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Abstract. Today’s software is brittle. A tiny corruption in an executable will normally
result in terminal failure of that program. But nature does not seem to suffer from the
same problems. A multicellular organism, its genes evolved and developed, shows
graceful degradation: should it be damaged, it is designed to continue to work. This
paper describes an investigation into software with the same properties. Three pro-
grams, one human-designed, one evolved using genetic programming, and one evolved
and developed using a fractal developmental system are compared. All three calculate
the square root of a number. The programs are damaged by corrupting their compiled
executable code, and the ability for each of them to survive such damage is assessed.
Experiments demonstrate that only the evolutionary developmental code shows graceful
degradation after damage.
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1. Introduction

Human designs are carefully crafted, consciously created fusions of
experience and skill. Our designs usually work reliably and well under
the conditions they were designed for. Unfortunately, they rarely
work well under unforeseen conditions. A robot will fail on the
wrong kind of ground; the traction of a car will fail on the wrong
type of road; the reception of a cellular phone will be lost when in the
wrong kind of surroundings. A program will fail in the wrong kind of
software environment. And sadly for computer-users worldwide, the
mess of different software on an average computer causes such com-
plex environments that programs fail with tired regularity.

Natural systems are also carefully crafted, but there is no con-
scious mind or skill needed to produce nature’s designs. Generations
of past experience drives evolution to create robust, damage-tolerant
solutions. Organisms don’t fail if they sustain minor damage. Even a
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heart attack can be recoverable. The equivalent damage to a human-
designed program would always produce terminal failure.

The work described here continues an ongoing investigation into
the use of developmental systems with evolutionary computation.
Here, fractals are employed as a computer representation of proteins.
Earlier work has shown that fractal proteins are highly evolvable by a
genetic algorithm (Bentley, 2004; 2003c), that specific patterns of acti-
vation in a fractal gene regulatory network (GRN) can be evolved
(Bentley, 2004, 2003b), that they can perform computational tasks
such as function regression and robot control (Bentley, 2003a), and
that evolved fractal GRNs naturally show fault-tolerance (Bentley,
2003c). This work now focuses on the evolution of developmental
programs that display graceful degradation when damaged.

2. Background

Questions of reliability and graceful degradation occur frequently in
fields focusing on embedded systems. To date, most solutions seem to
depend on architectures that partition software into separate compo-
nents, organised in such a way that the failure of non-critical compo-
nents will not induce the failure of the whole system (Shelton and
Koopman, 2001). Such approaches provide the most effective meth-
ods for achieving reliability, but they typically suffer from traditional
problems of anticipation and detection — the designer of such systems
must anticipate all types of fault and use that knowledge to design a
robust system, and the system must be able to detect when a fault has
occurred so that redundant components may take over. This work
focuses on automatic systems that require no anticipation by design-
ers of possible faults, and no detection by the system of the fault.

In Evolutionary Computation, scientists have been focussing on the
ability of evolution, and more commonly developmental methods, to
enable self-repairing behaviour and graceful degradation of solutions.
Andy Tyrrell and his group create fault-tolerant hardware inspired by
ideas of embryology and immune systems (Jackson and Tyrrell, 2002).
More recently, Julian Miller has described experiments evolving devel-
opmental programs to create “French Flag” patterns (Miller and Ban-
zhaf, 2003). He shows that development is able to regenerate these
patterns should some of their cells be removed. Current work by
Mahdavi and Bentley (2003) demonstrates how adaptive evolutionary
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control can enable a ““Smart Snake” to redevelop new movement strat-
egies even after the loss of a crucial muscle (Nitinol wire).

In his research on fault-tolerant systems, Thompson (1997)
describes how ‘“‘graceful degradation for free” can be achieved in
theory and in practice for robot controllers, “from the nature of
the evolutionary process.” Thompson suggests that mutation-insensi-
tive individuals will, in the long term, survive better, thus producing
a pressure towards fault-tolerant solutions. More recently, the same
results were demonstrated with fractal developmental processes
(Bentley, 2003c), where there are no direct mappings: pleiotropy
and polygeny are prevalent, and genes are reused over many devel-
opmental iterations. It was shown that through the Baldwin Effect,
solutions ‘“‘naturally”” became more efficient and fault-tolerant (Bent-
ley, 2003c). In more detail, the work demonstrated that if evolution
was permitted to run for a further 1000 generations after a perfect
solution had evolved, the fractal GRNs continued to evolve: the
number of genes and proteins that made up the solution was
reduced (so there is less to be damaged), and duplicate genes were
added, which provide redundancy and protection against damage.

