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Abstract
This paper explores the use of genetic
programming to evolve fuzzy rules for the
purpose of fraud detection. The fuzzy rule
evolver designed during this research is
described in detail. Four key system evaluation
criteria are identified: intelligibility, speed,
handling noisy data, and accuracy. Three sets of
experiments are then performed in order to assess
the performance of different components of the
system, in terms of these criteria. The paper
concludes: 1. that many factors affect accuracy of
classification, 2. intelligibility and processing
speed mainly seem to be affected by the  fuzzy
membership functions and 3. noise can cause loss
of accuracy proportionate to the square of noise.

1 INTRODUCTION
It is easy to spot a thief if he wears a black mask and
carries a bag over his shoulder with the word ‘swag’
written boldly across it. Most crimes are perhaps not as
obvious as this amusing movie cliché, but there will be,
more often than not, physical evidence left behind which
will incriminate the wrongdoer. However, there is a type
of crime far subtler in its implementation. This
clandestine activity relies upon deception, concealment
and mendacity. It is known as fraud, and it impacts on
every aspect of our financial world - from insurance to
social security benefits to pensions. Its exposure requires
a different type of detection. There are no fingerprints left
to be found by forensics - but in the computer databases
there are other types of fingerprints stored unknowingly
by the fraudsters. These fingerprints are small patterns of
data, hidden amongst vast archives of information.

Until recently, often the only way to identify such fraud
was for experts to study each data item and mentally
apply a set of learned rules. For example, if the home
insurance claim is for a large amount and if there have
been many such claims from that address in a short space
of time, then perhaps the claim is fraudulent. Identifying

such ‘fingerprints’ in data is a laborious and slow task,
and is dependent on the fingerprint characterising a true
fraudulent activity. However, with the advent of data
mining and machine learning techniques, such detection
can now be performed by computer.

This paper explores the use of evolutionary computation
and fuzzy logic in combination to perform machine
learning or pattern classification, with an emphasis on the
capabilities required for the detection of fraud. The next
section briefly describes the background to this area.
Section 3 gives details of the fuzzy rule evolver and its
different components. Section 4 outlines the evaluation
requirements identified after consultation with our
collaborating company. The fifth section describes and
analyses three sets of experiments that were performed on
the system and section 6 concludes.

2 BACKGROUND
Machine Learning, pattern classification and data mining
are huge fields in Computer Science, with countless
different techniques in use or under investigation. This
paper concentrates on a single approach: the use of fuzzy
logic with genetic programming to classify data.

Fuzzy sets were introduced by Lofti Zadeh in 1965
(Zadeh, 1965). Designed to allow the representation of
‘vagueness’ and uncertainty that conventional set theory
disallowed, the sets and their manipulation by logical
operators led to the development of the field known as
Fuzzy Logic (Bezdek and Pal, 1992). Despite the name,
fuzzy techniques are actually capable of greater precision
compared to classical approaches (Kosco, 1994). Fuzzy
controllers have been used with considerable success:
examples include controllers for elevators, subway trains,
and even fuzzy autofocus systems for cameras (Mc. Neill
and Freiberger, 1993).

Another appeal of fuzzy logic is its intelligibility. Fuzzy
rules use linguistic identifiers such as ‘high’, ‘short’ and
‘inexpensive’. Because all humans tend to think in such
vague terms, the specification and understandability of



such rules becomes simple, even to someone unaware of
the mechanisms behind this technique (Kosco, 1994). The
combination of representation of uncertainty, precision,
and intelligibility has motivated the use of fuzzy logic in
pattern classification (Bezdek and Pal, 1992), and indeed,
forms the motivation for its use in this research.

Fuzzy logic can be combined or hybridized with many
other techniques, including evolutionary algorithms.
Some have developed fuzzy-evolutionary systems
(Pedrycz, 1997) where fuzzy logic is used to tune
parameters of an evolutionary algorithm. Others use
evolutionary-fuzzy approaches, where evolution is
employed to generate or affect fuzzy rules (Mallinson and
Bentley, 1999; Marmelstein and Lamont, 1998). This
paper describes the latter approach, and makes use of
Genetic Programming (GP).

John Koza (1992) developed GP for the purposes of
automatic programming (making computers program
themselves). GP differs from other EAs in three main
respects: solutions are represented by tree-structures,
crossover normally generates offspring by concatenating
random subtrees from the parents, and solutions are
evaluated by executing them and assessing their function.

