assembly design

	Three-level approach and evolution
	Level one: definition of rule set
	Component rules
	Environment rules
	System rules

	Level two: virtual execution of rule set
	Level three: physical realisation of rule set
	Component design space
	Physical component encoding schemes
	Minimise component key-to-key error interactions
	Minimise component key-to-lock error interactions


	Evolving self-assembly rule sets
	Evolutionary algorithm
	Genotype and phenotype representations
	Multi-objective fitness evaluation
	Selection, crossover, and genetic operators


	Experiments and results
	Programming three-dimensional self-assembling systems
	Level one: definition of rule set for programming experiments
	Level two: virtual execution of rule set for programming experiments
	Level two: experimental set-up
	Level two: experimental results

	Level three: physical realisation of rule set for programming experiments
	Level three: experimental set-up
	Level three: experimental results


	Evolving three-dimensional self-assembling systems
	Level one: definition of rule set for evolutionary experiments
	Level two: virtual execution of rule set for evolutionary experiments
	Level two: experimental set-up
	Level two: experimental results

	Level three: physical realisation of rule set for evolutionary experiments
	Level three: experimental set-up
	Level three: experimental results


	Discussion
	Experiment results summary
	Future work
	Applications


	Conclusions
	Acknowledgments
	Appendix
	Component materials and methods
	Environment materials and methods
	Physical experimental procedure

	References


