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Abstract 
 

 

A perfect creative evolutionary design system is 
impossible to achieve, but in this position paper 
we discuss 10 steps that might bring us a little 
closer to this dream. These important problems 
and requirements have been identified as a result 
of both authors’ experiences on a number of 
projects in this area. While our solutions may not 
solve all of the problems, they illustrate what we 
regard as the current state of the art in creative 
evolutionary design. 

1 INTRODUCTION 
Sometimes it's good to let the imagination run riot. To let 
your wishes guide you rather than fall under the gloomy 
shadow of humdrum practicalities. Of course there are 
limits to everything: cost, time, knowledge, technology. 
But why dwell on them? Why not pretend, just for a little 
while, that there are no limits to what we can do? It might 
just allow us to achieve what we thought we couldn't. 

Take evolutionary design, for example. The earliest 
ventures into this field were made by engineers interested 
in optimization, and so most of the early systems were 
evolutionary optimizers. And very successful optimizers 
they were, too. Unfortunately, some ideas are so good that 
they can become conventional wisdom. Sometimes 
conventional wisdom can become tradition. And 
sometimes tradition can hinder freedom of thought. This 
is what happened for a while in evolutionary design. 
People became trapped by the idea that evolution 
optimizes designs, and so must only be used to optimize 
designs. If you're optimizing designs, then you need to 
parameterize an existing design, you need a concise and 
efficient fitness function and you need a very simplified 
design problem. Evolutionary design had been 
transformed from a nice idea into something that 
prevented us from tackling real-world design problems, or 
non-engineering design problems. You couldn't use this 

idea to do graphic design, or architectural design, or art, 
or even robot design. It wouldn't work. And so it doesn't 
get used by anyone. 

Of course things have moved on since those days 
(although not everyone has caught up yet). Architects, 
artists and artificial life researchers have all bypassed the 
'design optimization' legacy, instead creating their own 
approaches and their own traditions. The heady cocktail 
of evolutionary ideas we have available today are a blend 
of these techniques, resulting in software that can aid the 
creativity of designers with the same (or better) success 
than the optimizers optimize. 

And yet we still struggle to remain free of the conventions 
and legacies from whence we came. Support from 
designers may be strong, but funding for these newer 
ideas is scarce. All too often the ideas must be toned 
down to camouflage them amongst the shades of gray of 
‘fundable projects’. The ambitions must be reigned in, for 
practical reasons. The goals must be made ‘realistic’ to 
meet time constraints. The successes must be limited. 

It's all very depressing. So let's ignore practicalities. Let's 
let our imagination run free and see what emerges. Let's 
imagine a perfect system. A creative evolutionary design 
system that would fulfill every designer's dreams. A piece 
of software to make Bill Gates drool. A system that would 
become as essential to designers as a desk and chair. We 
haven't got the time or money to build it, but there's 
nothing to stop us from imagining it. And it might not 
take that much effort anyway. Maybe this system is only 
ten steps away. 

2 TEN STEPS 
 

STEP 1 Find a domain in which it makes sense to use a 
computer for "creativity enhancement" 

It may be a perfect system, but we still need to know what 
it will actually do before we can make it. There is very 
little point in using creative evolutionary design system 
for standard function optimization - you need efficiency, 



not creativity, for that task. But there are many domains 
that are highly suitable. We know because we have had 
direct experience of using evolutionary systems for such 
applications. For example, Bentley has explored many 
related areas over the last few years. His first work 
investigated the creative potential of evolutionary design 
by enabling the generation of novel three-dimensional 
forms from scratch. Using a representation that permitted 
variable numbers of differently positioned and shaped 
‘building blocks’ to be evolved, his GADES system 
showed how novel designs for tables, optical prisms, boat 
hulls and car body shapes can be evolved with great 
success. Subsequent work involved collaborations with 
architects to create evolutionary systems that could 
explore new 'inspirational forms', provide animations of 
the effects of imaginary future architecture or develop 
new hospital floorplans. Today, he is working with artists, 
biologists, computer scientists, ecologists and musicians 
to create evolutionary art, evolvable hardware, ecologies 
of novel plant forms and saleable compositions of music. 

