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Abstract

The properties of engineering structures, such as robotic
arms, aircrafts or bridges, rely on the properties of the ma-
terials used to build them. The internal architecture of the
material or microstructure determines its properties and
therefore, its study is of great interest for engineers and ma-
terial scientists. Although there are tools that can provide
2D microstructural information, tools that can be used to
obtain 3D characterisations of microstructures for routine
analysis are not yet available to material scientists.

In this paper we will describe Microconstructor. Mi-
croconstructor comprises a genetic algorithm that evolves
populations of Cellular Automata inspired by developmen-
tal biology that self organise into 3D patterns that can be
used for microstructural analysis.

1 Introduction

Different materials have different properties such as
strength, fatigue resistance, corrosion resistance or electri-
cal conductivity. These properties dictate what can and can-
not be done with a material and consequently, determine
the limitations and capabilities of the engineering structures
that can built using them. This difference in properties is at-
tributable to the fact that they have different internal archi-
tectures or microstructures. Microstructures are so impor-
tant in materials science that some material scientists define
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their discipline as the field that studies the relationships be-
tween microstructures and properties of materials [12].

Unfortunately for material scientists and for the engi-
neers that need to understand the properties of the materials
they use, most microstructural tools yield only 2D images or
visual characterisations. Since the laws of physics work in
three dimensions, two dimensional (2D) characterisations
are insufficient for microstructural analysis. Though sev-
eral efforts have been carried out to create tools and tech-
niques to obtain three dimensional (3D) visual character-
isations starting from 2D images, these methods, such as
serial sectioning [10] and X-ray synchrotron methods [20],
are time and labour consuming, not very reliable and not
suitable for routine microstructural analysis.

One alternative approach to this problem is to use Evo-
lutionary Computing to find 3D patterns whose properties
match the ones of the 2D images obtained using conven-
tional microstructural tools. This approach, which will be
explored in this paper, can potentially be used not only to
study and visualise existing materials but also to explore
and design new ones. The next section will introduce some
notions of materials science, cellular automata (CA) and
developmental biology needed to understand our model of
CA. Next, the biologically inspired CA, EmbryoCA, and its
use in Microconstructor are described. Subsequently, exper-
iments to test the pattern generation capabilities of Embry-
oCA are shown and its results analysed. The final section
will present the conclusions about Microconstructor.



2 Background

2.1 Microstructures

A microstructure can be defined as the phases and con-
stituents that are visible on a microscope rather than atomic
or macroscopic scale [25]. A phase is a collection of el-
ements in the microstructure that share the same physical
properties such as same atomic structure. Microstructural
analysis is important because a change in the arrangement
of these constituents represents a change in the properties
of the material.

Microstructures can be of different types. Most met-
als are polycrystal and therefore, contain several crystals or
grains separated by boundaries. Grains are not featureless
themselves and they can have more than one type of crystal
embedded in them. Figure 1 illustrates the microstructure
of an ODS ferritic superallow, showing small spherical yt-
tria crystals (β phase) embedded in bigger ferrite crystal (α
phase) [16]. It is not difficult to find microstructures like the
one described, they contain just one grain so there are no
grain boundaries separating the different crystals. Also, the
grains contain just two types of features or phases. These
type of microstructures are called single crystal two phase
microstructures and its 3D characterisation will be the focus
of this work.

Figure 1. Example of a two phase single crys-
tal microstructure: an ODS ferritic superalloy
matrix with spherical yttria particles. Image
taken from [16].

As it could be expected from the definition of mi-
crostructure, microscopes are the primary tools for mi-
crostructural analysis. There are several microscopy
techniques such as optical microscopy, scanning electron
microscopy (SEM) [7], electron backscatter diffraction
(EBSD) [22], transmission electron microscopy (TEM) [7]
and atomic force microscopy (AFM) [25]. Different mi-
croscopy techniques produce different types of character-

isations of the microstructure though all these techniques
produce 2D images. Using quantitative stereology, these
images can yield useful microstructural information such as
grain sizes and aspect ratios, that can be used to extrapolate
information of the 3D structure they were taken from.