Like all evolutionary algorithms (EAs), GP maintains
populations of solutions. These are evaluated, the best are
selected and ‘offspring’ that inherit features from their
‘parents’ are created using crossover and mutation
operators. The new solutions are then evaluated, the best
are selected, and so on, until a good solution has evolved,
or a specific number of generations have passed.

EAs are often used for pattern classification problems
(Koza et al, 1998), but although the accuracy can be
impressive, it is often difficult to understand the evolved
method of classification. By evolving fuzzy rules it is
possible to get the best of both worlds - accurate and
intelligible classification (Mallinson and Bentley, 1999).

3 THE FUZZY RULE EVOLVER
The system developed during this research comprises two
main elements: a Genetic Programming (GP) search
algorithm and a fuzzy expert system. Figure 1 provides an
overview of the system.

Data is provided to the system in the form of two comma-
separated-variable (CSV) files: training data and test data.
In each file the first row contains the labels for each
column (e.g. “Length, Width, Height, Cost”). These labels
are used by the system in the rules that it evolves. The
next Sn rows (or data items) are known to be of the
‘suspicious’ class, the remaining data comprises one or
more other classes. There may be up to 256 values in each
data item, as long as the training and test data sets are
consistent (normally training and test data files are
constructed by splitting a single data file into two). The
system assumes that the data is numerical and that there
are no missing values (a data pre-processing program has
been developed to assign numbers for alphanumeric
entries and to fill missing values with random values). All
training takes place on the training data set; testing of
evolved rules takes place on both training and test data
sets.

3.1 CLUSTERING

When started, the system first clusters each column of the
training data into three groups using a one-dimensional
clustering algorithm. A number of clusterers are
implemented in the system, including C-Link, S-Link, K-
means (Hartigan, 1975) and a simple numerical method
(in which the data is sorted, then simply divided into three
groups with the same number of items in each group).
This paper investigates the last two of these methods in
the system. Once selected by the user, the same clusterer
is used for all learning and testing of the data.
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Figure 1  Block diagram of the Evolutionary-fuzzy system.
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Figure 2: Data is clustered column by column to find the
fuzzy membership function ranges.

After every column of the data has been successfully
clustered into three, the minimum and maximum values in
each cluster are found, see fig. 2. These values are then
used to define the domains of the membership functions
of the fuzzy expert system.

3.2 FUZZY MEMBERSHIP FUNCTIONS

Three membership functions, corresponding to the three
groups generated by the clusterer, are used for each
column of data. Each membership function defines the
‘degree of membership’ of every data value in each of the
three fuzzy sets: ‘LOW’, ‘MEDIUM’ and ‘HIGH’ for its
corresponding column of data. Since every column is
clustered separately, with the clustering determining the
domains of the three membership functions, every column
of data has its own, unique set of three functions.

The system can use one of three types of membership
function: ‘non-overlapping’, ‘overlapping’, and ‘smooth’,
see figure 3. The first two are standard trapezoidal
functions, the third is a set of functions based on the
arctangent of the input in order to provide a smoother,
more gradual set of ‘degree of memberships’.

Each type of membership function uses the results from
the clusterer in a different way to determine the domains
of the functions. The ‘non-overlapping’ functions give a
membership of 1.0 for the fuzzy set corresponding to the
cluster that the value falls in, and 0.0 for all other fuzzy
sets. For example, a value that falls in the lowest cluster
would be fuzzified into (1.0, 0.0, 0.0) for the low, medium
and high fuzzy sets, respectively. Since, for this
application, it is normal for all values to fall within one of
the three clusters, it is extremely rare for values to be
between two clusters. Hence, the ‘non-overlapping’

functions almost never allow a value to be a member of
more than one fuzzy set at a time (i.e. the fuzzy sets are,
to all intents and purposes, non-overlapping). In contrast,
the ‘overlapping’ functions place the ‘knees’ and ‘feet’ of
each function at three quarters of the values provided by
the clusterer, see figure 3 (middle). This has the effect of
ensuring that the three fuzzy sets overlap - a value
towards the outer extent of the low fuzzy set might thus
be fuzzified into (0.8, 0.2, 0.0) for low, medium and high
fuzzy sets respectively. Finally, the ‘smooth’ functions
increase the level of overlap still further. For example, a
value in the centre of the low fuzzy set might be fuzzified
into (0.98 0.02, 0.0), while a value towards the outer
extent of the low fuzzy set might be fuzzified as (0.96,
0.4, 0.0).

Whichever set of membership functions are selected, they
are then shaped according to the clusterer and used to
fuzzify all input values, resulting in a new database of
fuzzy values. The GP engine is then seeded with random
genotypes (coded rules) and evolution is initiated.