This paper extends this work, showing that damage directly to the
executable code (and not just a gene in the system) can be survived by
evolved developmental programs.

3. Fractal proteins

Development is the set of processes that lead from egg to embryo to
adult. Instead of using a gene for a parameter value as we do in stan-
dard EC (i.e. a gene for long legs), natural development uses genes to
define proteins. If expressed, every gene generates a specific protein.
This protein might activate or suppress other genes, might be used for
signalling amongst other cells, or might modify the function of the
cell it lies within. The result is an emergent, asynchronous, parallel
“computer program’ made from dynamically forming gene regulatory
networks (GRNs) that control all cell growth, position and behaviour
in a developing creature (Wolpert et al., 2001).

In this work, a biologically plausible model of gene regulatory
networks is constructed through the use of genes that are expressed
into fractal proteins — subsets of the Mandelbrot set that can inter-
act and react according to their own fractal chemistry. Further
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motivations and discussions on fractal proteins are provided in
(Bentley, 2004, 2003a, b, c).

Table 1 describes the object types in the representation; Figure 1
illustrates the representation. Figure 2 provides an overview of the
algorithm used to develop a phenotype from a genotype. Note how
most of the dynamics rely on the interaction of fractal proteins. Evo-
lution is used to design genes that are expressed into fractal proteins
with specific shapes, which result in developmental processes with
specific dynamics. Figures 3, 4, 5, 6 and 7 show examples of fractal
proteins and their interactions. The full development algorithm is
given in the Appendix.

The main equations used in the system are as follows:

Protein decay:

diffusedconc = prevconcentration x (1 — 1 /JPROTEINDEC + 0.2)
(1)
(PROTEINDEC is a constant normally set to 5).

Table 1. Types of objects in the model

Fractal proteins Defined as subsets of the Mandelbrot set

Environment Contains one or more fractal proteins
(expressed from the environment gene(s)), and
one or more cells

Cell Contains a genome and cytoplasm, and has some behaviours
Cytoplasm Contains one or more fractal proteins
Genome Comprising structural genes and regulatory genes.

In this work, the structural genes are divided into different
types: cell receptor genes, environment genes
and behavioural genes

Regulatory gene Comprising operator (promoter or cis-site) region and coding
(or output) region

Cell receptor gene A structural gene with a coding region which acts like a mask,
permitting variable portions of the environmental proteins
to enter the corresponding cell cytoplasm

Environment gene A structural gene which determines which proteins
(maternal factors) will be present in the environment
of the cell(s)

Behavioural gene A structural gene comprising operator and cellular
behaviour region
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Figure 1. Representation using fractal proteins.

FRACTAL DEVELOPMENT

For every developmental time step:
For every cell in the embryo:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm

If the concentration level of a protein falls to zero, that protein
does not exist.

Figure 2. The fractal development algorithm.

421
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Figure 3. A fractal protein is a finite square subset of the Mandelbrot set (Mandelb-
rot, 1982), defined by three codons (x,y,z) that form the coding region of a gene in
the genome of a cell. Each (x,y,z) triplet is expressed as a protein by calculating the
square fractal subset with centre coordinates (x,y) and sides of length. Here we show
an example of a fractal protein defined by (x=0.13254, y=0.69812, z=0.46830).

Gene output concentration:

geneoutputconc = totalconc x tanhtotalconc — (¢,/CWIDTH)/CINC
(2)

where: fotalconc is the mean concentration seen at the promoter, C; is the
concentration threshold from the gene promoter, CWIDTH is a constant
(normally set to 30), and CINC is a constant (normally set to 2).

