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Abstract. Fractal proteins are an evolvable method of mapping genotype to 
phenotype through a developmental process, where genes are expressed into 
proteins comprised of subsets of the Mandelbrot Set. The resulting network of 
gene and protein interactions can be designed by evolution to produce specific 
patterns that in turn can be used to solve problems. In this paper, adaptive  
developmental programs, capable of developing different solutions in response 
to different signals from an environment, are investigated. The evolvability of 
solutions and the capability of these solutions to survive damage is assessed. 
Evolution is used to create a fractal gene regulatory network (GRN) that  
calculates the squareroot of the input (its environment). This is compared with a 
GP-evolved squareroot function and a human-designed squareroot function. 
The programs are damaged by corrupting their compiled executable code, and 
the ability for each of them to survive such damage is assessed. Experiments 
demonstrate that only the evolutionary developmental code shows graceful  
degradation after damage. This provides evidence that software based on gene, 
protein and cellular computation is far more robust than traditional methods. 
Like a multicellular organism, with its genes evolved and developed, it shows 
graceful degradation. Should it be damaged, it is designed to continue to work.  

1   Introduction 

Human designs are carefully-crafted, consciously-created fusions of experience and 
skill. Our designs usually work reliably and well under the conditions they were de-
signed for. Unfortunately, they rarely work well under unforeseen conditions. A ship 
will sink in the wrong kinds of seas, a car will crash on the wrong kinds of roads. A 
program will fail in the wrong kind of software environment. And sadly for computer-
users worldwide, the mess of different software on an average computer causes such 
complex environments that programs fail with tired regularity. 

Natural systems are also carefully crafted, but there is no conscious mind or skill 
needed to produce her designs. Generations of past experience drives evolution to 
create robust, damage-tolerant  solutions. Organisms don’t fail if they sustain minor 
damage. A broken finger hardly slows us. The equivalent damage to a human-
designed program would produce terminal failure. 

The work described here continues an ongoing investigation into the use of devel-
opmental systems with evolutionary computation. Here, fractals are employed as a 
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computer representation of proteins. Earlier work has shown that fractal proteins are 
highly evolvable by a genetic algorithm (Bentley 2004, 2003c), that specific patterns 
of activation in a fractal gene regulatory network (GRN) can be evolved (Bentley, 
2004, 2003b), that they can perform computational tasks such as function regression 
and robot control (Bentley 2003a), and that evolved fractal GRNs naturally show 
fault-tolerance (Bentley 2003c). This work now focuses on the evolution of develop-
mental programs that display graceful degradation when damaged. 

2   Background 

Questions of reliability and graceful degradation occur frequently in fields focusing on em-
bedded systems. To date, most solutions seem to depend on architectures that partition soft-
ware into separate components, organised in such a way that the failure of non-critical com-
ponents will not induce the failure of the whole system (Shelton & Koopman, 2001). 

In Evolutionary Computation, scientists have been focussing on the ability of evo-
lution, and more commonly developmental methods, to enable self-repairing behav-
iour and graceful degradation of solutions. The work of Andy Tyrrell and his group 
create fault-tolerant hardware inspired by ideas of embryology and immune systems 
(Jackson and Tyrrell, 2002). More recently, Julian Miller has described experiments 
evolving developmental programs to create “French Flag” patterns (Miller and 
Banzhaf, 2003). He shows that development is able to regenerate these patterns 
should some of their cells be removed. Current work by Mahdavi and Bentley (2003) 
demonstrates how adaptive evolutionary control can enable a “Smart Snake” to rede-
velop new movement strategies even after the loss of a crucial muscle (Nitinol wire). 

In his research on fault-tolerant systems, Thompson (1997) describes how “grace-
ful degradation for free” can be achieved in theory and in practice for robot control-
lers, “from the nature of the evolutionary process.” Thompson suggests that mutation-
insensitive individuals will, in the long term, survive better, thus producing a pressure 
towards fault-tolerant solutions. More recently, the same results were demonstrated 
with fractal developmental processes (Bentley 2003c), where there are no direct map-
pings: pleiotropy and polygeny are prevalent, and genes are reused over many devel-
opmental iterations. It was shown that through the Baldwin Effect, solutions “natu-
rally” became more efficient and fault-tolerant (Bentley 2003c). In more detail, the 
work demonstrated that if evolution was permitted to run for a further 1000 genera-
tions after a perfect solution had evolved, the fractal GRNs continued to evolve: the 
number of genes and proteins that made up the solution was reduced (so there is less 
to be damaged), and duplicate genes were added, which provide redundancy and 
protection against damage. 

