
Ten Steps to Make a Perfect Creative Evolutionary Design System

Peter J. Bentley

Department of Computer Science
University College London

Gower Street
London WC1E 6BT

P.Bentley@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/P.Bentley/

Una-May O’Reilly

Artificial Intelligence Lab
Massachusetts Institute of Technology

Cambridge
MA, 02139

unamay@ai.mit.edu
http://www.ai.mit.edu/people/unamay

Abstract

A perfect creative evolutionary design system is
impossible to achieve, but in this position paper
we discuss 10 steps that might bring us a little
closer to this dream. These important problems
and requirements have been identified as a result
of both authors’ experiences on a number of
projects in this area. While our solutions may not
solve all of the problems, they illustrate what we
regard as the current state of the art in creative
evolutionary design.

1 INTRODUCTION
Sometimes it's good to let the imagination run riot. To let
your wishes guide you rather than fall under the gloomy
shadow of humdrum practicalities. Of course there are
limits to everything: cost, time, knowledge, technology.
But why dwell on them? Why not pretend, just for a little
while, that there are no limits to what we can do? It might
just allow us to achieve what we thought we couldn't.

Take evolutionary design, for example. The earliest
ventures into this field were made by engineers interested
in optimization, and so most of the early systems were
evolutionary optimizers. And very successful optimizers
they were, too. Unfortunately, some ideas are so good that
they can become conventional wisdom. Sometimes
conventional wisdom can become tradition. And
sometimes tradition can hinder freedom of thought. This
is what happened for a while in evolutionary design.
People became trapped by the idea that evolution
optimizes designs, and so must only be used to optimize
designs. If you're optimizing designs, then you need to
parameterize an existing design, you need a concise and
efficient fitness function and you need a very simplified
design problem. Evolutionary design had been
transformed from a nice idea into something that
prevented us from tackling real-world design problems, or
non-engineering design problems. You couldn't use this

idea to do graphic design, or architectural design, or art,
or even robot design. It wouldn't work. And so it doesn't
get used by anyone.

Of course things have moved on since those days
(although not everyone has caught up yet). Architects,
artists and artificial life researchers have all bypassed the
'design optimization' legacy, instead creating their own
approaches and their own traditions. The heady cocktail
of evolutionary ideas we have available today are a blend
of these techniques, resulting in software that can aid the
creativity of designers with the same (or better) success
than the optimizers optimize.

And yet we still struggle to remain free of the conventions
and legacies from whence we came. Support from
designers may be strong, but funding for these newer
ideas is scarce. All too often the ideas must be toned
down to camouflage them amongst the shades of gray of
‘fundable projects’. The ambitions must be reigned in, for
practical reasons. The goals must be made ‘realistic’ to
meet time constraints. The successes must be limited.

It's all very depressing. So let's ignore practicalities. Let's
let our imagination run free and see what emerges. Let's
imagine a perfect system. A creative evolutionary design
system that would fulfill every designer's dreams. A piece
of software to make Bill Gates drool. A system that would
become as essential to designers as a desk and chair. We
haven't got the time or money to build it, but there's
nothing to stop us from imagining it. And it might not
take that much effort anyway. Maybe this system is only
ten steps away.

2 TEN STEPS

STEP 1 Find a domain in which it makes sense to use a
computer for "creativity enhancement"

It may be a perfect system, but we still need to know what
it will actually do before we can make it. There is very
little point in using creative evolutionary design system
for standard function optimization - you need efficiency,

not creativity, for that task. But there are many domains
that are highly suitable. We know because we have had
direct experience of using evolutionary systems for such
applications. For example, Bentley has explored many
related areas over the last few years. His first work
investigated the creative potential of evolutionary design
by enabling the generation of novel three-dimensional
forms from scratch. Using a representation that permitted
variable numbers of differently positioned and shaped
‘building blocks’ to be evolved, his GADES system
showed how novel designs for tables, optical prisms, boat
hulls and car body shapes can be evolved with great
success. Subsequent work involved collaborations with
architects to create evolutionary systems that could
explore new 'inspirational forms', provide animations of
the effects of imaginary future architecture or develop
new hospital floorplans. Today, he is working with artists,
biologists, computer scientists, ecologists and musicians
to create evolutionary art, evolvable hardware, ecologies
of novel plant forms and saleable compositions of music.