In contrast O'Reilly, a member of the Emergent Design 
Group at Massachusetts Institute of Technology 
(web.mit.edu/arch/edg/about.htm), has directed her 
attention towards conceptual Architectural form design. 
The Emergent Design group conducts research into 
architectural morphology and the emergent and adaptive 
properties of architectural form.  The group's interactive 
software design tools exploit models of "natural 
computation" that can be viewed both as pragmatic, 
successful problem solving activities and, as generators of 
interesting and aesthetic physical or dynamic outcomes.  
The first project was called Generative Genetic Explorer 
(GGE).  Implemented in AutoCAD, a genetic encoding 
modified by genetic operations defined structural spines 
of a "skinned" surface.  The GermZ project combined 
Artifical Life concepts with evolutionary computation.  A 
CAD version of a snowboard course was formed via the 
movement of evolving, breeding bacteria down a 
modelled slope with physical attributes and attractors and 
repellors.  The Rule-Genetic Algomithm (RGA) followed. 
Written in Java and using the Java-3D toolbox, it 
provided a means of examining conflicting constraints 
between space usage and functional allocation. It also 
explored how modular elements could be joined to form 
emergent contiguous regions under local and central 
criteria.  MoSS is an implementation of surface rendering 
in Alias|Wavefront Studio. A surface is defined by a3 
dimensional L-system which yields conjoined plates when 
interpreted spatially. The interpretive process 
accomodates tropism by allowing environmental factors 
such as boundary and attractors to influence its definition 
of the surface plates.  The most recent project is the 
Agency GP tool. It models the complex interactions of 
physical space and information technology within 
emergent organizations. It produces spatial systems and 
work environments. Implemented with Maya, 
Alias|Wavefront's latest surface modeller and animator, 
Agency extends a genetic programming paradigm with 
the innovative use of agents to determine design fitness. It 

also serves as a research testbed for interactive, design-
based evolutionary computation. 

Through research such as this, Bentley and O’Reilly have 
become familiar with the needs and requirements of 
‘creative professionals’. It is clear that domains such as 
architecture, graphic design, art, musical composition, 
circuit design and indeed any problem that requires 
invention, imagination and exploration by a human are 
viable areas for assistance by a creative evolutionary 
design system (or CEDS). 

 

STEP 2  Find a good reason for using a creative system 
at all. 

"If it ain't broken, don't fix it," as the saying goes. There is 
little point in having a CEDS - even a perfect one - if it is 
not needed. If the designer(s) are able to keep up with the 
demands of their jobs, produce consistently original and 
good quality designs quickly, and don't mind being paid 
next to nothing, then a CEDS is probably superfluous. But 
such 'perfect designers' are usually difficult to find. There 
is usually too much work and not enough salary. 
Designers can become tired or bored, resulting in 
fluctuating levels of quality and originality. And 
sometimes the design problem is just too complicated for 
a designer to get to grips with alone. Design can be 
overwhelming, choices abound, decisions are 
interdependent, factors are non-linear. This is where our 
CEDS is needed. If the designer is overworked, the CEDS 
can assist by speeding up or even automating parts of the 
design process. If the designer is uninspired, the CEDS 
can spark the imagination. If the designer is unable to 
calculate the best compromise for a hundred different 
conflicting constraints and requirements, the CEDS can 
suggest solutions. And a creative evolutionary design 
system doesn't need a salary. 

 

STEP 3  Negotiate appropriately balanced control of the 
design process between the tool’s user and the tool itself. 

We can dream of a tool which looks over the screen of a 
designer while its sensors are hooked up to the designer's 
brain.  Since the sensors can tap into the creative process, 
the tool knows exactly when to productively interrupt to 
make a good suggestion. The tool and designer work 
together seamlessly to arrive at a satisfactory design. 

Control is not an issue in this dream.  In today's reality it 
is. Face it, designers are control freaks. But deservedly so.  
Designers want to design, dammit! They don't really want 
a tool that can do their job independently of them.  The 
ultimate tool helps a designer to maintain control yet 
exploit computation in order to produce better designs. 

How can a CEDS negotiate this control issue?  We must 
design the CEDS with a model of a car - that is a vehicle 
with automatic drive, steering wheel and brakes.  The 
designer drives the car and has ultimate control. Yet, once 
started (by the designer), the CEDS advances according to 
the driver's direction with a series of nudges and direct 



interventions.  The driver stops the car and determines its 
ultimate destination.  We don’t start a car and then fall 
asleep until it reaches our destination for us.  So the 
perfect CEDS is not turn-key. It has to have user-friendly 
controls that allow interruption, intervention in the design 
generation process and resumption under changing goal 
criteria. Let us abbreviate this control negotiation as IIR - 
interrupt, intervene, then resume. 