This paper extends this work, showing that damage directly to the executable code 
(and not just a gene in the system) can be survived by evolved developmental programs. 

3   Fractal Proteins 

Development is the set of processes that lead from egg to embryo to adult. Instead of 
using a gene for a parameter value as we do in standard EC (i.e., a gene for long legs), 
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natural development uses genes to define proteins. If expressed, every gene generates 
a specific protein. This protein might activate or suppress other genes, might be used 
for signalling amongst other cells, or might modify the function of the cell it lies 
within. The result is an emergent, asynchronous, parallel “computer program” made 
from dynamically forming gene regulatory networks (GRNs) that control all cell 
growth, position and behaviour in a developing creature (Wolpert et al, 2001). 

Table 1. Types of objects in the model 

fractal proteins defined as subsets of the Mandelbrot set. 
Environment contains one or more fractal proteins (expressed from the environment gene(s)), 

and one or more cells. 
Cell contains a genome and cytoplasm, and has some behaviours. 
Cytoplasm contains one or more fractal proteins. 
Genome comprising structural genes and regulatory genes. In this work, the structural 

genes are divided into different types: cell receptor genes, environment genes and 
behavioural genes. 

regulatory gene comprising operator (or promoter) region and coding (or output) region. 
cell receptor gene a structural gene with a coding region which acts like a mask, permitting variable 

portions of the environmental proteins to enter the corresponding cell cytoplasm. 
environment gene a structural gene which determines which proteins (maternal factors) will be 

present in the environment of the cell(s). 
behavioural gene structural gene comprising operator and cellular behaviour region. 
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FRACTAL DEVELOPMENT

For every cell in the embryo:

For every developmental time step:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm.
If the concentration level of a protein falls to zero, that protein
does not exist.  

 
Fig. 1. Representation using fractal 
proteins 

 
         Fig. 2. The fractal development algorithm 

In this work, a biologically plausible model of gene regulatory networks is con-
structed through the use of genes that are expressed into fractal proteins – subsets of 
the Mandelbrot set that can interact and react according to their own fractal chemistry. 
Further motivations and discussions on fractal proteins are provided in (Bentley, 2004 
& 2003a,b,c). Table 1 describes the object types in the representation; Figure 1 illus-
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trates the representation. Figure 2 provides an overview of the algorithm used to de-
velop a phenotype from a genotype. Note how most of the dynamics rely on the inter-
action of fractal proteins. Evolution is used to design genes that are expressed into 
fractal proteins with specific shapes, which result in developmental processes with 
specific dynamics. 

3.1   Defining a Fractal Protein 

In more detail, a fractal protein is a finite square subset of the Mandelbrot set (Man-
delbrot 1982), defined by three codons (x,y,z) that form the coding region of a gene in 
the genome of a cell. Each (x, y, z) triplet is expressed as a protein by calculating the 
square fractal subset with centre coordinates (x,y) and sides of length z, see fig. 3 for 
an example. In addition to shape, each fractal protein represents a certain concentra-
tion of protein (from 0 meaning “does not exist” to 200 meaning “saturated”), deter-
mined by protein production and diffusion rates. 

 

Fig. 3. Example of a fractal protein defined by (x=0.132541887, y=0.698126164, 
z=0.468306528) 

3.2   Fractal Chemistry 

The model incorporates the notions of cell cytoplasm – a “container” which holds the 
proteins belonging to the corresponding cell) and (cellular) environment – the global 
“container” which holds proteins visible to all cells. In order to model complex  pro-
tein-protein and protein-gene interactions, multiple fractal proteins are allowed to 
interact according to their fractal shapes. The interaction occurs by merging separate 
protein shapes to form new, complex compounds. The result is a product of their own 
“fractal chemistry” which naturally emerges through the fractal interactions. 

Fractal proteins are merged (for each point sampled) by iterating through the frac-
tal equation of all proteins in “parallel”, and stopping as soon as the length of any is 
unbounded (i.e. greater than 2). Intuitively, this results in black regions being treated 
as though they are transparent, and paler regions “winning” over darker regions. See 
fig 4 for an example.      