In contrast O'Reilly, a member of the Emergent Design
Group at Massachusetts Institute of Technology
(web.mit.edu/arch/edg/about.htm), has directed her
attention towards conceptual Architectural form design.
The Emergent Design group conducts research into
architectural morphology and the emergent and adaptive
properties of architectural form. The group's interactive
software design tools exploit models of "natural
computation" that can be viewed both as pragmatic,
successful problem solving activities and, as generators of
interesting and aesthetic physical or dynamic outcomes.
The first project was called Generative Genetic Explorer
(GGE). Implemented in AutoCAD, a genetic encoding
modified by genetic operations defined structural spines
of a "skinned" surface. The GermZ project combined
Artifical Life concepts with evolutionary computation. A
CAD version of a snowboard course was formed via the
movement of evolving, breeding bacteria down a
modelled slope with physical attributes and attractors and
repellors. The Rule-Genetic Algomithm (RGA) followed.
Written in Java and using the Java-3D toolbox, it
provided a means of examining conflicting constraints
between space usage and functional allocation. It also
explored how modular elements could be joined to form
emergent contiguous regions under local and central
criteria. MoSS is an implementation of surface rendering
in Alias|Wavefront Studio. A surface is defined by a3
dimensional L-system which yields conjoined plates when
interpreted spatially. The interpretive process
accomodates tropism by allowing environmental factors
such as boundary and attractors to influence its definition
of the surface plates. The most recent project is the
Agency GP tool. It models the complex interactions of
physical space and information technology within
emergent organizations. It produces spatial systems and
work environments. Implemented with Maya,
Alias|Wavefront's latest surface modeller and animator,
Agency extends a genetic programming paradigm with
the innovative use of agents to determine design fitness. It

also serves as a research testbed for interactive, design-
based evolutionary computation.

Through research such as this, Bentley and O’Reilly have
become familiar with the needs and requirements of
‘creative professionals’. It is clear that domains such as
architecture, graphic design, art, musical composition,
circuit design and indeed any problem that requires
invention, imagination and exploration by a human are
viable areas for assistance by a creative evolutionary
design system (or CEDS).

STEP 2 Find a good reason for using a creative system
at all.

"If it ain't broken, don't fix it," as the saying goes. There is
little point in having a CEDS - even a perfect one - if it is
not needed. If the designer(s) are able to keep up with the
demands of their jobs, produce consistently original and
good quality designs quickly, and don't mind being paid
next to nothing, then a CEDS is probably superfluous. But
such 'perfect designers' are usually difficult to find. There
is usually too much work and not enough salary.
Designers can become tired or bored, resulting in
fluctuating levels of quality and originality. And
sometimes the design problem is just too complicated for
a designer to get to grips with alone. Design can be
overwhelming, choices abound, decisions are
interdependent, factors are non-linear. This is where our
CEDS is needed. If the designer is overworked, the CEDS
can assist by speeding up or even automating parts of the
design process. If the designer is uninspired, the CEDS
can spark the imagination. If the designer is unable to
calculate the best compromise for a hundred different
conflicting constraints and requirements, the CEDS can
suggest solutions. And a creative evolutionary design
system doesn't need a salary.

STEP 3 Negotiate appropriately balanced control of the
design process between the tool’s user and the tool itself.

We can dream of a tool which looks over the screen of a
designer while its sensors are hooked up to the designer's
brain. Since the sensors can tap into the creative process,
the tool knows exactly when to productively interrupt to
make a good suggestion. The tool and designer work
together seamlessly to arrive at a satisfactory design.

Control is not an issue in this dream. In today's reality it
is. Face it, designers are control freaks. But deservedly so.
Designers want to design, dammit! They don't really want
a tool that can do their job independently of them. The
ultimate tool helps a designer to maintain control yet
exploit computation in order to produce better designs.

How can a CEDS negotiate this control issue? We must
design the CEDS with a model of a car - that is a vehicle
with automatic drive, steering wheel and brakes. The
designer drives the car and has ultimate control. Yet, once
started (by the designer), the CEDS advances according to
the driver's direction with a series of nudges and direct

interventions. The driver stops the car and determines its
ultimate destination. We don’t start a car and then fall
asleep until it reaches our destination for us. So the
perfect CEDS is not turn-key. It has to have user-friendly
controls that allow interruption, intervention in the design
generation process and resumption under changing goal
criteria. Let us abbreviate this control negotiation as IIR -
interrupt, intervene, then resume.