Gene activation probability:

activationprob = (1 + tanh((matchnum — Affinitythreshold
- C)/G))/2 (3)

where: matchnum is the matching score, Affinity threshold is the match-
ing threshold from gene promoter, C, is a threshold constant (nor-
mally set to 50), and C; is a sharpness constant (normally set to 50).
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Figure 4. To model complex protein-protein and protein-gene interactions, fractal
proteins interact according to their fractal shapes. The interaction occurs by merging
separate protein shapes to form new, complex compounds. The result is a product of
their own ““fractal chemistry” which naturally emerges through the fractal interac-
tions. Fractal proteins are merged (for each point sampled) by iterating through the
fractal equation of all proteins in “‘parallel”, and stopping as soon as the length of
any is unbounded (i.e. greater than 2). Here we show two fractal proteins (left and
middle) and the resulting merged fractal protein combination (right).

Figure 5. Fractal proteins can also act like a mask over other proteins, where all
black regions of the mask are treated as opaque, and all other regions treated as
transparent. Here we show a cell receptor protein (left), environment protein (mid-
dle), and the resulting masked protein to be combined with cytoplasm (right).

Behavioural gene output 1:
If the gene is being activated with a negative Affinity threshold,

output = output — (totalconcentration — concentrationthreshold) x fate

(4)



424 PETER BENTLEY

Figure 6. Each fractal protein also represents a certain concentration of protein (from
0 meaning “‘does not exist” to 200 meaning “‘saturated”). The total concentration of
two or more merged fractal proteins is the mean of the different concentrations seen in
their merged product. This Figure shows different concentrations of two fractal pro-
teins (left and middle) and the concentration levels in their merged product (right).

Behavioural gene output 2:
If the gene is being activated with a positive Affinity threshold,

output = output + (totalconcentration — concentrationthreshold)  fate

(5)

3.1. Genes

The environment gene, cell receptor gene, regulatory genes, and
behavioural genes all contain the following values: (xp,yp.,zp, Affinity
threshold, Concentration threshold) define the promoter (operator or
precondition) for the gene and (x,y,z) define the coding region of the
gene. A type value defines which type of gene is being represented, and
can be one or all of the following: environment, receptor, behavioural,
or regulatory. This enables the type of genes to be set independently of
their position in the genome, enabling variable-length genomes. It also
enables genes to be multi-functional, i.e. a gene might be expressed
both as an environmental protein and a behaviour.

When Affinity threshold is a positive value, one or more proteins
must match the promoter shape defined by (xp,yp,zp) with a difference
equal to or lower than Affinity threshold for the gene to be activated.
When Affinity threshold is a negative value, one or more proteins must
match the promoter shape defined by (xp,yp,zp) with a difference equal
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Figure 7. When being compared to the (xp,yp,zp) promoter region of a gene, the con-
centration seen on that promoter is described by all those regions that “fall under” the
promoter. In other words, the merged product is masked by the promoter fractal, and
the total concentration on the promoter is the mean of the resulting concentrations. We
depict here the shape of the desired protein as defined by a promoter (left), the shape
and concentration levels of merged proteins in the cytoplasm (middle) and the concen-
tration levels seen on that promoter (right), where total concentration is taken as mean.

to or lower than |Affinity threshold| for the gene to be repressed (not
activated).

To calculate whether a gene should be activated, all fractal pro-
teins in the cell cytoplasm are merged (including the masked environ-
mental proteins, see later) and the combined fractal mixture is
compared to the promoter region of the gene.

The similarity between two fractal proteins (or a fractal protein
and a merged fractal protein combination) is calculated by sampling a
series of points in each and summing the difference between all the
resulting values. (Black regions of fractals are ignored.) Given the sim-
ilarity matching score between cell cytoplasm fractals and gene pro-
moter, the activation probability of a gene is given by equation (3).

3.1.1. Regulatory gene

Should a regulatory gene be activated by other protein(s) in the cyto-
plasm (which have concentrations above 0) matching its promoter
region, its corresponding coding region (x,y,z) is expressed (by calcu-
lating the subset of the Mandelbrot set) and new concentration level
calculated. To do this, the concentration of the resulting protein is
modified by incrementing with geneoutputconc, the result of a function
of the concentration threshold (¢,) and the mean total concentration
seen at the gene promoter (totalconc), as given in Section 3.5. In this
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way, higher concentrations of protein on the promoter will cause an
increased rate of output protein concentration growth, while lower
concentrations (below the ¢, threshold) will increase the diffusion rate
of the output protein (its concentration will decrease at a higher rate).