2.2 Stereology

Stereology is the science that studies the geometrical re-
lationships between a structure that exists in 3D and the im-
ages of that structure that are fundamentally 2D [23]. One
of the main reasons to use stereology is to obtain the 3D
geometric properties of materials from the geometric prop-
erties of the 2D microscope images. These 3D geometric
properties can be used to find out the mechanical and elec-
trical properties of the material.

Some of the most commonly used stereological measure-
ments are area and volume fraction, two point correlation,
surface to area and surface to volume fraction and particle
size distribution.

2.2.1 Area and Volume fraction

In traditional stereology, the area fraction of a microstruc-
tural section taken from a material is calculated using a grid
of points. The grid of points is placed on the section to count
the number of them that fall into a specific phase whose area
fraction is being measured and this is divided by the total
number of points in the grid [23]. This information can be
used to extrapolate the equivalent value when applied to the
whole volume of the material under study: the volume frac-
tion.

2.2.2 Two point correlation

Two point correlation functions are widely used in materials
science to characterise microstructures [14]. The two point
correlation function is described in the following equation:

f(d) =
1

N2
s

Ns∑
i=0

nd (1)

where d is the correlation distance, Ns is the total number
of particles that belong to a given phase in the matrix and nd
is the number of particles of the phase being characterised
that are separated at distance d from particle i.

2.2.3 Surface to Area and Surface to Volume fraction

For this test, line probes are used to count the number of
times that the lines cross the boundaries between two dif-
ferent phases [23]. This stereological test obtains a measure
of the surface of the particles that belong to a specific phase
against the volume (or area if the test is done on a 2D image)
of the microstructure under study.
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2.2.4 Particle Size Distribution

A particle size distribution (PSD) is a distribution of sizes of
particles per unit area. The test to compute particle size dis-
tributions is more complex than other tests since it involves
making assumptions about the shapes of the particles in the
microstructure (in most cases, it is assumed that all the par-
ticles are spheres of different radii) [25]. The validity of
these assumptions has a great impact on the quality of the
results of this test.

2.3 Cellular Automata

CA were introduced in the 1940s by Von Neumann to
study self replication [26]. CA are interesting because be-
ing simple, they can display very complex behaviours and
patterns, like the ones needed to represent 3D microstruc-
tural patterns. CA have been used to model and solve all
sorts of problems. They have been used to compute density
classification [17], study pattern formation [15], they have
been used in materials science [21], testing digital circuits
[4] and to model developmental processes [2].

Despite their virtues, it is difficult to evolve them to per-
form computations [18] or do something like pattern gen-
eration [1]. While work has been carried out to use CA
based machines, in which the cells represent the popula-
tion evolved by a GA, to perform computations [24], little
work has been done to address the problem of sensitivity
to changes. As other dynamical systems, CA models are, in
general, very sensitive to changes in the rule set: a change in
one of the rules can get amplified time step after time step
and eventually, the patterns generated by two very similar
sets of rules are very different. It is due to that sensitivity
that most models of CA are not evolvable: evolution needs
to be able to do smooth, gradual changes to be effective
[5], in systems that can disrupted by minor modifications,
adaptative improvements by random selection and mutation
cannot occur [9].

2.4 Effector Automata

Effector Automata (EfA) is a model of CA designed and
created by Lohn and Reggia to evolve self replication [13].
In the EfA model, automata are not attached to an specific
location and can move to other locations, create copies of
themselves and die. The output of a rule in an EfA is the
action to be performed by the automaton when its internal
state and its configuration of neighbours are the ones speci-
fied in the rule.

2.5 Developmental biology

Developmental biology is an obvious source of inspira-
tion for anyone interested in using evolution to grow spa-

tial patterns. Nature has managed to create morphologies
and forms of extraordinary complexity and sophistication.
It is a process of construction and growth in which pattern
and structure emerges from the interactions between pro-
teins and genes and cells, with the environment [11]. Genes
encode proteins and proteins perform almost all the tasks
needed for development such as catalysing the synthesis of
other cell components, inhibiting or promoting the expres-
sion of certain genes as well as making inter cellular com-
munication possible.