IIR contributes an important element to the relationship
between designer and tool. It puts the designer in charge
when she chooses while ensuring that the overall process
(i.e. the process involving designer and tool) is a series of
exchanges of control. The designer must be able to
influence an ongoing design in order to make it appear the
way she wants. She may wish to see what consequences
her imposed changes have on the search trajectory
through the design space. As the tool develops its
outcome, she may wish to change the importance of
different desired design properties or explicitly rule out
some potential type of design. Ideally, to impose
changes, she should to be able to use other tools or an
enclosing tool. Then, the designer, without starting over,
would like the tool to proceed again.

IIR as a facility can be broken into its three constituent
steps when it comes to implementation. Interruption is a
more or less straightforward mechanism to engineer. It
may be controlled via a parameter available at the GUI.
For example, in an evolutionary algorithm, the user can
direct how many generations run before the search
process stops and hands control of the best (or any
selected) design over. Alternatively, a user can be given
control via a mouse click that controls the tool’s steps.

Intervention and resumption are interrelated. There are
two means of intervention: indirect and indirect. With
direct intervention, the designer actually alters a design
and this design is returned to the tool. Resumption
involves two tasks if direct intervention has taken place.
First, the design changed by the user must be translated
into the form of the internal representation and, second,
the tool should proceed. With indirect intervention, the
designer does not alter the design (or population of
designs). Instead, she influences the computational
subprocesses of the tool that, in turn, have an impact on
the designs it produces. For example, in an evolutionary
algorithm, the fitness function could be altered. Or, in a
generative tool, an environmental property such as the
strength of an attractor may be modified. If indirect
intervention has occurred, resumption involves the tool
proceeding with updated parameters.

Resumption is simply enacted with a crude input
mechanism such as a key or mouse click which
instantiates new values and continues the computation.
Direct intervention is much thornier.

To delineate the challenges of direct intervention one first
must consider the nature of a design’s representations
within the evolutionary design tool. Typically a design
has both an internal representation (which may be
encoded) and an external representation suitable for user

presentation and evaluation. The task for direct
intervention is to map user enacted changes to the
external representation back to the internal representation
because it is the internal representation that is used in the
evolutionary process.

In some evolutionary algorithms (e.g. simple genetic
algorithms, evolutionary strategies) the internal
representation describes parameters that are used to
elaborate a model (e.g. they are numerical coefficients of
a geometric equation). The instantiation of the model
with a specific set of parameters is the external
representation. This makes mapping a designer-enacted
change in the external represention simple if the designer
changes something parameterized. But it is quite the
opposite if she changes any non-parameterized aspect of
the design, for it is impossible to make the reverse
translation.

In other evolutionary algorithms (e.g. genetic
programming) the internal representation is actually an
executable structure. The executable structure is ‘run
through’ an interpreter which results in the external
design. Executable structures are extremely compelling
because they provide more expressive flexibility than
model-based parameterization. Direct intervention is hard
to engineer in tools that use executable structures due to
the interpretive process that the internal representation has
passed through in being reformulated as the external
design. If the user chooses to stop the tool and intervene
with the presented design, there must be a means of
backward-translating the updated design into a revised
internal representation. Unfortunately the interpretive
process is very difficult to reverse. Interpretation is not a
one to one mapping so there could be many internal
representations that generate an external representation.
Which one should be chosen? Alternatively, a change the
designer imposes may not even be expressable by the
language of the representation and its interpreter.

O'Reilly's initial attempts to grapple with IIR came in the
Agency GP tool (Testa, O'Reilly & Greenwold, 2000).
In Agency once a population has been ranked by fitness,
the tool becomes open to IIR. The entire population of
interpreted designs is available for viewing by the user,
who has several options. It is possible to indirectly
intervene. The user can simply re-rank individuals (i.e.,
meddle with fitness values relatively) and allow evolution
to continue. The user can also control what and how many
pre-existing agents will be deployed to evaluate designs,
or how heavily to weight each agent's findings. Agents
also may have controls of their own which allow a user to
direct their activities and thus indirectly readjust the
discovery trajectory.

Alternatively, for the first time in our experience, direct
intervention is possible. Agency implements a set of
operations to modify an external design that can be
reverse mapped to the design's internal representation
(i.e., the representation manipulated by genetic
operations). The user can select a candidate design and
apply one or more of these operations derived from the

Agency language to an arbitrary number of the NURBS
surfaces that comprise it. The transformations applied will
be added to the list of operations in the internal
representation of the individual. By providing the basic
operations of three-dimensional modeling through our
language we enable designers to make targeted
modifications of designs before allowing evolution to
continue. In evolutionary algorithm parlance (with
apologies) we reverse map from phenotype to genotype
by providing operations on the phenotype that we know in
advance how to invert.