3.3   Calculating Concentration Levels 

The total concentration of two or more merged fractal proteins is the mean of the 
different concentrations seen in their merged product. For example, fig. 4 shows how 
fractal proteins are merged to form a new fractal shape. Figure 5 illustrates the  
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Fig. 4. Two fractal proteins (left and middle) and the resulting merged fractal protein combina-
tion (right) 

         

Fig. 5. The different concentrations of the two fractal proteins (left and middle) and the concen-
tration levels in their merged product (right) 

       

Fig. 6. The shape of the desired protein as defined by a promoter (left), the shape and concen-
tration levels of merged proteins in the cytoplasm (middle) and the concentration levels seen on 
that promoter (right), where total concentration is taken as mean. Note that although a merged 
protein may decrease affinity (similarity) to the promoter, should the second protein have a 
higher concentration level to the first, it will boost overall concentration seen by the promoter, 
i.e., act like a catalyst to speed up (or slow down, if lower) the “reaction” 

resultant areas of different concentration in the product. When being compared to the  
(xp, yp, zp) promoter region of a gene (the “conditional” part of the gene to be 
matched, see later section on genes), the concentration seen on that promoter is de-
scribed by all those regions that “fall under” the promoter, see fig. 5. In other words, 
the merged product is masked by the promoter fractal, and the total concentration on 
the promoter is the mean of the resulting concentrations, see Fig. 6. 
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3.4   Updating Protein Concentration Levels 

Every developmental time step, the new concentration of each protein is calculated 
(synchronously). This is formed by summing two separate terms: the previous con-
centration level after diffusion (diffusedconc) and the new concentration output by a 
gene (geneoutputconc). These two terms model the reduction in concentration of 
proteins over time, and the production of new proteins over time, respectively, where: 

diffusedconc = prevconcentration × (1 – 1/ PROTEINDEC + 0.2)  
  (PROTEINDEC is a constant normally set to 5) 
and: 

geneoutputconc = totalconc × tanh((totalconc – ct) / CWIDTH) / CINC 

where: totalconc is the mean concentration seen at the promoter, 
ct is the concentration threshold from the gene promoter 

  CWIDTH is a constant (normally set to 30) 
  CINC is a constant (normally set to 2) 

3.5   Genes 

The environment gene, cell receptor gene, regulatory genes, and behavioural genes all 
contain 7 real-coded values: 

 

xp yp zp Affinity threshold Concentration threshold x y z type 

 
where (xp, yp, zp, Affinity threshold, Concentration threshold) defines the promoter 
(operator or precondition) for the gene and (x,y,z) defines the coding region of the 
gene. The type value defines which type of gene is being represented, and can be one 
or all of the following: environment, receptor, behavioural, or regulatory. This en-
ables the type of genes to be set independently of their position in the genome, ena-
bling variable-length genomes. It also enables genes to be multi-functional, i.e. a gene 
might be expressed both as an environmental protein and a behaviour. 

When Affinity threshold is a positive value, one or more proteins must match the 
promoter shape defined by (xp,yp,zp) with a difference equal to or lower than Affinity 
threshold for the gene to be activated. When Affinity threshold is a negative value, 
one or more proteins must match the promoter shape defined by (xp,yp,zp) with a 
difference equal to or lower than |Affinity threshold| for the gene to be repressed (not 
activated). 

To calculate whether a gene should be activated, all fractal proteins in the cell cy-
toplasm are merged (including the masked environmental proteins, see later) and the 
combined fractal mixture is compared to the promoter region of the gene. 

The similarity between two fractal proteins (or a fractal protein and a merged frac-
tal protein combination) is calculated by sampling a series of points in each and sum-
ming the difference between all the resulting values. (Black regions of fractals are 
ignored.) Given the similarity matching score between cell cytoplasm fractals and 
gene promoter, the activation probability of a gene is given by: 
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activationprob = (1 + tanh((matchnum – Affinity threshold - Ct) / Cs)) / 2  
 
where: matchnum is the matching score, 

 Affinity threshold is the matching threshold from the gene promoter 
 Ct is a threshold constant (normally set to 50) 
 Cs is a sharpness constant (normally set to 50) 

Regulatory Gene 
Should a regulatory gene be activated by other protein(s) in the cytoplasm (which 
have concentrations above 0) matching its promoter region, its corresponding coding 
region (x,y,z) is expressed (by calculating the subset of the Mandelbrot set) and new 
concentration level calculated. To do this, the concentration of the resulting protein is 
modified by incrementing with geneoutputconc, the result of a function of the concen-
tration threshold (ct) and the mean total concentration seen at the gene promoter (to-
talconc), as given in section 3.5. In this way, higher concentrations of protein on the 
promoter will cause an increased rate of output protein concentration growth, while 
lower concentrations (below the ct threshold) will increase the diffusion rate of the 
output protein (its concentration will decrease at a higher rate). 

