
Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

Generic Representation of Solid-Object
Geometry for Genetic Search

PETER J BENTLEY & JONATHAN P WAKEFIELD1

every application of the genetic algorithm, the
same three problems must be solved:Abstract: This paper examines the first stage of

using genetic algorithms in design - how to
encode designs as chromosomes. Generic
representations capable of describing the
geometry of any solid object to eliminate the
unnecessary duplication of work at this stage
are explored. A suitable low-parameter spatial-
partitioning representation is then proposed,
using partitions consisting of six-sided
polyhedra intersected by planes. Finally, the
coding of the representation is examined, with
the conclusion that allelic coding with control
genes and user-definable fixed-value alleles
would provide the most flexible system.

• A fitness function (objective function) must
be created

It is the fitness function that specifies what is a
good design and what is not. In a very real
sense, the fitness function is the design
specification, complete with all constraints. (It
has been found that penalising potential design
solutions for conflicting constraints with the
fitness function is more effective than preventing
any designs that conflict the constraints from
being created in the first place (12). Even a bad
design can have some good features.)

• The type of GA must be determined.
Although the traditional 'canonical GA' is
adequate for most search problems, for problems
involving high numbers of parameters and
constraints, some optimised GA variants are
required. Examples include: the steady-state
GA, the distributed GA (16), the messy GA (6),
the structured GA (11), the parallel GA (10) and
the Memetic algorithm (14). More advanced
genetic techniques and operators can also be
employed to improve evolution speed, such as:
population overlapping, population seeding,
species formation, parasitism, inversion,
duplication, deletion, sexual determination,
segregation and translocation (5),(15). Picking a
good GA and effective operators for a search
problem is still something of an art.

1 INTRODUCTION

The genetic algorithm (GA) is rapidly growing
in popularity as more researchers discover its
'human-like' search abilities. Although no theory
exists to explain adequately why the GA is so
versatile, the growing literature in an increasing
variety of fields shows that its uses are still being
discovered (5).

One such area for which the use of these
evolutionary search techniques have become
more widespread in the past few years is design
optimisation (11). GAs today are being used to
optimise designs from the shape of turbine
blades to floorplans of oil-rigs (8). However, for

1 P.J. Bentley B.Sc. (Hons) and J.P. Wakefield Ph.D. M.Sc. B.Sc. (Hons),
Division of Computer and Information Engineering, School of Engineering, University of Huddersfield, Queensgate,
Huddersfield, West Yorkshire HD1 3DH, UK
E-mail: pbent1ey@aol.com

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

• The problem must be coded into
chromosomes

defined by one or more chromosomes, which are
a coding of the phenotype.

Genetic algorithms do not work with the
parameters that define designs directly, but
instead manipulate coded forms of these
parameters. The choice of coding can be
different for every application, but it is an
important choice, for it determines the type of
genetic algorithm and operators that can be used
and therefore partially determines the overall
speed of evolution of a good solution. Examples
of possible codings are: binary, real, genetic, and
allelic coding (5),(14). Also single, multiple and
structured chromosomes can be used with
varying alphabets (5),(11).

Obviously for every different design task, a good
solution will be a different phenotype. However,
today it is also normally the case that for every
different design task, the phenotype
representation is different. Representations can
vary from a few hand-picked dimensions of a
design, to parameters specifying every part of
the design. Designs can be represented directly,
such as lists of vertices and edges, or indirectly
through equations (e.g. Parametric surfaces, or
swept surfaces) (9),(13). For every one of these
different phenotype representations, there will be
a different genotype representation required, and
often a different genetic algorithm as well.
Whilst this has the advantage that only relevant
parameters need be considered, it also has the
major disadvantage that no two implementations
are compatible, meaning that much duplication
of work is required for every new design task to
be tackled in this way.

The coding of the chromosomes is normally the
first stage when creating an evolutionary search
system, and it is this stage that this paper will
focus on.