A rhetorical question is whether indirect intervention is
better than direct intervention in a CEDS? Indirect
intervention presents potential for frustration because it
forces the tool user to try to influence the process that
generates the design rather than allowing direct changes
to the design. This ‘nudging’ quickly becomes tedious
and is often non-intuitive. There are superficial ways to
address this phenomenom but it exists precisely because
the tools are based on evolutionary or generative
algorithm concepts that require two levels of design
representation.

For a tool to facilitate direct IIR, the altered external
representation must be sent through the interpretation
process backwards to obtain the internal representation
that would specify it. However, this backwards process is
not simple nor always possible.

For some applications, one may be willing to balance the
difficulties of non-intuitivity and awkward usage of
indirect IIR with the purpose and benefits of using
evolutionary computation. For other applications, it is
simply not acceptable. We think this is an important
problem which will determine the ultimate benefit a
CEDS can deliver.

STEP 4 Find a specific niche in the design process for
the CEDS, then make the tool accept its inputs and
produce outputs that flow with the design process with its
predecessor and successor modules.

A perfect CEDS doesn't have to do ‘everything’. It should
be positioned as one little (but powerful) step in a bigger
set of steps with the opportunity to be revisited often.
Thus it needs to accept input and produce output in
formats of the ‘design pipeline’. One efficient and
powerful way to do this is to deploy the CEDS within a
useful, computerized design tool the designer already
employs.

O'Reilly has made a rule of embedding the Emergent
Design group's tools within existing CAD tools that
architects are already comfortable with. This has not only
leveraged software design (details of rendering and
editing need not be implemented in the design tool) but it
has allowed architects to import what they call ‘site
conditions’ into the tool to configure it. It has also
allowed the physical realization of the tool's (graphic)
designs. The design outcomes of the design tools are
directly outcomes of the CAD tool. Thus they can be

saved in multiple formats and transferred to other
software that allows laser cutting and surface
reconstruction or even stereolithographic rendering (often
called 3D printing).

STEP 5 Make it generative and creative.

Evolutionary tools are good at generative design and
creative, novel design. Of course they make good
optimizers too, and since we're thinking about a perfect
system, we should allow our CEDS to optimize parts of
designs if the designer needs such a utility. But, as we've
seen, there are many types of design that need creativity
and novelty. While we're quite experienced at
optimization, creative computation is still a little tricky, so
we'll focus on this aspect of the CEDS here.

Our perfect CEDS is under full control of the designer,
and is so natural to use that the designer does not even
realise she's using it. It needs to monitor the creative
output of the designer and fill in any deficiencies:
providing ideas on the slow days, helping to speed up the
output of the designer on the designer's good days. To
achieve these things it must be generative: able to build
upon existing ideas, or even create brand new ideas from
scratch. It should be able to suggest bizarre ideas to help
inspire the designer, or to make them realize that different
alternatives exist.

Thankfully, this part of the CEDS has already been
demonstrated in a number of existing systems. These
tools attack much larger design spaces than traditional
optimisation approaches. Their invisible internal
representations have had many constraints removed,
enabling a huge range of design solutions to be defined
for every new problem. These systems do not take an
existing solution, parameterise a small part of it, and then
optimize those parameters. Instead they often begin with
nothing but a collection of components (which might be
3D shapes, GP functions or electronic components), and it
is up to the CEDS to pick and organize those components
to generate a solution. By using such component-based
representations, these systems explore the searchspace for
new ways of assembling solutions, rather than optimize
existing solutions (Bentley & Corne, 2001). Novel art,
architecture, design and even music are commonly
evolved using these representations, the whole being built
from generations of slow additions, deletions and shaping
of separate components.

Bentley’s work in this area has investigated a variety of
different component-based representations. His GADES
system used components made from variable numbers of
separate 3D clipped stretchable cuboids, permitting
almost an infinite number of different shapes to be
defined. Later work used a combination of GP with fuzzy
logic to perform fraud-detection by generating novel rule
sets. In this case the components were fuzzy-logic
operations such as AND, OR and IS_HIGH. Current work
includes the generation of music by a genetic algorithm,
using components made from musical notes and drums.