From a computer science or engineering perspective, de-
velopment is about construction and self organisation [11]
and it can successfully be applied to solve complex prob-
lems in other areas of science and engineering like evolv-
able hardware [8].

3 EmbryoCA

The model of CA that we have developed to grow 3D
microstructures, EmbryoCA, is a model of 3D CA inspired
by developmental biology and built using the principles of
the EfA model. The main aims of the EmbryoCA model
are to be able to grow any binary 3D spatial pattern needed
to characterise single crystal 2-phase microstructures and to
be evolvable. In this work, the evolvability of a CA model
is considered as the capability of the model of being effec-
tively and efficiently modified by evolution.

3.1 EmbryoCA as a developmental biology model

The automata in the EmbryoCA model are cell-like ef-
fector automata. They are autonomous entities capable of
moving in a 3D space, creating copies of themselves and
dying. Each automaton has an identical rule set or genome.
The genes are regulated by both the environment (the other
automata in the neighbourhood) and the elements created
by expressing the genes that, in this model, will be called
proteins. A protein may promote certain types of actions
(for instance, moving to another location) or may inhibit
the expression of some gene (for instance, inhibiting the ex-
pression of a gene that promotes the automaton to move).
As usual with CA models, both time and space are discrete
and each time step, the appropriate genes of each automaton
are expressed and the interplay of the different proteins will
determine which action, if any, will take place.

3.2 EmbryoCA as a CA model

There are significant differences between the EmbryoCA
model and other CA models, including the Effector Au-
tomata model.

An EmbryoCA is specified with a list of rules that have
the following format:
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if ( variable = value) then do
consequence

wherevariablecan be either the internal variable that keeps
track of the number of divisions that the automaton has gone
through, or the number of neighbours in one of the six direc-
tions of a 3D euclidean space (north, south, east, west, up
and down). There are two types ofconsequencesfor a rule:
actions (move, divide and die) and antiactions (inhibiting
the automaton from either moving, dividing or dying). At
a given time, an automaton may have more than one appli-
cable rule and a conflict resolution mechanism will decide
what action to follow.

For each timestep, starting from an Initial Configuration
(IC) that contains only one cell, every automaton is treated
with the following algorithm:

1. Get list of rules whose precondition
is true.

2. for every applicable rule:

(a) if the consequence is an action,
increase the counter associated
with the action.

(b) if the consequence is an
antiaction, decrease the counter
associated with the action.

3. Pick the action with the higher
counter.

4. If selected action’s counter is
higher than threshold, execute
action.

Figure 2 shows an example of how the rule set is used
with the automata in a 2D lattice. In the example, the rule
set, shown in the upper left corner, contains only six rules
(an unusually low size for a rule set). With that rule set
and the configuration of the neighbourhood and the internal
variable shown in the upper right side, there are three rules
that could be applied. The conflict resolution mechanism
has to decide between the actionmove northand the action
divide southbut since the third active rule cancels the action
of the second one, the action of the first one is applied.

4 Evolving EmbryoCA

Microconstructor implements a GA whose population is
composed of rule sets, each of them defining a different Em-
bryoCA. The evaluation of an individual takes place once
the EmbryoCA has self organized into a 3D pattern after it-
erating it for a number of time steps. The fitness depends
on how much the 3D pattern generated resembles the user

Figure 2. Example of how rules are applied.
The effect of the rules on the automaton in
the centre of the 2D lattice, upper right cor-
ner, is shown in the bottom. The rules that
are active for that automaton at that time step
and given its internal variable and configura-
tion of neighbourhood are underlined. The
action move north is selected after applying
the conflict resolution mechanism.

provided 2D input. To compare a 2D microstructural image
obtained from a microscope and a 3D pattern grown by an
EmbryoCA, both characterizations of the microstructure are
probed with stereological tests [23]. The closer the results
of the tests performed on the 3D pattern are to those of the
2D input, the better and fitter the individual.