The cell cytoplasm, which holds all current proteins, is updated at the end of the 
developmental cycle. 

Cell Receptor Gene 
At present, the promoter region of the cell receptor gene is ignored, and this gene is 
always activated. As usual, the corresponding coding region (x,y,z) is expressed by 
calculating the subset of the Mandelbrot set. However, the resultant fractal protein is 
treated as a mask for the environmental proteins, where all black regions of the mask 
are treated as opaque, and all other regions treated as transparent. For an example, see 
fig. 7. If there is more than one receptor gene, only the first in the genome is used. 

          
 

Fig. 7. Cell receptor protein (left), environment protein (middle), resulting masked protein to be 
combined with cytoplasm (right) 

Environment Gene 
Like the cell receptor gene, this gene is always activated. It produces environmental 
factors for all cells: fractal proteins of concentration 200. If there is more than one 
environmental gene, the expressed environmental proteins are merged before being 
masked by the receptor protein. If one or more values are being input to the system, 
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the concentration of the environmental fractal proteins are set to those values, i.e. an 
input to the system disturbs the environment during development. 

Behavioural Gene 
A behavioural gene is activated when other protein(s) in the cytoplasm match its pro-
moter region (using the affinity threshold). For this application, a gradual activation 
between not activated and activated was required, using the x value of the coding 
region (x,y,z) triplet as a fate value to define a function, calculated as follows: 

If the gene is being activated with a negative Affinity threshold, 
output = output - (totalconcentration - concentrationthreshold) * fate 
If the gene is being activated with a positive Affinity threshold, 
output = output + (totalconcentration - concentrationthreshold) * fate 

Note how the total concentration of proteins seen on the promoter is offset against 
the Concentration Threshold gene and scaled by the fate gene (x value of the coding 
region), allowing evolution to adjust the range of values seen on the output, and used 
to specify behaviours. (If there is more than one behavioural gene, the change to out-
put is averaged over all behavioural genes, each developmental step.) 

3.6   Fractal Sampling 

All fractal calculations (masking, merging, comparisons) are performed at the same 
time, by sampling the fractals at a resolution of 15x15 points. Note that the compari-
son is normally performed between the single fractal defined by (xp,yp,zp) of a gene 
and the merged combination of all other proteins currently in the cytoplasm. The 
fractal being compared is treated a little like the cell receptor mask – only those re-
gions that are not black are actually compared with the contents of the cytoplasm. 

3.7   Development 

As was illustrated in figure 2, an individual begins life as a single cell in a given envi-
ronment. To develop the individual from this zygote into the final phenotype, fractal 
proteins are iteratively calculated and matched against all genes of the genome. 
Should any genes be activated, the result of their activation (be it a new protein, re-
ceptor or cellular behaviour) is generated at the end of the current cycle. Development 
continues for d cycles, where d is dependent on the problem. Note that if one of the 
cellular behaviours includes the creation of new cells, then development will iterate 
through all genes of the genome in all cells. 

3.8   Evolution 

The genetic algorithm used in this work has been used extensively elsewhere for other 
applications (including GADES (Bentley 1999)). A dual population structure is em-
ployed, where child solutions are maintained and evaluated, and then inserted into a 
larger adult population, replacing the least fit. The fittest n are randomly picked as 
parents from the adult population. The degree of negative selection pressure can be 
controlled by modifying the relative sizes of the two populations. Likewise the degree 
of positive selection pressure is set by varying n. When child and adult population 
sizes are equal, the algorithm resembles a canonical or generational GA. When the 
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child population size is reduced, the algorithm resembles a steady-state GA. Typically 
the child population size is set to 80% of the adult size and n = 40%. (For further 
details of this GA, refer to (Bentley 1999).) 

Unless specified, alleles are initialised randomly, with (xp,yp,zp) and (x,y,z) values 
between -1.0 and 1.0 and thresh between -10000 and 10000. The ranges and precision 
of the alleles are limited only by the storage capacity of double and long ‘C’ data 
types – no range constraints were set in the code. 