Increasingly, Bentley’s work is focussing on hierarchical
component-based representations – especially those that
arise spontaneously during genotype to phenotype
mapping. By making use of many of the tricks employed
during biological developmental processes, our designs
can be ‘grown’ from their genotypes. When the genomes
comprise sets of growth instructions defining how
components should be assembled, it is possible for
evolution to develop its own hierarchies, duplications and
subroutines in the corresponding phenotypes. And when
most real-world designs contain exactly such features, the
use of computational embryology may play an important
role in future CEDSs. Instead of needing to hand-design
appropriate internal genetic representations which define
the necessary hierarchical structures of components, the
system could evolve its own hierarchies.

So we now potentially require three separate
representations: a genetic representation of
‘developmental rules’, a component-based representation
which is used to build the solution (following those rules)
and perhaps even a separate phenotype representation, to
enable fast evaluation. Such creative evolutionary design
systems have already been built (Bentley and Corne,
2001) and are showing the potential for improved creative
design.

The only downside of such approaches are the
implications they have for IIR. When the final designs are
so far removed from their genotypes, it becomes
considerably more difficult to derive genotypes from
phenotypes supplied or changed by the designer.
Potentially, an evolutionary process could be used to
discover the new genotype (using the changed phenotype
as its target). Realistically, however, the use of improved
(developmental) component-based representations seems
likely to restrict the designer to indirection intervention
during evolution.

STEP 6 Make it understandable.

A perfect CEDS provides its users with a generative,
creative process metaphor that is not over-encumbered by
evolutionary details and yet is accurate enough to allow
them to have a working understanding of it. If users are
required to understand genetic representations, the
meaning and impact of evolvability, and the gory details
of crossover, mutation and genotype to phenotype
mapping, then their jobs become less about designing and
more about evolutionary computation. Our CEDS must
keep designers doing what they are best at: designing. We
must not turn them into computer scientists.

Thankfully, evolution can work very well as a 'black box'
technique. Genetic representations, fitness functions and
all the underlying machinery does not need to be visible
to enable a CEDS to work. Indeed, because of the steep
learning curve and mystic artform that still comprises
genetic encoding in EAs, a small amount of knowledge of
these issues can be more harmful than none at all. Instead,
users need only know what they already know: designs

are in families, child designs resemble parent designs with
some variation, some designs work better or look better
than others. This is the way our own design processes
generate designs (and most other products of the human
mind). It is an eminently understandable and simple
concept for a computer system - especially compared to
the extraordinary complexity of most computer aided
design and visualisation packages.

STEP 7 Have an easy and effective way of evaluating the
quality of solutions and guiding the path of evolution.

In some respects, optimization is much easier than
creative evolution. Fitness functions is one of those cases
where this is true. Although calculating, programming or
interfacing to evaluation software can be very difficult, at
least there is some kind of clearly-defined method of
allocating fitnesses. For creative designs, the whole
notion of fitness can be very difficult to pin down. In
architecture, for example, a good design may be far more
expensive, difficult to build and impractical than a bad
design, purely because the good one is being judged on
aesthetics, or planning laws, or by clients in a committee.
Often the evaluation criteria consist of a million different
objectives and constraints, taught to designers through
years of training and experience and never written down
in any explicit form.

In the Agency GP tool we decided to let the architects
model the conflicting, non-linear, interdependent design
criteria via distributed 'software agents' inhabiting the
candidate designs (Testa, O'Reilly & Greenwold, 2000).

Virtually any criterion for evaluation can be coded and
dropped in as an agent to our framework. We can specify
that workspaces require a certain quotient of natural light
or that circulation spaces desire width enough to allow for
conversation. Using agent-based evaluation, we will able
to model management structures and determine their
influence on potential designs. An agent may represent
the pattern of a group, its needs for privacy, meeting
space and collaborative surfaces, or it may undertake the
concern of management structure or productivity. Agents
individually and collaboratively rate the design, and their
feedback is incorporated into a measure of overall fitness.

Agents are not enough because they force explicitization
of the tool user of aesthetic preference. Such self-
awareness may not be possible or may be inaccurate. Our
perfect CEDS needs to learn, capture and allow the input
of these objectives to enable the evaluation of new
creative designs.

Knowledge elicitation is the traditional way to embed
external information from experts into a computer system.
Fuzzy logic rules enable English-like sentences to
describe precise objectives and constraints, and have been
used with some success to add to fitness functions
(Soddu, 1995; Parmee, 1999).