2 MAPPING PHENOTYPES TO
GENOTYPES

It therefore seems appropriate to attempt to
create a generic phenotype representation that
can be used for multiple design tasks without
any need to redefine the genotype representation
and phenotype to genotype mapping. Such a
generic representation could be used with GAs
in three ways. Firstly, an existing design could
be automatically represented and then be ready
for immediate optimisation by a GA. Secondly,
different preliminary designs could be described
by the representation and used to seed the initial
population of a GA. This would allow evolution
to incorporate the best features from these initial
designs into the final evolved design. Thirdly, by
seeding the initial population with random
designs, the GA could evolve potentially new
conceptual designs.

The coding of a design for a genetic algorithm
must be carefully specified to allow effective and
efficient genetic search to take place. This
problem of how to encode a design as a
chromosome (or string) of genes (or coded
parameters) is the problem of phenotype to
genotype mapping. However, before any such
mapping can be specified, an appropriate
phenotype representation and genotype
representation must be determined.

The phenotype can be thought of as a potential
solution to the search problem - for the domain
of design, a phenotype is one possible real-world
design. The phenotype representation is how
that phenotype is described (e.g. Bézier surface
patches, collections of cubes). The phenotype
representation is also an enumeration of the
design-space (or 'space' of all designs), with
single phenotypes being points in that space.

 In other words, the aim of this work is to
attempt to create an enumeration of the whole
design-space, in which the solution to any
suitably specified design task can be found. For
the purposes of this paper, the 'design-space' will
be thought of as the infinite space containing
every possible design of solid objects. Hence,
this paper will concentrate on the creation of a
representation capable of defining any solid
object, with the assumption that any 3D
representation can also represent 2D designs.
This work ignores factors such as material, cost

The genotype is the total genetic coding of the
phenotype, and it is this, rather than the
phenotype, that is directly manipulated by
genetic algorithms (5). Exactly what form the
genotype takes is described by the genotype
representation. Thus, the genotype (or structure)
of a single solution to a search problem is

154

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

and surface appearance (i.e. colour), focusing
instead on the most difficult aspect of design
representation - the geometry of designs.

Surface representations (or boundary
representations), all suffer from similar
drawbacks. Many define curves with great
accuracy, and most define non-solids with ease,
but they often require the use of patches to
define solids fully. The number of parameters
needed to specify even the simplest of shapes is
very high and changing the level of detail of
designs specified by these representations is
often over-complicated. Examples of surface
representations include: Polygon Mesh, Quadric,
Hermite, Fourier (4), Parametric (7), Bézier, B-
Spline (1).

3 PHENOTYPE REPRESENTATIONS

Using adaptive search to tackle design problems
imposes certain restrictions and requirements on
phenotype representations. A representation that
describes a design in terms of many vertices per
measurement unit would require huge numbers
of parameters to define even the simplest of
shapes. The more parameters in the phenotype,
the more genes there are in the genotype,
making the search problem that much larger.
(The effective search-space, a subset of the full
design-space, is defined by the number of
parameters currently being examined by the
search algorithm. Five parameters define a five-
dimensional search-space.) So the phenotype
representation must be capable of adequately
defining a shape using the minimum number of
parameters.

Solid representations are perhaps a better choice
for the purposes of evolutionary search, for they
can not only define solids with good accuracy
and few parameters, but also surfaces, 2D and
even 1D shapes. There are three commonly used
types of solid representation: sweeping,
Constructive Solid Geometry (CSG), and spatial
partitioning. Sweeping is not suitable for
complex designs - combining swept objects is
normally only performed after converting to an
alternative representation (4). CSG is one of the
most commonly used representations in CAD
packages today (3), combining different
primitive shapes to form more complex shapes.
Although it is an efficient representation capable
of handling 2D as well as 3D designs, because of
the use of dissimilar primitives the design space
is not enumerated in the most convenient way.

The representation must allow the easy
modification of the shape it defines (i.e. 'easy'
for the computer to modify for the purposes of
evolution, not necessarily easy for humans).
More precisely, this ease of modification should
ideally allow any design to be changed in any
way, to any degree. Evolution demands small,
gradual changes, so an enumeration that places
very dissimilar designs 'side-by-side' in the space
would be more difficult to traverse.

However, spatial partitioning representations
seem ideal. They all involve decomposing the
solid into a collection of smaller adjoining, non-
intersecting solids that are more primitive than
the original solid. There are a number of
variations including: cell decomposition, spatial-
occupancy enumeration, octrees, and binary
space-partitioning trees (4).