The cell cytoplasm, which holds all current proteins, is updated at
the end of the developmental cycle.

3.1.2. Cell receptor gene
At present, the promoter region of the cell receptor gene is ignored,
and this gene is always activated. As usual, the corresponding coding
region (x,y,z) is expressed by calculating the subset of the Mandelbrot
set. However, the resultant fractal protein is treated as a mask for the
environmental proteins.

3.1.3. Environment gene

Like the cell receptor gene, this gene is always activated. It produces
environmental factors for all cells: fractal proteins of concentration 200.
If there is more than one environmental gene, the expressed environmen-
tal proteins are merged before being masked by the receptor protein. If
one or more values are being input to the system, the concentration of
the environmental fractal proteins are set to those values, i.e. an input to
the system disturbs the environment during development.

3.1.4. Behavioural gene

A behavioural gene is activated when other protein(s) in the cyto-
plasm match its promoter region (using the affinity threshold). For
this application, a gradual activation between not activated and acti-
vated was required, using the x value of the coding region (x,y,z) trip-
let as a fate value to define a function, see equations (4) and (5).

Note how the total concentration of proteins seen on the promoter
is offset against the Concentration Threshold gene and scaled by the
fate gene (x value of the coding region), allowing evolution to adjust
the range of values seen on the output, and used to specify behav-
iours. (If there is more than one behavioural gene, the change to out-
put is averaged over all behavioural genes, each developmental step.)

3.2. Development

As was illustrated in Figure 2, an individual begins life as a single cell
in a given environment. To develop the individual from this zygote
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into the final phenotype, fractal proteins are iteratively calculated and
matched against all genes of the genome. Should any genes be acti-
vated, the result of their activation (be it a new protein, receptor or
cellular behaviour) is generated at the end of the current cycle.

All fractal calculations (masking, merging, comparisons) are per-
formed by sampling the fractals at a resolution of 15x15 points. Note
that the comparison is normally performed between the single fractal
defined by (xp,yp,zp) of a gene and the merged combination of all
other proteins currently in the cytoplasm. The fractal shape defined
by the gene promoter is treated a little like the cell receptor mask —
only those regions that are not black are actually compared with the
contents of the cytoplasm.

Every developmental time step, the new concentration of each pro-
tein is calculated (synchronously). This is formed by summing two
separate terms: the previous concentration level after diffusion (dif-
fusedconc) and the new concentration output by a gene (geneoutput-
conc). These two terms model the reduction in concentration of
proteins over time, and the production of new proteins over time,
respectively; see equations (1) and (2).

Development continues for d cycles, where d is dependent on the
problem. Note that if one of the cellular behaviours includes the crea-
tion of new cells, then development will iterate through all genes of
the genome in all cells. Refer to the appendix for the full developmen-
tal algorithm.

3.3. Evolution

The genetic algorithm used in this work has been used extensively
elsewhere for other applications (including GADES (Bentley, 1999)).
A dual population structure is employed, where child solutions are
maintained and evaluated, and then inserted into a larger adult popu-
lation, replacing the least fit. The fittest n are randomly picked as par-
ents from the adult population. The degree of negative selection
pressure can be controlled by modifying the relative sizes of the two
populations. Likewise the degree of positive selection pressure is set
by varying n. When child and adult population sizes are equal, the
algorithm resembles a canonical or generational GA. When the child
population size is reduced, the algorithm resembles a steady-state GA.
Typically the child population size is set to 80% of the adult size and
n=40%. (For further details of this GA, refer to (Bentley, 1999)).
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Unless specified, alleles are initialised randomly, with (xp,yp,zp)
and (x,y,z) values between —1.0 and 1.0 and thresh between —10,000
and 10,000. The ranges and precision of the alleles are limited only by
the storage capacity of double and long “C” data types — no range
constraints were set in the code.