IIR contributes an important element to the relationship 
between designer and tool. It puts the designer in charge 
when she chooses while ensuring that the overall process 
(i.e. the process involving designer and tool) is a series of 
exchanges of control. The designer must be able to 
influence an ongoing design in order to make it appear the 
way she wants. She may wish to see what consequences 
her imposed changes have on the search trajectory 
through the design space.  As the tool develops its 
outcome, she may wish to change the importance of 
different desired design properties or explicitly rule out 
some potential type of design.  Ideally, to impose 
changes, she should to be able to use other tools or an 
enclosing tool.  Then, the designer, without starting over, 
would like the tool to proceed again. 

IIR as a facility can be broken into its three constituent 
steps when it comes to implementation.  Interruption is a 
more or less straightforward mechanism to engineer.  It 
may be controlled via a parameter available at the GUI. 
For example, in an evolutionary algorithm, the user can 
direct how many generations run before the search 
process stops and hands control of the best (or any 
selected) design over. Alternatively, a user can be given 
control via a mouse click that controls the tool’s steps. 

Intervention and resumption are interrelated. There are 
two means of intervention: indirect and indirect.  With 
direct intervention, the designer actually alters a design 
and this design is returned to the tool.  Resumption 
involves two tasks if direct intervention has taken place. 
First, the design changed by the user must be translated 
into the form of the internal representation and, second, 
the tool should proceed. With indirect intervention, the 
designer does not alter the design (or population of 
designs). Instead, she influences the computational 
subprocesses of the tool that, in turn, have an impact on 
the designs it produces. For example, in an evolutionary 
algorithm, the fitness function could be altered. Or, in a 
generative tool, an environmental property such as the 
strength of an attractor may be modified.  If indirect 
intervention has occurred, resumption involves the tool 
proceeding with updated parameters. 

Resumption is simply enacted with a crude input 
mechanism such as a key or mouse click which 
instantiates new values and continues the computation.  
Direct  intervention is much thornier. 

To delineate the challenges of direct intervention one first 
must consider the nature of a design’s representations 
within the evolutionary design tool.  Typically a design 
has both an internal representation (which may be 
encoded) and an external representation suitable for user 

presentation and evaluation.  The task for direct 
intervention is to map user enacted changes to the 
external representation back to the internal representation 
because it is the internal representation that is used in the 
evolutionary process. 

In some evolutionary algorithms (e.g. simple genetic 
algorithms, evolutionary strategies) the internal 
representation describes parameters that are used to 
elaborate a model (e.g. they are numerical coefficients of 
a geometric equation).  The instantiation of the model 
with a specific set of parameters is the external 
representation. This makes mapping a designer-enacted 
change in the external represention simple if the designer 
changes something parameterized. But it is quite the 
opposite if she changes any non-parameterized aspect of 
the design, for it is impossible to make the reverse 
translation. 

In other evolutionary algorithms (e.g. genetic 
programming) the internal representation is actually an 
executable structure.  The executable structure is ‘run 
through’ an interpreter which results in the external 
design.  Executable structures are extremely compelling 
because they provide more expressive flexibility than 
model-based parameterization.  Direct intervention is hard 
to engineer in tools that use executable structures due to 
the interpretive process that the internal representation has 
passed through in being reformulated as the external 
design.  If the user chooses to stop the tool and intervene 
with the presented design, there must be a means of 
backward-translating the updated design into a revised 
internal representation. Unfortunately the interpretive 
process is very difficult to reverse.  Interpretation is not a 
one to one mapping so there could be many internal 
representations that generate an external representation. 
Which one should be chosen?  Alternatively, a change the 
designer imposes may not even be expressable by the 
language of the representation and its interpreter. 

O'Reilly's initial attempts to grapple with IIR came in the 
Agency GP tool (Testa,  O'Reilly & Greenwold, 2000).  
In Agency once a population has been ranked by fitness, 
the tool becomes open to IIR. The entire population of 
interpreted designs is available for viewing by the user, 
who has several options. It is possible to indirectly 
intervene. The user can simply re-rank individuals (i.e., 
meddle with fitness values relatively) and allow evolution 
to continue. The user can also control what and how many 
pre-existing agents will be deployed to evaluate designs, 
or how heavily to weight each agent's findings. Agents 
also may have controls of their own which allow a user to 
direct their activities and thus indirectly readjust the 
discovery trajectory. 