The representation need not be unique, i.e. any
given design can be defined in more than one
way, but must be complete or unambiguous - the
representation must only define one design at a
time. As previously mentioned, the
representation must be able to define adequately
any 3D shape, so must have an infinite domain
(although in reality, the memory of the computer
will make the domain finite). Ideally, it should
be accurate, i.e. objects represented without
approximation.

The advantages of spatial partitioning when
compared to other representations are clear. It is
the easiest to modify by small increments and
can define any 3D shape, albeit sometimes by
approximation. It is not a unique representation,
but that is not seen as any disadvantage - it may
even help the searching process. It is complete
and is a very modular representation highly
suited to coding in a chromosome. All the other
representations considered have either limited
domains, are difficult to modify easily or require
too many parameters.

There are two main types of suitable
representations: those defining the shape of
surfaces only (with the assumption that the
space enclosed by the surface is solid), and those
defining the shape of solids more directly (4).

155

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

Figure 1 From left to right:
stretched cube, six-sided polyhedron using planes, stretched cube with moveable side

curved surfaces or planes not parallel to the
sides of the primitives. All solids except the
most cube-like would be full of 'jaggies' giving a
very stepped appearance and would probably
take considerable time to generate. With so
many small primitives required for the better
approximations of solids, the number of
parameters and the corresponding search-space
would also become enormous, see Fig 2.

Although the design-space is enumerated in a
very convenient manner (normally the more
different two designs are from one another, the
'further' they are from each other in the space),
the representations are not the most efficient in
terms of the number of parameters needed. If the
parameters could be reduced to keep the search-
problem as small as possible, this representation
would allow the steady 'growth' of new features
in designs.

4 LOW-PARAMETER SPATIAL
PARTITIONING REPRESENTATIONS

The form of spatial partitioning to be used is
essential to ensure the fewest parameters
possible. It seems appropriate to permit variable
sizes of partitions so that a large space can be
taken up by a single large primitive shape rather
than many smaller primitives. Ideally, the
number of different kinds of primitives should
be kept as low as possible to prevent mutation
from changing one primitive into another and
thus creating a radically different design. The
most obvious type of partitioning, using just one
type of primitive immediately springs to mind:

Figure 2 Poor approximation of curve even
with large numbers of 'stretched cubes'.

4.2 Six-sided Polyhedra 1: Vertices
An alternative is to allow the six-sided
polyhedron primitive to be defined by its eight
corner vertices. By 'tweaking' any vertex, the
orientation of the three sides it helps to define
could be modified, although the vertices making
up the sides would have to be kept planar at all
times. To prevent a primitive conflicting with its
neighbours when an adjacent side is modified,
only external sides of the primitives could be
made moveable.

4.1 Stretched Cubes: (6 Parameter)
This representation is a variant of octrees (4),
consisting of cubes with alterable lengths,
widths and depths, the solid being composed of
a number of such stretched cubes, adjacent to
each other and non-intersecting. Every such
polyhedron would require 6 parameters (x, y, z,
width, depth, height), see Fig. 1 (left). The major advantage is that curves and planes of

any orientation could be represented much more
accurately with far fewer primitives than the
'stretched cube' representation described
previously. The major disadvantage of this

The major disadvantage of this method of
representing solids is that huge numbers of the
primitives would be required to approximate

156

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

method is the parameter-count, which increases
to 24 (8 (x, y, z) points) for every primitive.

The problems arise with the referencing
mechanism for determining which solid has
which planes - more parameters are required.
Although they would not be treated in the same
way when searching the subset of the design-
space, they are alterable (a primitive may mutate
to a non-touching position with another
primitive) and so do increase the effective
parameter count. It is possible that large
quantities of touching primitives could make up
for this slight increase, but, despite its seeming
elegance, this does not appear to be the most
efficient representation.

The parameter count could be reduced by
sharing vertices amongst adjacent primitives,
i.e. two primitives side-by-side only require 4
parameters to define their shared side (as long as
the sides are identical). However, this would not
have a great effect if primitives of widely
differing sizes were used and that is likely to be
the case.