Genetic Operators 
Genes are real-coded, but genomes may comprise variable numbers of genes. Given 
two parent genomes, the crossover operator examines each gene of parent1 in turn, 
finding the most similar gene of the same type in parent 2. Similarity is measured by 
calculating the differences between values of operator and coding regions of genes. 
One of the two genes is then randomly allocated to the child. If the genome of parent2 
is shorter, the child inherits the remaining genes from parent 1. If the genomes are the 
same length, this crossover acts as uniform crossover. 

Mutation is also interesting, particularly since these genes actually code for pro-
teins in this system. There are four main types of mutation used here: 

1. Creep mutation, where (xp,yp,zp) and (x,y,z) values are incremented or dec-
remented by a random number between 0 and 0.5, Affinity Threshold is in-
cremented or decremented by a random number between 0 and 16384 and 
Concentration Threshold is incremented or decremented by a random num-
ber between 0 and 200. 

2. Duplication mutation, where a (xp,yp,zp) or (x,y,z) region of one gene ran-
domly replaces a (xp,yp,zp) or (x,y,z) of another gene. (This permits evolu-
tion to create matching promoter regions and coding regions quickly.) 

3. Gene mutation, where a random gene in the genome is either removed or a 
duplicate added. 

4. Sign flip mutation, where the sign of Affinity Threshold is reversed. 

Crossover is always applied; all mutations occur with probability 0.01 per gene. 

4   Squareroot Function Regression 

Previous work has demonstrated how evolution can generate specific fractal proteins 
that interact with each other in order to produce desired patterns of activation (Bentley 
2004) or to produce a specific set of commands for a robot, to guide it past obstacles 
(Bentley 2003a). Here, the task is to produce the square root of a number. The input to 
the system is provided by setting the concentration of the first environment fractal 
protein (all others have a default value of 200). The output is produced by the behav-
ioural gene(s) as described previously. Each genotype was developed ten times in 
succession with random input (concentration) values between 0 and 199. The fitness 
was the sum of the differences between the values obtained and true squareroot of the 
input.  

To evolve the controllers, the fractal development system was initialised with a 
single cell, 2 environment genes, 2 receptor gene, 2 behavioural genes and 6 regula-
tory genes. (With variable length genomes, evolution was free to modify these gene 
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numbers). The operator and coding regions of the genes were randomly initialised 
with the alleles that defined 10 previously evolved protein fractals (Bentley, 2004). 8 
developmental steps were employed (ten times, each with a different environmental 
protein concentration, corresponding to the ten random inputs), and the evolutionary 
algorithm used a population size of 100, running for 1000 generations. 

To provide some assessment of how effective fractal proteins are in improving per-
formance or evolvability, the same system was also run with all fractal proteins dis-
abled. In this non-fractal version, the triplet of three real values were used directly 
(the affinity value now defined how small the sum of differences between the cis-
region of the gene and the protein should be before the gene is activated). There were 
no protein-protein interactions; no fractal shapes were calculated, merged or com-
pared. All other parameters were kept the same. 

5   Squareroot Function Regression Results 

Figure 8 shows the final fitness scores achieved by the fractal developmental system 
and the system using no fractal proteins, for thirty runs. Fitnesses below 40,000 
achieved an acceptable accuracy. It should be clear that the system using fractal pro-
teins achieved acceptable fitnesses in 20 out of 30 runs. The system without fractal 
proteins only achieved acceptable fitnesses in 7 out of 30 runs. In addition, solution 
quality often suffers without fractal proteins – no solutions achieved the same accu-
racy as those produced with fractal proteins. 
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Fig. 8. Fitness of developmental squareroot program using fractal proteins and the developmen-
tal squareroot program without fractal proteins. Results are shown sorted into descending order 
of fitness for clarity and ease of comparison. The dotted line denotes a fitness of 40,000 – any 
solutions with fitnesses at or below this line are considered sufficiently accurate at calculating 
the squareroot of the input 



 Evolving Fractal GRNs for Graceful Degradation of Software 31 

 

The reason for the difference in performance seems to be evolvability. Without 
fractal proteins, solutions become trapped in local optima – GRNs that produce a 
linear output are common, instead of the required non-linear squareroot curve. With-
out the ability for new proteins and genes created by evolution to affect existing pro-
teins and genes (through complex protein-protein and protein-gene interactions), there 
is no way for evolution to overcome the trap. With fractal proteins, evolution is free to 
add new genes which produce proteins that modify existing solutions subtly and in 
nonlinear ways. Evolvability is caused by the ability of this representation to enable 
gradual modifications to any solutions - not just by changing existing genes but also 
by adding new ones that act in combination with existing ones where necessary. This 
is evident during evolution as poor solutions gain large numbers of genes, and good 
solutions prune the genes down to more robust sizes. Without fractal proteins, each 
gene has a much more binary role - it is either critical to the GRN or has no effect at 
all - meaning evolution cannot make small changes quite as easily (despite still being 
able to duplicate genes). 