Some of the features of the EmbryoCA model described
in the previous section are easier to explain in the context
of artificial evolution. The fact that rulesets do not need to
be exhaustively specified is quite important if a GA is to
evolve 3D CA. In a GA in which every individual of the
population is a conventional CA with a fully specified rule-
set and assuming a Moore neighbourhood (an automaton
has to consider 26 locations when applying a rule [19]), the
size of the ruleset would be226. Even if the CA model used
is semi totalistic as is the case of the EmbryoCA model,
each individual would represent a rule set with106 entries.
These sizes severely restrict the size of the population of the
GA.

As a consequence of the fact that more than one rule may
be applicable at any given time by an automaton, the actions
executed are not, in most cases, determined by a single rule
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and therefore, a change of a few rules in the ruleset does not
carry the same weight that the same changes in a conven-
tional CA. Thanks to this, small changes in an individual’s
genotype translate into comparatively small changes in the
phenotype, making the EmbryoCA model more evolvable
than other CA models.

5 Fitness

The fitness function of Microconstructor is a multi ob-
jective fitness function in which several stereological tests
are performed in both, the user provided 2D input and on
the 3D characterisations grown by the individuals of the GA
population. The results of these tests provide a measure of
the stereological closeness of the 2D and 3D microstruc-
tural characterisations. The tests that are performed use five
different stereological measures: volume and area fraction,
surface to volume and area fraction, two point correlation,
number of particles and particle size distribution.

Using a multi objective fitness function means that a
number of issues related to how the different criteria should
be compared and weighted, should be addressed. The sum
of weighted global ratios method has been shown to be an
effective method of doing that [3]. Using this technique, the
fitness of an individual is not computed immediately after
the phenotype is obtained but after having matured all the
individuals in the population. The fitness of the individual
for each of the objectives is normalised using the maximum
and the minimum found during the run of the GA as shown
in eq. 2.

Norm(Fitnessi) =
Fitnessi −minFitness

maxFitness−minFitness
(2)

whereNorm(fitnessi) is the normalised fitness for a
given objective that will be used in subsequent stages of
the GA, fitnessi is the temporal fitness for the objective
calculated after measuring different features of the lattice
associated to an individual,maxFitness is the maximum
value for the objective found so far in the current run of the
GA whereasminFitness is the minimum.

The total fitness of an individual is the weighted sum
of the values of the individual in all the five criteria. All
of them are considered equally important so they are all
weighted by1

5 in the total fitness.

6 Experiments

Most embryologies find it difficult to generate certain
kinds of patterns [6]. The experiments described in this pa-
per investigate the embryology modelled with EmbryoCA
and the limits of the complexity and sophistication of the
patterns that can be generated.

More specifically, the aim of these experiments is to see
how Microconstructor performs when it has to work with
different types of 2D inputs. The inputs can be seen in fig.
3. They represent a fairly ample selection of potential in-
puts that could be presented to Microconstructor. There are
regular symmetrical inputs, random, high and low volume
fraction inputs, inputs with highly clustered and low clus-
tered particles and with particles of different shapes.

Figure 3. Inputs used for the experiments. a)
Circle with small volume fraction (circle). b)
Circle with higher volume fraction (circle2).
c) Three squares regularly spaced (dice3).
d) Five squares regularly spaced (dice5). e)
Random shape (random1). f) Striped pattern
(stripes). g) Rectangle (rectangle). h) Square
with low volume fraction (square1). i) Square
with high volume fraction (square2).

Each input has been tested 10 times with different ran-
domly created initial populations and the results achieved
for each stereological objective as well as the overall fitness
have been recorded.

The GA used to evolve the EmbryoCA is fairly standard.
It is a generational GA with tournament based selection, 2
point crossover and elitism representing 10% of the popula-
tion. More details about the exact configuration of the GA
can be found in table 1.

7 Results and discussion

The first noticeable result of the experiments is that Mi-
croconstructor has found fairly good solutions for all the
different inputs, never failing to achieve less than 93%
match between the stereological measures taken from the
inputs and the ones taken from the winning candidates of
the population (see fig 4). It can also be seen that not all
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Feature Value
CA dimensions 20x20x20
Mutation rate 0.05
Rule set size 100

Population size 100
Selection Tournament (3)

Max. number generations 500
Crossover 2 point

Time steps to evaluate a CA 20
Elitism 10%

Table 1. Configuration of the GA used for the
experiments.

inputs represented the same challange nor all the criteria of
the multi objective fitness function were achieved with the
same degree of success.