One particularly good source of information about good
designs is - good designs. Existing designs were created

by designers to meet all of the same complicated
objectives that the CEDS has to meet. So knowledge
about what works is embedded into all good designs.
There are a number of ways in which this can extracted:
seed the initial population with some of these designs, so
that the CEDS can mix and match the good ideas
(Rosenman). Or use an evolutionary algorithm to learn
the styles employed in a group of designs, providing the
CEDS with a representation able to define designs in that
style (Gero and Kazakov, 1996). Or use some of the
existing designs as targets, and rate new evolving designs
on how closely they match aspects of the targets. And this
approach is not limited to existing designs - if the CEDS
finds a particularly good design at any time, it can be
stored in "digital amber" as Steven Rooke calls it,
enabling it to be used in the future - a very common
technique in evolutionary art systems (Bentley & Corne,
2001).

And finally, unlike most evolutionary paradigms, a CEDS
will often need user-interaction to guide evolution. We
have already seen how IIR is essential for the proper
integration of the tool with the designer’s work. But
interaction in the form of selecting good designs for
reproduction, and removing bad ones, is also essential to
allow all of the designer’s unwritten knowledge to be
expressed. To achieve this in an easy-to-use way requires
a good GUI to permit visualization of the current designs,
and allow better designs (or better parts of designs) to be
rated by the designer. Many such schemes exist in
evolutionary art systems, often requiring artists to click
and judge grids of images with the mouse. Our perfect
CEDS must use this type of interface where necessary,
but also use it sparingly, for boredom and fatigue quickly
dull the judgement of anyone who has to rate too many
solutions.

STEP 8 Find people who are actually prepared to use
the system.

Even those designers who actively participate in the
development of a CEDS may be reluctant to use the
system once it is complete. From experience, designers
(and all those who feel that they express an important part
of themselves through their work) are very slow to take
up new technologies, even if those techniques are
designed to assist rather than replace them. It can be one
of the most frustrating parts of research projects:
developing an amazing tool that is never used by the
people it was developed for. Finding people to use our
perfect CEDS may be more about education than search.
Once designers have seen the benefits and tried it for
themselves, their technophobia should be reduced.
Anything this fun to use cannot be feared.

STEP 9 Get lots of money to pay R&D costs.

It can still be difficult to obtain funding for this kind of
research. Because CEDSs are so new, few have been
demonstrated and even fewer are currently being used by

designers. As this field matures and the ideas become
more meanstream, funding will inevitably follow.

STEP 10 Start a company and make a billion.

A good measure of success of any computer system is
whether it is successful enough to make a profit in the
market place. If our perfect CEDS is ever built, then
maybe it could be that successful. Only time will tell.

3 SUMMARY
In this position paper we have taken a step-wise look at
developing a perfect creative evolutionary design tool.
We’ve tried to include a survey of shortcomings and
solutions to issues that arise in achieving such perfection.
Of course such a brief article cannot cover every aspect of
creative evolutionary design, so we welcome ideas from
others concerning issues we’ve neglected. We’d also love
to hear even better ways to resolve them.

Acknowledgements

Una-May O’Reilly thanks the members of the Emergent
Design Group: Devyn Weiser, Peter Testa, Simon
Greenwold and Martin Hemberg. Peter Bentley thanks the
continuing support of the Department of Computer
Science, University College and especially the members
of the nUCLEAR group.

Bibliography

Further details of all the projects by Bentley and O’Reilly
mentioned in this article can be found on the web pages:

http://www.cs.ucl.ac.uk/staff/P.Bentley/PetersPapers.html

http://www.ai.mit.edu/people/unamay/papers

Bentley, P. J. and Corne, D. W. (Contributing Eds.)
(2001) Creative Evolutionary Systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA (to appear).

Gero, J. S. & Kazakov, V. (1996) An exploration-based
evolutionary model of generative design process.
Microcomputers In Civil Engineering 11, 209-216.

Rosenman, M. & Gero, J. S. (1999) Evolving Designs by
Generating Useful Complex Gene Structures. Ch 15 in P.
Bentley (Ed.) Evolutionary Design by Computers.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
345-364.

Testa, P. and O'Reilly, U.M. and Greenwold, S. (2000).
Agent-Based Genetic Programming for Spatial
Exploration. In Proceedings of ACSA.

Soddu, C. (1995) Recreating the city's identity with a
morphogenetic urban design. 17th International
Conference on Making Cities Livable, Freiburb-im-
Breisgau, Germany, Sept. 5-9 1995.

Parmee (1999) Exploring the Design Potential of
Evolutionary Search, Exploration and Optimization. In
Bentley, P. J. (Ed.) Evolutionary Design by Computers.
Morgan Kaufman Publishers Inc., San Francisco, CA,
119-143.