4.3 Six-sided Polyhedra 2: Intersecting
Planes
An alternative way to represent such six-sided
polyhedra is instead of storing the positions of
the vertices, to store the positions of the faces of
the cubes. In other words, every primitive with 8
vertices has only 6 sides, and since a side can be
defined by a plane needing just three
parameters, a 6-sided solid can be fully defined
by 18 parameters, see Fig. 1 (middle). Although
planes on their own are infinite, when two
planes intersect, a line is defined; when six
intersect, a solid can be defined. (This method of
defining solids is often used in ray-tracing (4).)
The order of the parameters in any coding would
be vital, for the 'inside' of the solid would need
to be defined.

From the investigation so far, it is clear that
whilst the six-sided polyhedron (a polyhedron
that can have any of its sides oriented in almost
any direction) representations give far greater
solid definition, they all have the problem of
massively increased numbers of parameters. The
only representation with a good, low number is
the 'stretched cube' representation - but as
explained earlier, these are very limited in their
accuracy and so huge numbers of primitives are
required to define any complex object. The
logical step is to combine the two types of
representation and attempt to get the best of both
worlds: few parameters and flexible definition
capabilities.

The advantage of such a representation is that
the primitives would have exactly the same
flexibility and capabilities of the 'vertices'
method, with 6 fewer defining parameters per
primitive. Perhaps the biggest disadvantage is
that in some situations, the representation could
be ambiguous, for six intersecting planes can
define more than one solid at a time. Also, 18
parameters per primitive is still very high.

4.4 Stretched Cubes with Single
Moveable Sides
This can be achieved by allowing each primitive
to have a single side of variable orientation, the
other five sides being defined as with the
'stretched cube' representation. By allowing the
moveable side to point in any of six directions
(left, right, up, down, forwards, or backwards), it
should be possible to use it to approximate a
surface of any orientation. The primitive would
need just nine defining parameters (x, y, z,
width, depth, height1, height2, height3,
orientation), the moveable side being specified
by the three heights (three parameters defining a
plane) and oriented in the direction specified by
orientation, see Fig. 1 (right).

The parameter-count and effective search-space
could potentially be reduced by sharing planes
that adjacent primitives have in common. This
would be more beneficial than sharing of
vertices, for planes are always shared by
touching primitives whilst vertices are not. It
also seems like an elegant solution, for it would
allow actual definition of 'touching' in the
representation. For example, consider a table
with four legs, made from 5 primitives. The
bottom of the table shares the same plane as the
tops of all four legs since they are touching,
meaning a reduction from 90 parameters to 78.

Although this seems to be an ideal
representation of solids, there are in fact two
major disadvantages. Firstly, the problem of
tessellation - a primitive totally surrounded by
other primitives would leave gaps, unless the
moveable side was fixed at right angles to the
surrounding four sides. This can be solved by

157

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

using 'stretched cubes' for the inside of a solid
and stretched cubes with moveable sides for the
outside. The second disadvantage is a little more
serious, however. When representing objects
with curved surfaces such as spheres, triangular
gaps are left where no primitive can fit. Since
this primitive must always have a rectangular
base, the representation fails, see Fig. 3.

5 MAPPING THE SPATIAL
PARTITIONING REPRESENTATION:

CLIPPED STRETCHED CUBES

As described above, a 'clipped stretched cube' is
a six-sided polyhedron with all sides at right-
angles to each other, intersected by a plane
defined relative to the centre of the polyhedron,
Fig. 5. A solid is defined by having a number of
stretched cubes in the centre surrounded by the
clipped stretched cubes, which are only used for
defining the surface of the solid. The
representation is not unique in that the centre of
a solid can be filled by many small primitives or
a few large ones. Ideally, the solid should
contain as few primitives as possible to
minimise the total number of parameters.
Therefore, to represent an existing design, every
part of the design should be partitioned using
the largest possible primitive, using stretched
cubes and clipped stretched cubes of ever-
decreasing size as less of the design remains
unpartitioned. A stretched cube can be converted
to a clipped stretched cube by the addition of
three parameters that define the clipping (or
intersecting) plane for that primitive. Even
though primitives may be of varying
dimensions, the representation is still a spatial-
partitioning one, every primitive being one
partition of the 3D space.

Figure 3 Four-sided polyhedron with triangular
sides cannot be formed by primitive -

representation fails.