3.3.1. Genetic operators
Genes are real-coded, but genomes may comprise variable numbers of
genes. Given two parent genomes, the crossover operator examines
each gene of parent 1 in turn, finding the most similar gene of the
same type in parent 2. Similarity is measured by calculating the differ-
ences between respective values of operator and coding regions of
genes. One of the two genes is then randomly allocated to the child.
If the genome of parent 2 is shorter, the child inherits the remaining
genes from parent 1. If the genomes are the same length, this cross-
over acts as uniform crossover.

Mutation is also interesting, particularly since these genes actually
code for proteins in this system. There are four main types of muta-
tion used here:

1. Creep mutation, where (xp,yp,zp) and (x,y,z) values are incre-
mented or decremented by a random number between 0 and 0.5,
Affinity Threshold is incremented or decremented by a random
number between 0 and 16384 and Concentration Threshold is incre-
mented or decremented by a random number between 0 and 200.

2. Duplication mutation, where a (xp,yp,zp) or (x,y,z) region of one
gene randomly replaces a (xp,yp,zp) or (x,y,z) of another gene.
(This permits evolution to create matching promoter regions and
coding regions quickly.)

3. Gene mutation, where a random gene in the genome is either
removed or a duplicate added.

4. Sign flip mutation, where the sign of Affinity Threshold is reversed.
Crossover is always applied; all mutations occur with probability

0.01 per gene.

4. Squareroot function regression

Previous work has demonstrated how evolution can generate specific
fractal proteins that interact with each other in order to produce de-
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sired patterns of activation (Bentley, 2004) or to produce a specific set
of commands for a robot, to guide it past obstacles (Bentley, 2003a).
Here, the task is to produce the square root of a number. The input
to the system is provided by setting the concentration of the first envi-
ronment fractal protein (all others have a default value of 200). The
output is produced by the behavioural gene(s) as described previously.
Each genotype was developed ten times in succession with random in-
put (concentration) values between 0 and 199. The fitness was the
sum of the differences between the values obtained and true square-
root of the input. Note that there was no fitness measure to assess the
ability of this solution to survive damage — this property emerges nat-
urally (Bentley, 2003c).

To evolve the controllers, the fractal development system was ini-
tialised with a single cell, 2 environment genes, 2 receptor gene, 2
behavioural genes and 6 regulatory genes. (With variable length ge-
nomes, evolution was free to modify these gene numbers). The opera-
tor and coding regions of the genes were randomly initialised with the
alleles that defined 10 previously evolved protein fractals (Bentley,
2004). About 8 developmental steps were employed (ten times, each
with a different environmental protein concentration), and the evolu-
tionary algorithm used a population size of 100, running for 1000
generations.

All 20 runs produced outputs very close to that of the true square-
root. The best was picked (see Figure 8a), the evolved fractal proteins
were written into the code as constants, the genetic algorithm re-
moved, and the resulting developmental squareroot program compiled
into a stand-alone executable. (The compiler was GCC 3.3, using
xcode on a Mac Powerbook G4, Mac OS 10.3.2.)

4.1. Comparison methods

Two other programs were used as comparisons in the experiments.
The first was a fast squareroot function, written for speed of execu-
tion, provided by Hsieh.! This is written in C and was simply com-
piled to produce a stand-alone executable. The second was evolved by
Landon’s simple GP (Langdon, 1998).> This standard genetic pro-
gramming engine used a function set comprising “+7, “="", “*” and
“/””, population size of 100, max program size of 100 nodes, number
of generations = 1000, probability of crossover 0.7, and mutation 0.01.
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Figure 8. (a) Output of the evolved developmental squareroot function. (b) Output of
the GP-evolved squareroot function. (True squareroot shown by dotted line.)