Alternatively, for the first time in our experience, direct 
intervention is possible. Agency implements a set of 
operations to modify an external design that can be 
reverse mapped to the design's internal representation 
(i.e., the representation manipulated by genetic 
operations). The user can select a candidate design and 
apply one or more of these operations derived from the 



Agency language to an arbitrary number of the NURBS 
surfaces that comprise it. The transformations applied will 
be added to the list of operations in the internal 
representation of the individual. By providing the basic 
operations of three-dimensional modeling through our 
language we enable designers to make targeted 
modifications of designs before allowing evolution to 
continue.  In evolutionary algorithm parlance (with 
apologies) we reverse map from phenotype to genotype 
by providing operations on the phenotype that we know in 
advance how to invert. 

A rhetorical question is whether indirect intervention is 
better than direct intervention in a CEDS? Indirect 
intervention presents potential for frustration because it 
forces the tool user to try to influence the process that 
generates the design rather than allowing direct changes 
to the design.  This ‘nudging’ quickly becomes tedious 
and is often non-intuitive.  There are superficial ways to 
address this phenomenom but it exists precisely because 
the tools are based on evolutionary or generative 
algorithm concepts that require two levels of design 
representation. 

For a tool to facilitate direct IIR, the altered external 
representation must be sent through the interpretation 
process backwards to obtain the internal representation 
that would specify it. However, this backwards process is 
not simple nor always possible. 

For some applications, one may be willing to balance the 
difficulties of non-intuitivity and awkward usage of 
indirect IIR with the purpose and benefits of using 
evolutionary computation.  For other applications, it is 
simply not acceptable. We think this is an important 
problem which will determine the ultimate benefit a 
CEDS can deliver. 

 

STEP 4  Find a specific niche in the design process for 
the CEDS, then make the tool accept its inputs and 
produce outputs that flow  with the design process with its 
predecessor and successor modules. 

A perfect CEDS doesn't have to do ‘everything’. It should 
be positioned as one little (but powerful) step in a bigger 
set of steps with the opportunity to be revisited often. 
Thus it needs to accept input and produce output in 
formats of the ‘design pipeline’.  One efficient and 
powerful way to do this is to deploy the CEDS within a 
useful, computerized design tool the designer already 
employs. 

O'Reilly has made a rule of embedding the Emergent 
Design group's tools within existing CAD tools that 
architects are already comfortable with. This has not only 
leveraged software design (details of rendering and 
editing need not be implemented in the design tool) but it 
has allowed architects to import what they call ‘site 
conditions’ into the tool to configure it. It has also 
allowed the physical realization of the tool's (graphic) 
designs. The design outcomes of the design tools are 
directly outcomes of the CAD tool. Thus they can be 

saved in multiple formats and transferred to other 
software that allows laser cutting and surface 
reconstruction or even stereolithographic rendering (often 
called 3D printing). 

 

STEP 5  Make it generative and creative. 

Evolutionary tools are good at generative design and 
creative, novel design. Of course they make good 
optimizers too, and since we're thinking about a perfect 
system, we should allow our CEDS to optimize parts of 
designs if the designer needs such a utility. But, as we've 
seen, there are many types of design that need creativity 
and novelty. While we're quite experienced at 
optimization, creative computation is still a little tricky, so 
we'll focus on this aspect of the CEDS here. 

Our perfect CEDS is under full control of the designer, 
and is so natural to use that the designer does not even 
realise she's using it. It needs to monitor the creative 
output of the designer and fill in any deficiencies: 
providing ideas on the slow days, helping to speed up the 
output of the designer on the designer's good days. To 
achieve these things it must be generative: able to build 
upon existing ideas, or even create brand new ideas from 
scratch. It should be able to suggest bizarre ideas to help 
inspire the designer, or to make them realize that different 
alternatives exist. 

Thankfully, this part of the CEDS has already been 
demonstrated in a number of existing systems. These 
tools attack much larger design spaces than traditional 
optimisation approaches. Their invisible internal 
representations have had many constraints removed, 
enabling a huge range of design solutions to be defined 
for every new problem. These systems do not take an 
existing solution, parameterise a small part of it, and then 
optimize those parameters. Instead they often begin with 
nothing but a collection of components (which might be 
3D shapes, GP functions or electronic components), and it 
is up to the CEDS to pick and organize those components 
to generate a solution. By using such component-based 
representations, these systems explore the searchspace for 
new ways of assembling solutions, rather than optimize 
existing solutions (Bentley & Corne, 2001). Novel art, 
architecture, design and even music are commonly 
evolved using these representations, the whole being built 
from generations of slow additions, deletions and shaping 
of separate components. 