4.5 Stretched Cubes and Intersecting
Planes
By examining the type of primitive required to
represent varying curved surfaces (e.g. see top
right of Fig. 3), it becomes clear that the
primitive required must be capable of having
anything from four to seven sides of any
orientation, must be easily modified, and must
have very few parameters. The solution seems to
be to use the 'stretched cube' representation
where possible, and whenever a non-parallel
surface needs to be approximated, allow the
primitive to be sliced by a plane of the
appropriate orientation. In this way, triangular
versions of the primitive can be produced by
slicing off a corner, and indeed, polyhedra from
four to seven sides can be defined. The
parameter count per primitive remains at nine,
with the six parameters of the 'stretched cube' (x,
y, z, width, height, depth) plus three more to
define the plane (angle1, angle2, distance of
plane from centre). Since the plane can be
rotated to intersect any part of the primitive, no
orientation parameter is required, see Fig. 4.

As the reference point (x, y, z) defines the centre
of the primitive, the eight vertices of the
stretched cube are simply:
(, ,)x width y height z depth± ± ±
The clipping plane is defined by a normal vector
given by the two angles α and β, and distance d
from the centre point:

α

β

d

�

�

�
�

�

�

�
�

To obtain the familiar equation of a plane: Ax +
By + Cz + D = 0 (4)
the plane coefficients can be calculated as:

A = d COSβ SINα
B = d SINβThis representation can approximate closely any

curved surface, and with few parameters
required per primitive, it is the most compact
and flexible of all of the representations
examined so far.

C = d COSβ COSα
D = -(A2+B2+C2)

158

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

Figure 4 Clipped stretched cubes

x
Bx y y Cx z z By Cz D x x

A x x B y y C z z

y
Ay x x Cy z z Ax Cz D y y

A x x B y y C z z

z
Az x x Bz y y Ax By D z z

A x x B y

=
− + − − + + −

− + − + −

=
− + − − + + −

− + − + −

=
− + − − + + −

− + −

1 2 1 1 2 1 1 1 2 1

2 1 2 1 2 1

1 2 1 1 2 1 1 1 2 1

2 1 2 1 2 1

1 2 1 1 2 1 1 1 2 1

2 1 2

() () ()()

() () ()

() () ()()

() () ()

() () ()()

() (y C z z1 2 1) ()+ −

Intersection occurs between vertices V1 and V2

iff:
x x x

y y y

z z z

2 1

2 1

2 1

≥ ≥

≥ ≥

≥ ≥
Figure 5 Clipped Stretched Cube: (x, y, z,

width, height, depth, planedist, angle1, angle2)

However, when implementing the above, the
following test should be used instead:When calculating the shape of the primitive

resulting from the intersection of the plane and
the stretched cube, it is perhaps easiest to
calculate the new vertices obtained (if any) when
the plane intersects each of the 12 edges between
the 8 existing vertices of the stretched cube.

() ()

() ()

() ()

x x x

y y y

z z z

MATHSERR MATHSERR

MATHSERR MATHSERR

MATHSERR MATHSERR

2 1

2 1

2 1

+ > > −

+ > > −

+ > > −

So, given an edge defined by 2 end vertices: V1

(x1, y1, z1) and V2 (x2, y2, z2) where MATHSERR = 1.0E-7

and a plane defined by the equation: Ax + By +
Cz + D = 0 The MATHSERR constant is required otherwise the

small errors produced by the binary coding of
real numbers would prevent correct results.
(Alternatively, line-clipping algorithms such as
Cohen-Sutherland or Cyrus-Beck can be used
(4).)

Point: Pi (x, y, z) is point of intersection of the
plane and edge, where:

The equations are invalid when d = 0.0 (with the
plane passing through the origin, α and β are
undefined, hence the plane itself is undefined).

159

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

In practice, it is simple to add a negligible value
to d to overcome the problem without any
significant loss of accuracy.

Sort the vertices for each side into the correct
order for displaying
(i.e. all vertices of a side must be connected by
edges, but no 2 edges should intersect)

Once any additional intersection vertices have
been calculated, the vertices clipped by the plane
can be removed by examining the distance of
each vertex from the plane. If the distance is
positive, the vertex is on the outside of the plane
and should be discarded.