3.3 EVOLVING RULES

The implementation of the GP algorithm is perhaps best
described as a genetic algorithmist’s interpretation of GP,
since it employs many of the techniques used in GAs to
overcome some of the problems associated with simple
GP systems. For example, this evolutionary algorithm
uses a crossover operator designed to minimise the
disruption caused by standard GP crossover, it uses a
multiobjective fitness ranking method to allow solutions
which satisfy multiple criteria to be evolved, and it also
uses binary genotypes which are mapped to phenotypes.

3.3.1 Genotypes and Phenotypes

Genotypes consist of variable sized trees, where each
node consists of a binary number and a flag defining
whether the node is binary, unary or a leaf, see figure 4.
At the start of evolution, random genotypes are created
(usually containing no more than 3 binary and 4 unary
nodes). Genotypes are mapped onto phenotypes to obtain
fuzzy rules, e.g. the genotype shown in fig. 4 maps onto
the phenotype:
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Figure 3: The three types of membership functions used by the system: non-overlapping (left), overlapping
(middle), smooth (right).



11010111 binary

10010011 unary01010010 unary

11110111 binary

10010011 leaf 00010111 unary

00010011 leaf

00011010 leaf

Figure 4:  An example genotype used by the system.

Currently the system uses two binary functions: ‘OR’ and
‘AND’, four unary functions: ‘NOT’, ‘IS_LOW’,
‘IS_MEDIUM’, ‘IS_HIGH’, and up to 256 leaves
(column labels such as “Length”, “Width”, “Height”,
“Cost”). Depending on the type of each node, the
corresponding binary value is mapped to one of these
identifiers and added to the phenotype.

3.3.2 Rule Evaluation

Every evolved phenotype (or fuzzy rule) is evaluated by
using the fuzzy expert system to apply it to the fuzzified
training data, resulting in a defuzzified score between 0
and 1 for every fuzzified data item. (Section 3.4 describes
this in full.) This list of scores is then assessed by four
fitness functions which provide separate fitness values for
the phenotype, designed to:

 i. minimise the number of misclassified items (where
a misclassified item is a ‘normal’ data item with a
score > 0.5).

 ii. maximise the difference between the average scores
for correctly classified ‘suspicious’ items and the
average scores for ‘normal’ items (where a
correctly classified suspicious item is a data item in
the first Sn of the training set with score > 0.5).

 iii. maximise the sum of scores for ‘suspicious’ data
items.

 iv. penalise the length of any rules that contain more
than four identifiers (binary, unary, or leaf nodes).

The first function ensures as few misclassifications as
possible.  The second forces evolution to distinguish
between ‘suspicious’ and ‘normal’ classes of data, while
the third demands that ‘suspicious’ items are given higher
scores than ‘normal’ ones. The final function ensures that
all evolved rules are short - serving the dual purpose of
preventing bloat and increasing the readability of the final
output.

3.3.3 Rule Generation

Using these four fitness values for each rule, the GP
system then employs the SWGR multiobjective
optimisation ranking method (Bentley & Wakefield,
1997) to determine how many offspring each pair of rules

should have. (Fitnesses are scaled using the effective
ranges of each function, multiplied by importance values
and aggregated. Rules with higher overall fitnesses are
given higher ranking values, and hence have an increased
probability of producing offspring.) Child rules are
generated using one of two forms of crossover. The first
type of crossover emulates the single-point crossover of
genetic algorithms by finding two random points in the
parent genotypes that resemble each other, and splicing
the genotypes at that point. By ensuring that the same
type of nodes, in approximately the same places, are
crossed over, and that the binary numbers within the
nodes are also crossed, an effective exploration of the
search space is provided without excessive disruption
(Bentley & Wakefield, 1996). The second type of
crossover generates child rules by combining two parent
rules together using a binary operator (an ‘AND’ or
‘OR’). This more unusual method of generating offspring
(applied approximately one time out of every ten instead
of the other crossover operator) permits two parents that
detect different types of ‘suspicious’ data to be combined
into a single, fitter individual. Mutation is also
occasionally applied, to modify randomly the binary
numbers in each node by a single bit.

The GP system employs population overlapping, where
the worst Pn% of the population are replaced by the new
offspring generated from the best Pm%. Typically values
of Pn = 80 and Pm = 40 seem to provide good results. The
population size was normally 100 individuals.