Bentley’s work in this area has investigated a variety of 
different component-based representations. His GADES 
system used components made from variable numbers of 
separate 3D clipped stretchable cuboids, permitting 
almost an infinite number of different shapes to be 
defined. Later work used a combination of GP with fuzzy 
logic to perform fraud-detection by generating novel rule 
sets. In this case the components were fuzzy-logic 
operations such as AND, OR and IS_HIGH. Current work 
includes the generation of music by a genetic algorithm, 
using components made from musical notes and drums.  



Increasingly, Bentley’s work is focussing on hierarchical 
component-based representations – especially those that 
arise spontaneously during genotype to phenotype 
mapping. By making use of many of the tricks employed 
during biological developmental processes, our designs 
can be ‘grown’ from their genotypes. When the genomes 
comprise sets of growth instructions defining how 
components should be assembled, it is possible for 
evolution to develop its own hierarchies, duplications and 
subroutines in the corresponding phenotypes. And when 
most real-world designs contain exactly such features, the 
use of computational embryology may play an important 
role in future CEDSs. Instead of needing to hand-design 
appropriate internal genetic representations which define 
the necessary hierarchical structures of components, the 
system could evolve its own hierarchies. 

So we now potentially require three separate 
representations: a genetic representation of 
‘developmental rules’, a component-based representation 
which is used to build the solution (following those rules) 
and perhaps even a separate phenotype representation, to 
enable fast evaluation. Such creative evolutionary design 
systems have already been built (Bentley and Corne, 
2001) and are showing the potential for improved creative 
design. 

The only downside of such approaches are the 
implications they have for IIR. When the final designs are 
so far removed from their genotypes, it becomes 
considerably more difficult to derive genotypes from 
phenotypes supplied or changed by the designer. 
Potentially, an evolutionary process could be used to 
discover the new genotype (using the changed phenotype 
as its target). Realistically, however, the use of improved 
(developmental) component-based representations seems 
likely to restrict the designer to indirection intervention 
during evolution. 

 

STEP 6  Make it understandable. 

A perfect CEDS provides its users with a generative, 
creative process metaphor that is not over-encumbered by 
evolutionary details and yet is accurate enough to allow 
them to have a working understanding of it. If users are 
required to understand genetic representations, the 
meaning and impact of evolvability, and the gory details 
of crossover, mutation and genotype to phenotype 
mapping, then their jobs become less about designing and 
more about evolutionary computation. Our CEDS must 
keep designers doing what they are best at: designing. We 
must not turn them into computer scientists. 

Thankfully, evolution can work very well as a 'black box' 
technique. Genetic representations, fitness functions and 
all the underlying machinery does not need to be visible 
to enable a CEDS to work. Indeed, because of the steep 
learning curve and mystic artform that still comprises 
genetic encoding in EAs, a small amount of knowledge of 
these issues can be more harmful than none at all. Instead, 
users need only know what they already know: designs 

are in families, child designs resemble parent designs with 
some variation, some designs work better or look better 
than others. This is the way our own design processes 
generate designs (and most other products of the human 
mind). It is an eminently understandable and simple 
concept for a computer system - especially compared to 
the extraordinary complexity of most computer aided 
design and visualisation packages. 

 

STEP 7  Have an easy and effective way of evaluating the 
quality of solutions and guiding the path of evolution. 

In some respects, optimization is much easier than 
creative evolution. Fitness functions is one of those cases 
where this is true. Although calculating, programming or 
interfacing to evaluation software can be very difficult, at 
least there is some kind of clearly-defined method of 
allocating fitnesses. For creative designs, the whole 
notion of fitness can be very difficult to pin down. In 
architecture, for example, a good design may be far more 
expensive, difficult to build and impractical than a bad 
design, purely because the good one is being judged on 
aesthetics, or planning laws, or by clients in a committee. 
Often the evaluation criteria consist of a million different 
objectives and constraints, taught to designers through 
years of training and experience and never written down 
in any explicit form. 

In the Agency GP tool we decided to let the architects 
model the conflicting, non-linear, interdependent design 
criteria via distributed 'software agents' inhabiting the 
candidate designs (Testa,  O'Reilly & Greenwold, 2000). 