Once the 4-7 sides (depending on the plane) of
the primitive are generated, it can be displayed
and additional information such as surface area
and volume calculated.

Hence, the set of coded values in a chromosome
is mapped to the shape of a solid object by the
division of that shape into a collection of more
primitive shapes (stretched cubes and clipped
stretched cubes), which are described in terms of
a list of parameter values. These values are
coded in a chromosome using the method
defined by the genotype representation.

So, given a vertex: V(r, s, t) and plane: Ax + By
+ Cz + D = 0
the distance from the vertex to the plane is given
by:

Dist
Ar Bs Ct D

A B C
=

+ + +

+ +2 2 2

However, since only the sign of the distance is
required, using:

6 GENOTYPE REPRESENTATIONS

An artificial chromosome within a genetic
algorithm can take many forms, from the
variable length trees of genetic programming to
the fixed length strings of the canonical GA (5).
There are two main categories of coding used to
define the genotypes within chromosomes:
genetic coding and allelic coding (14); both can
be either unstructured or structured (11).

Dist = Ar + Bs + Ct + D

is sufficient.

The remaining vertices are the corners of the
primitive, and define the size and orientation of
its sides. The algorithm for mapping a 'clipped
stretched cube' primitive coded within the
genotype to a polyhedron in the phenotype is
thus:

The simplest approach is genetic coding, where
genes correspond directly to parameters (every
gene is a coded parameter) and are stored in a
list or string of fixed length and order (the
chromosome) (5). Normally the order of the
genes determines the mapping relation, e.g. the
sixth gene could correspond to 'depth of
primitive 1'. Such a chromosome can be made
into a 'structured chromosome' as used in the
structured GA by the addition of 'control genes'
which switch on or off other genes in the
chromosome to add or remove them from the
genetic search (11). As long as the number of
parameters in every phenotype remains constant
then the numbers of genes in every genotype will
remain constant, providing no problems during
reproduction. In addition, as long as a designer
seeds the initial population of the GA with
designs containing enough primitives to allow a
better design to evolve, the genetic coding will
be sufficient. However, should more (or less)
primitives be required to represent a good design
fully than were initially specified, the fixed-

Extract the 9 primitive definition parameter
values from the chromosome
(see next section)

Use (x, y, z, width, height, depth) to generate the
8 vertices;
(the 8 vertices define 6 sides and 12 edges)

Calculate the new vertices (if any) generated by
the plane (angle1, angle2, distance) intersecting
the 12 edges.

Calculate the distance of each vertex from the
plane, if the value is positive, remove that vertex.
(Remove any vertices that are on the outside of
the plane.)

Divide vertices into groups of coplanar vertices -
each group defines a side
(each vertex will be shared amongst three
different groups)

160

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

length chromosomes of genetic coding will
present problems.

have to contain all the alleles for each primitive.
Should, for instance, the value of the width
parameter be missing for a primitive, a default
value could be automatically used instead,
allowing a further reduction of the effective
search space. The coding can also be extended to
resemble the structured genetic coding, with the
addition of control alleles to switch on or off
selected groups of alleles. An alternative or
addition to using control alleles is also to allow a
designer to specify which alleles are to remain
unchanged throughout the searching process.
These can then be fixed in value by the program,
allowing only the part of the design that the
designer feels should be optimised to be evolved
using the GA. In this way, the generic
representation can be used without any
unnecessary extra parameters ever being
examined by the GA.

Problems arise in situations where it is desirable
to use mutation to add a new primitive to a
design. This would result in one chromosome
containing more genes than all of the others.
When performing the genetic operation of
crossover upon chromosomes of differing
lengths during reproduction, reliable results
cannot be provided. For example: standard
single-point crossover produces a new
chromosome based on segments of two parent
chromosomes. If the parents were 'abcdefg' and
'ABCDEFG', with a random crossover point of,
say 5, the offspring would be: 'abcdeFG'.
However, if the first parent had been mutated
into a longer length such as 'abcxyzdefg', the
resulting offspring would become: 'abcxyFG',
with two old genes 'de' and one new gene 'z'
being lost. When decoded, this would be a
phenotype with parameters missing and would
be meaningless.