Each individual was evaluated by presenting 10 random inputs and
calculating the sum of the difference between the outputs and the true
squareroot of the inputs. After twenty runs, only five solutions close
to the function of squareroot were evolved. Figure 8b shows the out-
put of the best GP squareroot function. Its code is as follows
(“GPdiv” divides, trapping divide-by-zero errors):

((GPdiv(x + x 4 x + GPdiv(((x) — ((x)"(x))) = ((x)"(x)), (x)"(x))
+x4+ (x+x+x0+x)"(x)) = (x),(X+xX+Xx+X+X+X+X
+X+X+X+X+X+X+X+X+X+X+X+X+X+X)(x))

— (GPdiv((x)*(x), GPdiv(x + X + X + X + X, (X)

— (")) (%))

The evolved code was then isolated and compiled to produce a stand-
alone GP-evolved squareroot executable.
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5. Experiments and results

Although it was observed that the evolved developmental squareroot
function was more accurate and this accuracy was achieved more con-
sistently than the GP version, this was not the objective of the work.
(Note that all three squareroot programs calculate the squareroot of
11 values from 0 to 199 in steps of 20, so accuracy is measured in
terms of these sample points only.) Here we are more concerned with
the ability of the evolved solutions to survive damage to their com-
piled executables. In order to assess this, a ““corruption’ program was
written, which reads a specified file in a series of 2048 byte chunks,
flipping a single, randomly chosen bit in each chunk, before saving in
a new file. This was performed 50 times for all three squareroot pro-
grams, resulting in 150 corrupted executables. These were then exe-
cuted and the results noted.

The initial results were perhaps predictable. Both the fast square-
root program and the GP-evolved program were approximately
16 kilobytes in size, smaller than the 28 kilobytes of the developmen-
tal squareroot program. This meant they were corrupted less, result-
ing in more reliable performance. Indeed, the fast squareroot program
ran perfectly 15/50 times, and ran providing incorrect solutions twice.
The GP-evolved program ran perfectly 10 times, and provided incor-
rect solutions twice. The developmental program ran perfectly twice,
provided approximately correct solutions 3 times, and incorrect solu-
tions twice.

With all three programs being different lengths and containing dif-
ferent code, it was clear that the comparison was flawed. A constant
corruption rate per bit favours shorter programs. Also, the develop-
mental program contained many more calls to memory-handling rou-
tines and library functions, resulting in more brittle code (which was
corrupted more), and thus code more likely to fail. To overcome this,
the three squareroot programs were combined into a single program.
By changing a simple compiler directive, the program could be com-
piled in three different ways:

1. Output result of method 1 only if methods 2 and 3 executed
correctly.

2. Output result of method 2 only if methods 1 and 3 executed
correctly.
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Table 2. Results of running 200 corrupted executables for three squareroot

programmes
Square root GP Ev. Dev.
Fail 197 198 177
Incorrect run 1 0 13
Graceful degradation 0 0 8
Perfect 2 2

Graceful degradation is defined as solutions producing 10 non-zero values within 50
percent of the correct values.

3. Output result of method 3 only if methods 1 and 2 executed

correctly.

where method 1 was the fast squareroot function, method 2 was
the GP-evolved function, and method 3 was the fractal developmental
squareroot function. This way, all three programs contained the same
code with the same susceptibility to damage, except that the code that
generated the output was different in each program.

The three executables were corrupted 200 times using the method
described previously. The corrupted programs were then executed and
the results noted, see Table 2.

6. Analysis

The results are fascinating. Despite all three programs suffering from
the same proportion and type of errors (see Figure 9), there is marked
difference in performance between the developmental squareroot pro-
gram and the fast squareroot and GP-evolved programs. The latter
both only manage to execute correctly 2 out of 200 corrupted execu-
tables. They display zero graceful degradation — they simply fail to
execute (or in a single case, execute with incorrect results).

The developmental squareroot program manages to run 23 times
out of 200. About 13 of those produce incorrect results (usually all
zeros). Only 2 produce perfect results (as good as the uncorrupted
program). But in 8 cases, the developmental squareroot produces
approximately correct solutions (Figure 10). The damage to the exe-
cutable has perhaps corrupted the genes or fractal proteins, and the
developmental program recovers. As was described in Section 2, evo-
lution has not only evolved a good solution, it has created a solution
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Figure 9. Percentage and type of errors obtained in all runs of the corrupted pro-
grammes.
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Figure 10. Outputs produced by different runs of the damaged developmental square-
root function, true squareroot shown in bold. Note that most produce results that
are approximately correct (within 2 of the true value), displaying remarkably graceful
degradation.

that copes with damage. It seems that this protection even extends to
damage done to the executable code, as well as simple mutation-dri-
ven damage to genes.
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Note that the GP-evolved code does not display this property. It is
conceivable that should the GP solution contain bloat (unused code),
then it might survive damage more readily. However, this would not
be the same phenomenon observed in the developmental system,
which has no bloat (Bentley, 2003c). In the developmental system,
damage to the code that is actually being used, can be survivable
(Bentley, 2003c). It seems probable that only this form of system
enables this kind of “‘natural” graceful degradation to emerge.