3.3.4 Modal Evolution

Each evolutionary run of the GP system (usually only 15
generations) results in a short, readable rule which detects
some, but not all, of the ‘suspicious’ data items in the
training data set. Such a rule can be considered to define
one mode of a multimodal problem. All items that are
correctly classified by this rule (recorded in the modal
database, see figure 1) are removed and the system
automatically restarts, evolving a new rule to classify the
remaining items. This process of modal evolution
continues until every ‘suspicious’ data item has been
described by a rule. However, any rules that misclassify
more items than they correctly classify are removed from
the final rule set by the system.

3.4 ASSESSMENT OF FINAL RULE SET

Once modal evolution has finished generating a rule set,
the complete set of rules (joined into one by disjunction,
i.e., ‘OR’ed together) is automatically applied to the
training data and test data, in turn. Information about the
system settings, number of claims correctly and
incorrectly classified for each data set, total processing
time in seconds, and the rule set are stored to disk.

3.5 APPLYING RULES TO FUZZY DATA

The path of evolution through the multimodal and
multicriteria search space is guided by fitness functions.



These functions use the results obtained by the Rule
Parser - a fuzzy expert system that takes one or more rules
and interprets their meaning when they are applied to
each of the previously fuzzified data items in turn.

This system is capable of two different types of fuzzy
logic rule interpretation: traditional fuzzy logic, and
membership-preserving fuzzy logic, an approach designed
during this research. Depending on which method of
interpretation has been selected by the user, the meaning
of the operators within rules and the method of
defuzzification is different.

3.5.1 Traditional Fuzzy Logic Rule Parser

Traditional fuzzy logic involves finding ‘degrees of
membership’ in the fuzzy sets for each value in the
current data item, then using operators to select which
membership value should be selected and used in
combination. So, given a data item comprising two
fuzzified values:

A(0.0, 0.2, 0.8)

B(0.1, 0.9, 0.0)

and a fuzzy rule:

(IS_LOW A AND IS_MEDIUM B)

the traditional fuzzy rule parser takes the degree of
membership of A for fuzzy set LOW and the degree of
membership of B for the fuzzy set MEDIUM, and
calculates which of the two is smaller. So in this case, the
result of applying the rule is 0.0. Table 1 describes the
behaviour and syntax of each of the fuzzy operators.

Table 1: Traditional fuzzy operators.

Operator Result
IS_LOW <a, b, c> a
IS_MEDIUM <a, b, c> b
IS_HIGH <a, b, c> c
NOT a 1-a
(a AND b) min(a,b)
(a OR b) max(a,b)

This fuzzy grammar imposes certain constraints upon
allowable solutions. For example, the argument to
‘IS_LOW’, ‘IS_MEDIUM’ or ‘IS_HIGH’ must always
consist of a fuzzy vector: <Lowmembership, Mediummembership,
Highmembership>. The arguments to ‘AND’, ‘OR’ and
‘NOT’ functions must always be single-valued results
obtained from the application of one or more of the
functions.

As is clear from the example phenotype given in section
3.3.1, evolved rules do not always satisfy the constraints
imposed by fuzzy grammars. However, rather than
impose these damaging constraints on evolution, such
grammatically incorrect rules are corrected by the rule
parser. (Work performed during this research showed that
using mapping to satisfy constraints in a GP system is one
of the more effective approaches (Yu & Bentley, 1998).)

Table 2: Mapping performed by the Rule Parser.

Operator Result
<a, b, c> IS_HIGH <a, b, c>
IS_LOW a a
IS_MEDIUM a a
IS_HIGH a a

Functions requiring a fuzzy vector, but receiving a single
value do nothing. Functions requiring a single value, but
receiving a fuzzy vector, apply ‘IS_HIGH’ by default in
order to generate the single value. Table 2 describes this
behaviour in full. Consequently, when interpreted by the
fuzzy rule parser, the rule in section 3.3.1 equates to:
������
��
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Defuzzification of the final output value is unnecessary
(although it is possible to impose a scaling, or non-linear
function to transform the output in some way). It was
decided simply to use a one-to-one function for
defuzzification (i.e., return the output of the fuzzy rule as
the defuzzified value).

3.5.2 Membership-Preserving Fuzzy Logic

Rule Parser

The alternative behaviour of the rule parser preserves the
three membership values within data items, even after the
application of operators such as ‘IS_LOW’. This is done
in an attempt to permit rules to use all the information
found by the clusterer, and thus hopefully to reduce the
number of rules needed to classify data. In addition, the
operators are designed to be more conducive to evolution
by allowing multiple operators to have combined effects
without constraints on syntax. For example:

IS_HIGH IS_HIGH v

is now equivalent to

IS_VERY_HIGH v

It should be noted, however, that the English descriptors
for these operators does not always fully encompass their
behaviour in a rule. Table 3 shows the new behaviours of
the operators.