Perhaps the biggest disadvantage of this form of
coding is the fact that every value must have an
identifier attached to it. If the identifiers
themselves were made variable, this would
increase the effective parameter-count and hence
the search-space, but keeping them fixed will
prevent this. In other words, the value
'Primitive1_width_23' should be prevented from
mutating to 'Primitive1_depth_23' or even
'Primitive2_width_23'.

A more recent idea of Radcliffe (14) is to use
allelic coding to solve this problem. Using this
form of coding, chromosomes become more like
sets than lists, with alleles within them instead
of genes. An allele is the value a gene can take,
with every allele belonging to one and only one
gene. Alleles are thus independent of any locus
(or position) within a chromosome. Storing
locus-independent coded parameter values
would prevent any problems of the locus (or
position) of genes being disrupted. In other
words, instead of storing a list of values whose
position in the list determines their use, an
unordered collection of values is stored, with
every value 'knowing' which parameter it
belongs to. An example of a possible allelic
coding of a solid object could be:

Finally, the coding of the parameters themselves
must be considered. The usual coding is either
binary or real (base 2 or base 10). It has been
found that for parameters taking a large range of
values, the GA searches most quickly when real
coding is used (8). Using binary does improve
the convergence of a GA to a good solution,
however.

Consequently, perhaps the best form of genotype
representation to use is allelic coding, with
alleles being stored as real numbers (floating-
point in base 10). Provision should be made for
selected parameters to be fixed in value and the
addition of control alleles. Thus, with these
representations and the codings combined, a GA
would be able to evolve the dimensions,
positions and number of primitives that make up
a design. In this way, the precise geometry of the
design could be evolved, as specified by design
evaluation software (fitness function) (2).

[Primitive1_width_24.8
Primitive20_height_12.32
Primitive1_xpos_101.0 ...

Primitive20_angle1_0.34221
Primitive1_planedist_5.2]

Reproduction can take place with any of a
variety of crossover operators that exist for this
form of coding (14), with the advantage that,
should it be required, primitives can be added or
removed from any phenotype. An additional
advantage is that the chromosome does not even

161

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

7 CONCLUSIONS This representation could be used with a GA in
three ways. Firstly, the geometry of an existing
design partitioned using the 'Clipped Stretched
Cubes' representation could be simply and easily
optimised by a GA. Secondly, by seeding the
initial population of the GA with a number of
different preliminary designs, some even defined
by different numbers of primitives, a new design
could be evolved incorporating the best features
from the preliminary designs. Thirdly, the
geometry of designs could be evolved from
scratch (i.e. random seeding of the initial
population) to provide potentially new
conceptual designs.

When applying a genetic algorithm to any
search domain, the first step is normally to
encode the search problem. Often the least
thought goes into this area of the creation of a
new GA application, resulting in the creation of
countless incompatible codings. By the creation
of a single, generic phenotype and genotype
representation for the domain of design of solid
objects, very different designs can be optimised
using GAs, without the unnecessary duplication
of work.

The spatial-partitioning solid representation
'clipped stretched cubes' introduced in this paper
allows any solid to be approximated very closely
with a small number of definition parameters.
The corresponding coding of this representation
is therefore very compact, meaning the search-
space examined by the genetic algorithm is
small, thus reducing the combinatorics and
improving the overall speed of searching. By
using a very low-parameter spatial-partitioning
representation, all design tasks involving the
optimisation or creation of three-dimensional
solid shapes can be coded immediately. Indeed,
with an automatic conversion from the standard
CAD format of CSG to the 'clipped stretched
cubes' representation, any such design can be
automatically coded ready for optimisation using
GAs instantly.

The purpose of this work was to produce a
generic representation capable of representing
the geometry of a wide range of designs in a
manner suitable for evolution by genetic
algorithms. Work in progress will address the
application of the representation to a range of
design tasks. Examples of suitable design
optimisation/creation tasks include: tables,
fences, optical prisms, bridges, gear teeth and a
variety of broader problems such as
floorplanning and packing. Early work using the
representation with a simple genetic algorithm
to evolve designs from scratch have provided
some very successful and novel results (2).