Previous work (Bentley 2003c) has shown other aspects of evolvability: even after 
evolution has found a perfect solution, it continues to evolve, changing genes, pro-
teins and entire GRNs constantly. This representation enables never-ceasing evolu-
tion, which also results in the solutions becoming compact and robust against damage. 

6   Damage Tolerant Developmental Programs 

Having shown that fractal proteins do convey a significant advantage for evolutionary 
development, a further experiment was performed in order to assess how fractal de-
velopmental programs show graceful degradation, when damaged.  Using the results 
from the previous experiment, the fittest solution was picked (see figure 9a), the 
evolved fractal proteins were written into the code as a short list of real-valued con-
stants (the x, y, z values described earlier), the genetic algorithm removed, and the 
resulting fractal developmental squareroot program compiled into a stand-alone ex-
ecutable. (The compiler was GCC 3.3, using xcode on a Mac Powerbook G4, Mac OS 
10.3.2.) 

6.1   Comparison Methods 

Two other programs were used as comparisons in the experiments. The first was a fast 
squareroot  function, written for speed of execution, provided by Hsieh1. This is writ-
ten in C and was simply compiled to produce a stand-alone executable. The second 
was evolved by Landon’s simple GP (Langdon 1998)2. This standard genetic pro-
gramming engine used a function set comprising “+”, “-“, “*” and “/”, population size 
of 100, max program size of 100 nodes, number of generations = 1000, probability of 
crossover 0.7, and mutation 0.01. Each individual was evaluated by presenting 10 
random inputs and calculating the sum of the difference between the outputs and the 
true squareroot of the inputs. After twenty runs, only five solutions close to the  
 
                                                           
1 http://www.azillionmonkeys.com/qed/sqroot.html#fast 
2 http://www.cs.ucl.ac.uk/staff/w.langdon/ftp/gp-code/simple/simple-gp.c 
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Fig. 9. (a) Output of the evolved developmental squareroot function. (b) Output of the GP-
evolved squareroot function. (True squareroot shown by dotted line.) 

Fig. 10. GP-evolved squareroot. “GPdiv” divides, trapping divide-by-zero errors 

function of squareroot had evolved. Figure 9b shows the output of the best GP square-
root function. Fig. 10 shows its code. The evolved code was then isolated and com-
piled to produce a stand-alone GP-evolved squareroot executable. 

7   Damage Tolerance Experiments and Results 

Although it was observed that the evolved fractal developmental squareroot function 
was more accurate and this accuracy was achieved more consistently than the GP 
version, this was not the objective of the work. (Note that all three compiled square-
root programs are set to calculate the squareroot of 11 values from 0 to 199 in steps of 
20, so accuracy is measured in terms of these sample points only.) Here we are more 
concerned with the ability of the evolved solutions to survive damage to their com-
piled executables. In order to assess this, a “corruption” program was written, which 
reads a specified file in a series of 2048 byte chunks, flipping a single, randomly cho-
sen bit in each chunk, before saving in a new file. This was performed 50 times for all 
three squareroot programs, resulting in 150 corrupted executables. These were then 
executed and the results noted. 

The initial results were perhaps predictable. Both the fast squareroot program and 
the GP-evolved program were approximately 16 kilobytes in size, smaller than the 28 
kilobytes of the developmental squareroot program. This meant they were corrupted 
less, resulting in more reliable performance. Indeed, the fast squareroot program ran 
perfectly 15/50 times, and ran providing incorrect solutions twice. The GP-evolved 
program ran perfectly 10/50 times, and provided incorrect solutions twice. The devel-
opmental program ran perfectly twice, provided approximately correct solutions 3 
times, and incorrect solutions twice. 