Table 3: Membership-preserving fuzzy operators.

Operator Result
<a, b, c> <a, b, c>
IS_LOW <a, b, c> Conc. <c, b, a>
IS_MEDIUM <a, b, c> Conc. <0, max(a,c), b>
IS_HIGH <a, b, c> Conc. <a, b, c>
NOT <a, b, c> <c, b, a>
(<a, b, c> AND <d, e, f>) min(<a, b, c>,<d, e, f>)
(<a, b, c> OR <d, e, f>) max(<a, b, c>,<d, e, f>)

Where Conc. concentrates the vector (making the
largest value larger and the other two values smaller).



Because this novel approach preserves all three
membership values during the application of all operators
(although the values may be intensified or reduced), the
final result is also a vector comprising three values. To
obtain a single, defuzzified value, three defuzzification
functions are applied, using the vector to define three
trapezoidal shapes, see figure 5. The shapes are then
‘piled up on top of each other’ and the centre of mass
calculated (using overlapping shapes results in a loss of
information). A centre of mass falling in the centre results
in an output of 0.5, falling to the right gives a score
between 0.5 and 1.0, and if the centre of mass falls to the
left, the final defuzzified value is between 0.5 and 0, see
figure 6.
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Figure 5: Defuzzifying the
three membership values

<v1, v2, v3>

Figure 6: Finding the
centre of mass during

defuzzification.

The membership-preserving (M-P) fuzzy logic is
designed to make use of overlapping membership
functions. Indeed, for non-overlapping functions, the
behaviour of the M-P fuzzy operators becomes largely
identical to the traditional operators.

4 CRITERIA FOR FRAUD DETECTION
The research described here is being carried out with the
eventual aim of the detection of ‘suspicious’ home
insurance claims. This difficult real-world classification
task does not simply involve finding the most accurate
method for distinguishing between ordinary and dubious
data items. There are, in fact, more important criteria for
evaluating the performance of a technique. Table 4 shows
the four capabilities considered to be most important by
our collaborating company Lloyds/TSB, with importance
rankings.

Table 4: Important features of a good fraud-detection
system.

Feature Importance
Intelligibility of classification rules 1
Speed of classification 2
Handling noisy data 2
Accuracy of classification 3

It may be surprising to note that accuracy is considered
less important than intelligibility. However, for this type
of application, an expert must review all suggestions
made by the classifier (wrongly accusing anyone of fraud

is a serious and potentially libellous activity, so the
computer should be used only to identify the possibility of
suspicion to experts). If the person cannot find an easily
understandable explanation of why a particular data item
has been labelled as ‘suspicious’, then the result is of little
use, regardless of the reported accuracy of classification.

Speed of classification is also essential, for most real-
world financial problems of this type involve an
enormous quantity of data. Increasingly it is becoming
necessary for learning techniques to be performed in real
time (as new data arrives), but at the very least, the
detection method must be fast enough to keep up to date,
and also fast enough to justify its use at all.

The ability to handle noisy data was ranked equal in
importance with speed. Input errors, omitted data, or
conversion problems may cause noise in the data.
Although such noise is unlikely to affect more than a
small percentage of values in the data, it is clearly
important that the classifier is not misled by any
occurrence of noise.

Other important considerations include minimising the
misclassifications by the system - it is considered better to
miss a few dubious data items than to misclassify normal
data. It is clearly not good for customer relations if too
many people are wrongly investigated for potential
wrong-doing. This is the reason for the inclusion of the
first fitness function, described in section 3.3.2.

5 EXPERIMENTS

5.1 OBJECTIVES

With the requirements for a good fraud-detection system
in mind, this section describes a series of experiments
designed to evaluate these key capabilities of the system.

The experiments investigate three aspects of the system:
the effect of using different membership functions and
fuzzy operators, the effect of using different clusterers,
and the ability of the system to cope with noisy data. For
all three sets of experiments, the intelligibility of results,
processing time, and accuracy of detection are assessed.

5.2 EXPERIMENTAL SETUP

To allow comparison of this system with other techniques
reported in the literature, the fuzzy rule evolver was
applied to two standard data sets for all experiments: the
Iris and Wisconsin Breast Cancer data sets.