Virtually any criterion for evaluation can be coded and 
dropped in as an agent to our framework. We can specify 
that workspaces require a certain quotient of natural light 
or that circulation spaces desire width enough to allow for 
conversation. Using agent-based evaluation, we will able 
to model management structures and determine their 
influence on potential designs. An agent may represent 
the pattern of a group, its needs for privacy, meeting 
space and collaborative surfaces, or it may undertake the 
concern of management structure or productivity.  Agents 
individually and collaboratively rate the design, and their 
feedback is incorporated into a measure of overall fitness. 

Agents are not enough because they force explicitization 
of the tool user of aesthetic preference. Such self-
awareness may not be possible or may be inaccurate.  Our 
perfect CEDS needs to learn, capture and allow the input 
of these objectives to enable the evaluation of new 
creative designs. 

Knowledge elicitation is the traditional way to embed 
external information from experts into a computer system. 
Fuzzy logic rules enable English-like sentences to 
describe precise objectives and constraints, and have been 
used with some success to add to fitness functions 
(Soddu, 1995; Parmee, 1999). 

One particularly good source of information about good 
designs is - good designs. Existing designs were created 



by designers to meet all of the same complicated 
objectives that the CEDS has to meet. So knowledge 
about what works is embedded into all good designs. 
There are a number of ways in which this can extracted: 
seed the initial population with some of these designs, so 
that the CEDS can mix and match the good ideas 
(Rosenman). Or use an evolutionary algorithm to learn 
the styles employed in a group of designs, providing the 
CEDS with a representation able to define designs in that 
style (Gero and Kazakov, 1996). Or use some of the 
existing designs as targets, and rate new evolving designs 
on how closely they match aspects of the targets. And this 
approach is not limited to existing designs - if the CEDS 
finds a particularly good design at any time, it can be 
stored in "digital amber" as Steven Rooke calls it, 
enabling it to be used in the future - a very common 
technique in evolutionary art systems (Bentley & Corne, 
2001). 

And finally, unlike most evolutionary paradigms, a CEDS 
will often need user-interaction to guide evolution. We 
have already seen how IIR is essential for the proper 
integration of the tool with the designer’s work. But 
interaction in the form of selecting good designs for 
reproduction, and removing bad ones, is also essential to 
allow all of the designer’s unwritten knowledge to be 
expressed. To achieve this in an easy-to-use way requires 
a good GUI to permit visualization of the current designs, 
and allow better designs (or better parts of designs) to be 
rated by the designer. Many such schemes exist in 
evolutionary art systems, often requiring artists to click 
and judge grids of images with the mouse. Our perfect 
CEDS must use this type of interface where necessary, 
but also use it sparingly, for boredom and fatigue quickly 
dull the judgement of anyone who has to rate too many 
solutions. 

 

STEP 8  Find people who are actually prepared to use 
the system. 

Even those designers who actively participate in the 
development of a CEDS may be reluctant to use the 
system once it is complete. From experience, designers 
(and all those who feel that they express an important part 
of themselves through their work) are very slow to take 
up new technologies, even if those techniques are 
designed to assist rather than replace them. It can be one 
of the most frustrating parts of research projects: 
developing an amazing tool that is never used by the 
people it was developed for. Finding people to use our 
perfect CEDS may be more about education than search. 
Once designers have seen the benefits and tried it for 
themselves, their technophobia should be reduced. 
Anything this fun to use cannot be feared. 

 

STEP 9  Get lots of money to pay R&D costs. 

It can still be difficult to obtain funding for this kind of 
research. Because CEDSs are so new, few have been 
demonstrated and even fewer are currently being used by 

designers. As this field matures and the ideas become 
more meanstream, funding will inevitably follow. 

 

STEP 10  Start a company and make a billion. 

A good measure of success of any computer system is 
whether it is successful enough to make a profit in the 
market place. If our perfect CEDS is ever built, then 
maybe it could be that successful. Only time will tell. 

3 SUMMARY 
In this position paper we have taken a step-wise look at  
developing a perfect creative evolutionary design tool. 
We’ve tried to include a survey of shortcomings and 
solutions to issues that arise in achieving such perfection. 
Of course such a brief article cannot cover every aspect of 
creative evolutionary design, so we welcome ideas from 
others concerning issues we’ve neglected. We’d also love 
to hear even better ways to resolve them. 
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