With all three programs being different lengths and containing different code, it was 
clear that the comparison was flawed. The developmental program contained many 

((GPdiv(x+x+x+GPdiv(((x)-((x)*(x)))-((x)*(x)),(x)*(x))+x+((x+x+x+x)*(x))-(x),((x+x+
x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x)*(x))-(GPdiv((x)*(x),GPdiv(x+x+x+x+x,(x)-
((x)*(x)))))))*(x));
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more calls to memory-handling routines and library functions, resulting in more code 
(which was corrupted more), and thus code more likely to fail. To overcome this, the 
three squareroot programs were combined into a single program. By changing a simple 
compiler directive, the program could be compiled in three different ways: 

1. Output result of method 1 only if methods 2 and 3 executed correctly. 
2. Output result of method 2 only if methods 1 and 3 executed correctly. 
3. Output result of method 3 only if methods 1 and 2 executed correctly. 

where method 1 was the fast squareroot function, method 2 was the GP-evolved func-
tion, and method 3 was the fractal developmental squareroot function. This way, all 
three programs contained the same code with the same susceptibility to damage, ex-
cept that the code that generated the output was different in each program. 

The three executables were corrupted 200 times using the method described previ-
ously. The corrupted programs were then executed and the results noted, see table 2. 

Table 2. Results of running 200 corrupted executables for three squareroot programs. Graceful 
degradation is defined as solutions producing 10 non-zero values within 50 percent of the cor-
rect values 

 Square root GP square root Ev. Dev. square root 
Fail 197 198 177 
Incorrect run 1 0 13 
Graceful degradation 0 0 8 
Perfect 2 2 2 

8   Analysis 

The results are fascinating. Despite all three programs suffering from the same pro-
portion and type of errors (see fig. 11), there is marked difference in performance 
between the developmental squareroot program and the fast squareroot and GP-
evolved programs. The latter both only manage to execute correctly 2 out of 200 cor-
rupted executables. They display zero graceful degradation – they simply fail to exe-
cute (or in a single case, execute with incorrect results). 

The developmental squareroot program manages to run 23 times out of 200. 13 of those 
produce incorrect results (usually all zeros). Only 2 produce perfect results (as good as the 
uncorrupted program). But in 8 cases, the developmental squareroot produces approximately 
correct solutions, fig 12. The damage to the executable has perhaps corrupted the genes or 
fractal proteins, and the developmental program recovers. As was described in section 2, 
evolution has not only evolved a good solution, it has created a solution that copes with 
damage. It seems that this protection even extends to damage done to the executable code, as 
well as simple mutation-driven damage to genes. 

Note that the GP-evolved code does not display this property. It is conceivable that 
should the GP solution contain bloat (unused code), then it might survive damage 
more readily. However, this would not be the same phenomenon observed in the de-
velopmental system, which has no bloat (Bentley 2003c). In the developmental sys-
tem, damage to the code that is actually being used, can be survivable (Bentley, 
2003c). It seems probable that only highly evolvable developmental systems enable 
this kind of “natural” graceful degradation to emerge. 
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It should also be noted that all three squareroot programs were calculating the 
squareroot results according to their inputs. The developmental program did not, in 
any sense, have the answer “wired in” as constants – indeed it performed more calcu-
lation using the input to produce the results than the other two programs. The ability 
to survive damage arises because of the way the calculation was performed – the 
dynamic (gene) networks in the code are able to survive despite having “holes 
punched in them” by the corruption program. 

Fig. 11. Percentage & type of errors obtained in all runs of the corrupted programs 
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Fig. 12  Outputs produced by different runs of the damaged developmental squareroot function, 
true squareroot shown in bold. Note that most produce results that are approximately correct 
(within 2 of the true value), displaying remarkably graceful degradation 

9   Conclusions 

Development is the process used by evolution to construct complex, adaptive and 
robust forms. Computer algorithms based on development can share some of these 
properties. Here, experiments have shown that fractal proteins increase the evolvabil-
ity of developmental programs by allowing new protein-protein and protein-gene 
interactions to incrementally modify solutions over several generations. Experiments 
have also shown that, unlike traditional software, evolved fractal developmental pro-
grams show graceful degradation after damage to their executable code. While surviv-
ing only around 14 bits (0.05%) of damage  10% of the time is not a great achieve-
ment compared to the robustness of natural systems, given the conventional (brittle) 

.
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nature of the programming language, compiler and hardware, it is still considered 
impressive. It seems likely that should computer science remove its brittleness and 
embrace evolutionary and developmental systems more fully, abilities such as grace-
ful degradation will improve further. 
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