The allelic coding of the 'clipped stretched
cubes' representation allows any phenotype to be
refined by the optimisation of not only the
dimensions of the primitive shapes it is made
from, but by the optimisation of the quantity of
the primitives. In other words, not only can the
GA optimise the geometries of existing
primitives in a design, it can add or remove
primitives to provide more or less detail
respectively, in parts of the design. In this way
the GA can itself define the optimal effective
search space that it needs to explore. The search
time can also be reduced by allowing the
designer to 'fix' the values of any parameters that
specify parts of the design which are considered
good enough, thus allowing a generic
representation to retain the benefits of an
application-specific representation.

162

Microcomputers in Civil Engineering 11:3  1996 Blackwell Publishers.

8 REFERENCES 9. King, E. G., Freeman, L. M., Karr, C. L.,
Whitaker, K. W., "The Use of a Genetic
Algorithm for Minimum Length Nozzle
Design: A Process Overview", Third
Workshop on Neural Networks:
Acedemic/Industrial/NASA/Defense,
1993, pp. 556-563.

1. Anwei, L., Xin, Y., Hua L., Shenquen, L.,
"HYBRID -- A Solid and Surface
Modeling System Based on Database",
CAD and Computer Graphics '89, Beijing,
1989, pp. 222-227.

10. Levine, D, "A Parallel Genetic Algorithm
for the Set Partitioning Problem", D. Phil
dissertation, Argonne National
Laboratory, Illinois, USA, 1994.

2. Bentley, P. J. and Wakefield, J. P., "The
Evolution of Solid Object Designs using
Genetic Algorithms", Applied Decision
Technologies, London, 1995, pp. 391-400.

11. Parmee, I. C. and Denham, M. J., "The
Integration of Adaptive Search
Techniques with Current Engineering
Design Practice", Adaptive Computing in
Engineering Design and Control -'94,
Plymouth, 1994, pp. 1-13.

3. Chuan Jun Su, Mayer, R. J., Browne, D.C,
"Generalised CSG: A Solid Modeling
Basis for High Productivity CAD
Systems", Autofact '91, 1991, pp. 17/35-
17/43.

4. Foley, J., van Dam, A., Feiner, S.,
Hughes, J., Computer Graphics Principles
and Practice, 2nd ed., Addison-Wesley,
1990.

12. Parmee, I. C. and Purchase, G., "The
Development of a Directed Genetic Search
Technique for Heavily Constrained
Design Spaces", Adaptive Computing in
Engineering Design and Control -'94,
Plymouth, 1994, pp. 97-108.

5. Goldberg, D. E., Genetic Algorithms in
Search, Optimization & Machine
Learning, Addison-Wesley, 1989.

13. Pham, D. T. and Yang, Y., "A Genetic
Algorithm based Preliminary Design
System", Journal of Automobile
Engineers, Vol 207, No.2, 1993, pp. 127-
133.

6. Goldberg, D. E., Deb, K., Kargupta, H.,
Harik, G., "Rapid, Accurate Optimization
of Difficult Problems Using Fast Messy
Genetic Algorithms", Illinois Genetic
Algorithms Laboratory (IlliGAL), report
no. 93004, 1993. 14. Radcliffe, N. J. and Surry, P. D., "Formal

Memetic Algorithms", Edinburgh Parallel
Computing Centre, 1994.

7. Joy, K. I., "Utilizing Parametric
Hyperpatch Methods for Modeling and
Display of Free-Form Solids", Symposium
on Solid Modeling Foundations and
CAD/CAM Applications, 1991,
Rossingnac, J. & Turner, J. (eds), pp. 245-
254.

15. Robbins, P., "The Effect of Parasitism on
the Evolution of a Communication
Protocol", The 3rd International
Conference on Simulation of Adaptive
Behaviour (From Animals to Animats 3),
Brighton, 1994, pp. 431-437.8. Keane, A. J., "Experiences with

Optimizers in Structural Design",
Adaptive Computing in Engineering
Design and Control -'94, Plymouth, 1994,
pp. 14-27.

16. Whitley, D. and Starkweather, T.,
"GENITOR II: a distributed genetic
algorithm", Journal of Experimental and
Theoretic Artificial Intelligence, Vol 2,
No. 3, 1990, pp. 189-214.

163