Figure 4. Average fitness with standard devi-
ation achieved by Microconstructor for each
of the inputs.

Figures 5, 6, 7, 8 and 9 represent the results achieved
by Microconstructor for the volume fraction, particle size
distribution, number of particles, surface to volume fraction
and 2 point correlation respectively.

The worst overall result was achieved by Microcon-
structor when the input was the one labelled ’random’.
That looks quite reasonable because that input includes the
biggest and most diverse collection of particles of the inputs
set. It is also worth mentioning that apart from the particle
size distribution test, the results obtained in the remaining
criteria fall well within the range of the results obtained for
the other inputs.

More surprising is the difference between the results ob-
tained for inputs ’circle’ and ’circle2’. They represent,
roughly, the shame circular shape though the second is
clearly bigger (and therefore has a higher volume fraction)

that the second. Despite the similarities, the results are quite
different, whereas ’circle2’ gets the best overall results of
all the inputs, ’circle’ is second to ’random’ in terms of
worst performance. Though the comparatively bad results
achieved by Microconstructor with ’circle’ are consistent
across most of the criteria, the biggest difference comes
with the volume fraction (see fig. 5) and particle size distri-
bution criteria (see fig. 6). This fact is quite surprising, spe-
cially with the PSD since, theoretically, it should be as hard
to achieve a good result with ’circle’ as it is with ’circle2’,
both inputs representing almost the same PSD with the first
being exactly like the second in a smaller scale. That could
be explained if there were candidates with good PSD values
but poor overall fitness.

Figure 5. Average value for the volume frac-
tion objective achieved by Microconstructor
for each of the inputs.

Figure 6. Average value for the particle size
distribution objective achieved by Microcon-
structor for each of the inputs.

Figure 7 shows that inputs with one particle (’circle’,
’circle2’, ’rectangle, ’square1’ and ’square2’) get better re-
sults in this test than the other ones. That does not mean
that there is a correlation between inputs with small number
of particles and the results of the number of particles test.
Actually, after the inputs with a single particle, it is the in-
put with the largest number of particles, ’random’, the one
who gets the best value for this test. Furthermore, ’dice 5’ is
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similar in features to ’dice3’ but contains a higher number
of particles, and still gets a better result.

Figure 7. Average value for the number of par-
ticles objective achieved by Microconstructor
for each of the inputs.

As opposed to what was shown in the number of particles
test, the surface to volume/area fraction shows better results
for the inputs that have more than one particle (see fig. 8.

Figure 8. Average value for the surface to vol-
ume fraction achieved by Microconstructor
for each of the inputs.

Figure 10 shows the results that have been obtained by
averaging the values of the different inputs for each specific
criteria. The two criteria that are more related, number of
particles and particle size distribution, are respectively the
easiest and hardest criteria to achieve in these experiments.
It is no surprise that the number of particles is an easier
criteria than particle size distribution but it was quite sur-
prising to find that also two point correlation is easier than
particle size distribution. Two point correlation takes on
account the distance of every single pixel of the characteri-
sation to every other one, so it contains a lot of information
about the input and hence it could potentially be quite diffi-
cult to satisfy.

Figure 9. Average value for the 2-point corre-
lation objective achieved by Microconstruc-
tor for each of the inputs.

Figure 10. Average fitness for each of the
five criteria measured achieved by Microcon-
structor on the different inputs.

8 Conclusions

This paper has described Microconstructor, a system that
uses biologically inspired CA to obtain 3D characterisa-
tions of microstructures. The experiments described earlier
have shown that complex 3D patterns of microstructural rel-
evance can be obtained and that these patterns have similar
stereological properties to the user provided inputs. This
paper has also shown that it is possible to create a model
of self organisation that while retaining the ability to show
complex behaviours, typical of CA models, is also evolv-
able by a GA.
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Figure 11. An example of the development of
a 3D microstructure using an EmbryoCA.
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