It should also be noted that all three squareroot programs were cal-
culating the squareroot results according to their inputs. The develop-
mental program did not, in any sense, have the answer “wired in” as
constants -- indeed it performed more calculation using the input to
produce the results than the other two programs. The ability to survive
damage arises because of the way the calculation was performed -- the
dynamic (gene) networks in the code are able to survive despite having
“holes punched in them’ by the corruption program.

It is conceivable that other algorithms that make use of networks
in this way may also show similar tolerance to damage. Neural net-
works should have this property if a level of redundancy is included
in their structure. Another aspect worthy of future study would be to
incrementally increase damage to solutions and assess graceful degra-
dation. At present such a study is difficult because of the extreme
brittleness of operating systems and compiled code -- even a single
error is usually devastating. The use of simpler systems (e.g. embed-
ded systems) may provide useful future platforms for such studies.

7. Conclusions

Development is the process used by evolution to construct complex,
adaptive and robust forms. Computer algorithms based on develop-
ment can share some of these properties. Here, experiments have
shown that, unlike traditional software, evolved developmental pro-
grams show graceful degradation after damage to their executable
code. While surviving only around 14 bits (0.05%) of damage 10% of
the time is not a great achievement compared to the robustness of
natural systems, given the conventional (brittle) nature of the pro-
gramming language, compiler and hardware, it is still considered
impressive. It seems likely that should computer science remove its
brittleness and embrace evolutionary and developmental systems more
fully, abilities such as graceful degradation will improve further.
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Appendix

In this Appendix we describe in detail the development algorithm for
mapping genotype to phenotype. The genetic algorithm (described in
Section 3.3) calls this function to evaluate evolving individuals. Phe-
notype fitness may be measured during development by monitoring
the change in output produced by behavioural genes. For the square-
root problem, the final output after 10 developmental steps is used;
this is developed ten times in succession using different concentrations
of environmental proteins as inputs and compared with 10 correct ex-
emplars.
Create the cell
Examine the type field of all genes and extract all: environment,
receptor, regulatory and behavioural genes
Calculate and store all fractal proteins defined by cis-sites and cod-
ing regions of all genes
Fill cytoplasm with all possible fractal proteins defined by coding
regions with concentration of zero
Loop
{
Set concentration of environment protein to input value of
squareroot function.
Mask environment proteins with receptor fractals and merge,
calculate concentrations and add to cytoplasm.
Merge cytoplasm fractals (ignore those with concentration of
Zero).
Calculate merged concentration.
Compare merged cytoplasm fractal with cis-sites of all behavio-
ural and regulatory genes
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If the affinity threshold of the current gene is +ve
Activate gene based on activation probability (a function of
the cytoplasm-cis-site match), see Equation 3
If the gene is behavioural
Increase output by a function of concentration
and fate (Equation 5)
If the gene is regulatory
Concentration of protein defined by gene coding
region will be increased by a function of input
concentration on cis-site (Equation 2)
else if the affinity threshold of the current gene is —ve
Activate gene based on inverse of activation probability
(a function of the cytoplasm-cis-site match), see Equation 3
If the gene is behavioural
Decrease output by a function of concentration and
fate (Equation 4)
If the gene is regulatory
Concentration of protein defined by gene coding region
will be increased by a function of input concentration
on cis-site (Equation 2)
Update concentration of all cytoplasm proteins, increasing by
amount defined by genes (Equation 2), decreasing by decay level
(Equation 1).
} until desired number of iterations d.

Notes

U http://www.azillionmonkeys.com/qed/sqroot.htmI#fast
2 http://www.cs.ucl.ac.uk/staff/w.langdon/ftp/gp-code/simple/simple-gp.c
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