The Iris data is “perhaps the best known database to be
found in the pattern recognition literature”1, and
comprises a simple domain of 150 instances in three
classes, each of 50 items. Data items have four attributes;
there are no missing values. Because the ‘Setosa’ class is
linearly separable from the other two classes, for all
experiments the system was set the harder task of

                                                       
1 According to the information provided by UCI with the data.



detecting the ‘Virginica’ class from the ‘Versicolour’ and
‘Setosa’ classes combined. Training and test data files
were prepared by splitting the data set into two (taking
alternate data items for each file). Misclassification rates
for this data set are normally reported as 0% for the
‘Setosa’ class and “very low” for the other classes in the
literature e.g. (Dasarathy, 1980).

The Wisconsin Breast Cancer data is a more complex data
set, comprising 699 instances in two classes: ‘Malignant’
(241 data items) and ‘Benign’ (458 items). There are 16
missing values in the data, which were filled by random
numbers. The training and test data sets were constructed
by splitting the file into two, taking alternate values. (For
the sake of symmetry, one ‘Malignant’ item was
discarded and two ‘Benign’ items duplicated, resulting in
two sets of 350 data items, each with 120 ‘Malignant’.)
Results reported in the literature include accuracies of
93.5%, 95.9% (Wolberg, and Mangasarian, 1990), and
92.2% (Zhang, 1992).

50 trials were run for each experiment, with the average
and best accuracies reported here. Percentage accuracy of
detection was found by calculating:

TotalItems

editemsUnclassifiiedItemsMisclassif )(100
100

+
−

Intelligibility was measured in terms of the average
number of rules evolved - the fewer the rules, the more
intelligible the result. Average processing speed was
measured in seconds (and includes the negligible time
taken to apply the completed rule set to both data sets).

The fitness functions reported in section 3.3.2 were used
without change for all experiments. Importance rankings
(Bentley & Wakefield, 1997) were set as 0.5, 2.0, 1.0 and
0.5 for fitness functions one to four, respectively.
Mutation of a single bit occurred with a probability of
0.001 in each genotype. Population sizes of 100 were
used, and each modal evolutionary run was for exactly 15

generations. The K-Means clusterer was used in the
system (unless otherwise stated). Experiments were run
on a PC with a 233Mhz AMD K6 processor.

5.3 EXPERIMENT 1: INVESTIGATING THE
EFFECT OF MEMBERSHIP FUNCTIONS

The objective of the first set of experiments was to
examine the effects of different membership functions
(and different ways of using the information contained in
the membership functions) on the ability of the system to
detect data items with good intelligibility, speed, and
accuracy. Four different system set-ups were investigated:
traditional fuzzy logic with non-overlapping and
overlapping membership functions, and M-P fuzzy logic
with overlapping and smooth membership functions.
(Traditional fuzzy logic does not work well with the level
of overlap provided by the smooth functions, and the M-P
fuzzy logic with non-overlapping functions behaves in the
same way as traditional fuzzy logic, so these set-ups are
not investigated here.) Table 5 shows the results obtained
from 50 runs of each system set-up for each data set.

As shown in Table 5, for both data sets the average
accuracy appears to fall as the level of overlap of
membership functions is enlarged. However, there is
clearly a quite dramatic increase in intelligibility (a
reduced number of rules) as the overlap increases. This is
illustrated by two example solutions evolved by the
system for the Wisconsin Breast Cancer data set. Figure 7
shows a typical 12-rule set evolved when using traditional
fuzzy logic and non-overlapping membership functions.
Figure 8 shows a typical single rule evolved when using
M-P fuzzy logic with smooth membership functions. It
should be apparent that the latter is substantially more
intelligible than the former. Not only that, but by reducing
the number of rules, far more effective feature-selection
takes place (i.e., instead of using all ten fields in the data,
the single rule shows that only two are required).

Table 5: Mean and best accuracy rates, processing times and intelligibility of solutions when using different membership
functions and fuzzy operators. (Accuracy values in normal intensity indicate results for the training set, bold values show

results for the test data set.)

Iris data Cancer data
System: Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
FL, non-
overlapping
MFs

96.67%
95.79% 97.3% 25.6 secs 2.94

98.6%
94.07% 96.0% 317 secs 9.88

FL,
overlapping
MFs

91.3%
94.69% 96% 13.6 secs 1.50

93.01%
90.44% 96.29% 335 secs 7.16

M-P FL,
overlapping
MFs

96.05%
90.67% 90.67% 15.1 secs 1.04

91.19%
86.93% 92.57% 175 secs 4.58

M-P FL,
overlapping
smooth MFs

82.69%
82.59% 88% 16.2 secs 1

95.14%
95.71% 95.71% 162 secs 1



It is clear that accuracy is reduced as the number of rules
that classify the data is reduced. The exception to this is
the MP-FL system with smooth MFs applied to the cancer
data, which generated both accurate results with a very
intelligible single (and simple) rule, e.g. fig 8. However,
this result seems likely to be more the exception than the
rule – the accurate result may well be due to a fortunate
combination of placement of membership functions, and
the combination of the three fuzzy membership values for
this particular problem. Nevertheless, the result certainly
indicates that it is possible to classify real-world problems
with both accuracy and intelligibility.

As Table 5 shows, processing times fell as the level of
overlap of membership functions was increased. This
speedup is readily explainable: as the overlap of MFs was
increased, the number of rules evolved by the system fell,
and since each rule is the result of one modal evolutionary
run of 15 generations, system speed is proportionate to the
number of rules evolved during classification. The longest
learning time for the 7000-value Cancer set took around
five and half minutes in these experiments. However,
once learned, the time taken to apply the rules to the data
is less than one second.

5.4 EXPERIMENT 2: INVESTIGATING THE
EFFECTS OF CLUSTERERS

The objective of this second set of experiments was to
determine the impact of using different clusterers in terms
of the three performance measures of intelligibility, speed
and accuracy. Two extremes of clusterer were employed:
the basic method (described in section 3.1) and the
substantially more advanced K-Means approach. For
these tests, the system used traditional fuzzy logic and
non-overlapping membership functions.

Tables 6 shows the results obtained from 50 runs of each
system set-up for each data set. As can be seen from the
average and best accuracy percentages, the basic
clustering does result in slightly reduced performance of
classification. The performance loss is perhaps
surprisingly low, though, when it is recalled how simple
the basic clustering method is, compared to the K-Means
approach. Different rules and different numbers of rules
were evolved when using each type of clusterer, as shown
by the other results in Table 6. There does not seem to be
any clear correlation between intelligibility or processing
speed and the type of clusterer used.

5.5 EXPERIMENT 3: INVESTIGATING THE
EFFECTS OF NOISE ON THE SYSTEM

The objective of this final set of experiments was to
evaluate the change of performance of the system as
levels of noise in the data sets was increased. Noise was
cumulatively added to both data sets (and both the
training and test files of each) in steps of 2%. This was
achieved by scaling one randomly chosen value in every
fifty by a random value. The experiments investigate
levels of noise up to 10% (i.e. one in ten values is wrong).
Observed levels of noise in the data sets for which this
system is designed are around 1%. These experiments
were performed with the system using traditional fuzzy
logic and non-overlapping membership functions.

Table 7 shows the results obtained from 50 runs of the
system for both data sets, at six different levels of noise.
Generally, the results show a gradual decrease in accuracy
for both data sets. At ten percent noise the accuracy for
the Iris data does increase, but this is likely to be chance
and the fact that the number of values in the set is
insufficient for a 2% noise differential to affect a
significant number of data items. However, the accuracy
falloff for the larger, Wisconsin Breast Cancer data set is
particularly revealing.

Table 6: Mean and best accuracy rates, processing times and intelligibility of solutions when using different clusterers.
(Accuracy values in normal intensity indicate results for the training set, bold values show results for the test data set.)

Iris data Cancer data
System: Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
FL, non-ol MFs
basic cluster

97.84%
92.4% 93.3% 14.9 secs 1.38

97.3%
93.62% 95.43% 419 secs 11.3

FL, non-ol MFs
k-means

96.67%
95.79% 97.3% 25.6 secs 2.94

98.6%
94.07% 96.0% 317 secs 9.88

IS_HIGH (CellSize OR BareNuclei)

Figure 8:  A single rule evolved using M-P
fuzzy interpretation by the rule parser and

smooth functions.

Adhesion
(ClumpThickness AND CellShape)
(CellSize AND Chromatin)
(ClumpThickness AND EpithCellSize)
(CellSize AND ClumpThickness)
(IS_LOW Samplecode AND BareNuclei)
(IS_MEDIUM NormalNucleoli AND ClumpThickness)
(BareNuclei AND EpithCellSize)
(Mitoses AND ClumpThickness)
(ClumpThickness AND BareNuclei)
(IS_MEDIUM NormalNucleoli AND BareNuclei)
(ClumpThickness AND IS_LOW EpithCellSize)

Figure 7:  A 12-rule set evolved using traditional fuzzy
interpretation by the rule parser and non-overlapping

functions.



Table 7: Mean and best accuracy rates , processing times and intelligibility of solutions for different noise levels.
(Accuracy values in normal intensity indicate results for the training set, bold values show results for the test data set.)

Iris data Cancer data
Noise level: Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
Av.

accuracy
Best

accuracy
Av. time Av. # of

rules
0% 96.67%

95.79% 97.3% 25.6 secs 2.94
98.6%

94.07% 96.0% 317 secs 9.88
2% 94.67%

97.33% 97.33% 23.0 secs 1.0
98.51%
93.33% 95.71% 347 secs 9.66

4% 92.29%
87.47% 94.67% 18.5 secs 2.10

97.56%
93.87% 95.43% 380 secs 8.46

6% 74.19%
84.11% 94.67% 19.3 secs 1.90

96.98%
89.54% 92.29% 454 secs 9.82

8% 73.95%
84.83% 94.67% 19.3 secs 1.82

95.67%
86.16% 90.57% 423 secs 8.86

10% 74.93%
87.55% 96.0% 19.5 secs 1.96

95.41%
78.02% 84.86% 523 secs 13.6

Figure 9 shows the rate at which accuracy falls for
classification of items in the training and test data sets as
noise levels increase. Note the way accuracy falls linearly
for the training data, but appears to fall proportionate to
the square of the percentage of noise in the test data. This
large decrease in performance is likely to be caused by the
noise reducing the homogeneity of the training and test
sets, so rules evolved for the training set work less and
less well for the test set.

Upon consideration, such reduced effectiveness of rules
may be manifested in two ways. Firstly rules become
‘misled’ by the noise (perhaps because of overfitting by
too many excessively specific rules) and thus do not
generalise well to the test data set. Secondly, the noise
disrupts the clusterers, so that the clustering for training
and test sets becomes increasingly different. The resulting
LOW, MEDIUM and HIGH fuzzy sets for the test and
training data become increasing disparate, reducing the
effectiveness of the rules further.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 2 4 6 8 10

training test

Figure 9: Average accuracy for increasing levels of noise
in training and test cancer data.

These effects are not so obvious for the Iris data where
only a linear decrease in accuracy is evident, perhaps
because of the small number of data points in this set or
because few rules were used, helping rules to generalise
without being misled by noise.

Table 7 also shows the number of rules and processing
times for different levels of noise. From these results,
there does not appear to be any clear correlation between
levels of noise in the data and intelligibility or speed.

6 CONCLUSIONS
This paper has investigated the use of a genetic
programming system to evolve fuzzy rules for the purpose
of detecting ‘suspicious’ data amongst ‘normal’ data. The
system contains many novel elements, including a
crossover operator designed to minimise disruption,
binary genotypes, and a new method for interpreting
fuzzy rules designed to preserve all fuzzy set membership
values.

Consultation with our collaborating company,
Lloyds/TSB resulted in a set of evaluation criteria for the
system: intelligibility, speed, handling noise and
accuracy.

With these aspects in mind, three sets of experiments
were performed on the system, using two standard data
sets to permit comparison with the literature. The first test
investigated the effect of membership functions on the
system. By increasing the overlap between fuzzy
membership functions and by preserving the information
held in the membership values, the results showed that the
number of rules needed to classify data could be reduced.
This reduction often led to a decrease in accuracy of
classification, but this was offset by the dramatically
increased intelligibility of output, faster processing time,
and better feature selection. The second test investigated
the effects of using different clusterers in the system.  It
was found that a basic clusterer slightly reduced the



accuracy of the system, compared to the more complex K-
Means approach. The choice of clusterer did not seem to
have any consistent effect on intelligibility of output or
processing speed. The final test investigated the ability of
the system to cope with increasing levels of noise in the
data. As one would expect, accuracy of classification was
detrimentally affected as noise increased. Interestingly,
the intelligibility and processing speed showed no clear
trend for increasing levels of noise.

Together, these experiments show:

• many factors affect accuracy of classification

• intelligibility and processing speed only seem to be
affected by the type and use of membership functions
- noise and the choice of clusterer seems unimportant.

• noisy data causes at best a linear drop in accuracy,
and at worst, a fall proportionate to the square of
input noise.

As with most real-world problems, there is no clearly
defined ‘best solution’ to the problem of detecting fraud
by computers. This paper has examined one approach,
and has shown that, with the appropriate system
components enabled, the use of GP to evolve fuzzy rules
can provide intelligible, accurate classification quickly,
even for noisy data.

Future Work

The system will be applied to a set of home insurance
data provided by Lloyds/TSB in order to assess its
abilities to detect ‘suspicious’ claims. Since the
experiments reported here indicate that different settings
of the system provide useful classifications for different
data sets, an obvious solution is the use of decision
aggregation using a committee approach, allowing the
best solution generated by the different models employed
by the system to be provided automatically.
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