
ARTICLE IN PRESS
Real-Time Imaging 10 (2004) 263–273
1077-2014/$ - se

doi:10.1016/j.rt

�Correspond
E-mail add

enst.fr (O. Ca

Bloch@enst.fr
1Current add

ological Scienc

SE1 9RT, UK.
2Current add

Neurological

H3A2B4, Cana
www.elsevier.com/locate/rti
Computational modeling of thoracic and abdominal anatomy using
spatial relationships for image segmentation

O. Camara�,1, O. Colliot2, I. Bloch

ENST Paris, TSI Department, CNRS UMR 5141 LTCI, 46, rue Barrault, 75634 Paris Cedex 13, France

Available online 11 September 2004
Abstract

This paper presents an original hierarchical segmentation approach of several thoracic and abdominal structures in CT and

emission PET images. Segmentation results will be used to initialize a non-linear registration procedure between these

complementary imaging modalities. Therefore, structures involved in the segmentation system must be visible in both CT and

emission PET images in order to compute a spatial transformation between them. Thus, the chosen structures include lungs, kidneys

and liver (skin and skeleton are also segmented as support structures). In the hierarchical segmentation procedure, the extraction of

a given structure is driven by information derived from a simpler one. This information is composed of spatial constraints inferred

from the previously segmented structures and expressed by means of Regions Of Interest (ROI) in which the search for new

structures will take place. The segmentation of each structure follows a two-phase process: a first stage is composed of automatic

thresholding and other low-level operations in the ROI defined by previously segmented objects; a second stage employs a 3D

deformable model to refine and regularize results provided by the former step. Visual inspection by medical experts has stated that

the proposed segmentation approach provides results which are accurate enough to guide a subsequent non-linear registration

procedure.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Segmentation or recognition of anatomical structures
in medical images is at the core of current state-of-the-
art research in image processing and computer vision
fields. The constant improvement of the quality of these
images and the availability of powerful computers allow
to develop medical segmentation-based procedures
(atlas construction, medical training) helping physician’s
critical decisions. In addition, structure recognition is
e front matter r 2004 Elsevier Ltd. All rights reserved.
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frequently used as a first step of other image processing
techniques such as registration. Nevertheless, medical
image segmentation remains a challenging task due to
either inter-patient variability or imperfections linked to
image acquisition devices (noise, lack of contrast, weak
contours).
Oncology is the branch of medicine that studies

cancer disease. In this domain, physicians use images
acquired by two complementary imaging modalities:
Computed Tomography (CT) and Positron Emission
Tomography (PET). CT images have good SNR
(Signal-to-Noise Ratio) quality and spatial resolution,
thus giving an accurate anatomical information about
visualized structures. But, they do not provide any
functional or metabolic information, which is crucial to
distinguish malignant tumors from benign ones. Such
information is obtained from emission PET images
(using 18-FDG as injected tracer), where malignant
tumors are visualized as bright and well-contrasted
unexpected structures. On the other hand, emission PET

www.elsevier.com/locate/rti
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images suffer from strong presence of noise and
artifacts, preventing a good localization of anatomical
structures. Therefore, the combination of these com-
plementary images has a significant impact on oncology
decisions such as staging, surgery, treatment or therapy
planning. This data integration is performed by means
of a registration procedure that consists of a spatial
alignment aiming to cope with deformations between
CT and PET images. These differences are mainly due to
the elastic nature of thoracic and abdominal organs,
structure movements induced by respiratory and cardiac
cycle, patient’s position as well as the different physical
principle underlying both acquisition techniques. Even
though a considerable amount of research has been
carried out on the registration problem, the noisy nature
and the high presence of artifacts in emission PET
images, as well as the complexity of thoracic and
abdominal organs and their movements, make the
registration of these images a challenging application.
We have proposed in [1] a registration procedure that

includes a structure segmentation step where the most
significant homologous thoracic and abdominal organs
are recognized in both CT and emission PET images. A
non-linear registration phase between these segmented
structures is used to initialize a refinement phase
working with the whole set of grey-level intensities.
The work presented in this paper concerns the segmen-
tation of these structures in CT and emission PET
images.
A prerequisite for the registration methodology

concerns its practical use in clinical routine, which
forces us to develop robust and fast image processing
algorithms. As registration techniques are already high
computational cost procedures, structure segmentation
must be performed in almost real-time in order to
dedicate most of the time to the alignment computation.
Furthermore, if a minimum interaction is desirable in
order to improve result robustness, a fast segmentation
method is required.
Given the noisy and complex nature of functional

images employed in our application, it could be a serious
problem if an accurate segmentation were needed, as
would be the case if the final result would only rely on
the registration of extracted anatomical structures. Even
if it is possible to localize several common structures in
both image modalities and if their segmentation in CT
volumes can be achieved without excessive problems,
their recognition in emission PET scans, in an auto-
matic, robust and accurate way, is not a trivial task (the
poor emission PET image quality makes difficult to find
some structure contours, even visually). However, in our
case, segmentation errors will not necessarily be
propagated to the final result, as the second intensity-
based registration stage will be able to correct them.
Thus, we just need to get a reasonably good approxima-
tion of the anatomical features visible in both volumes,
or, if that were not possible, as many references about
them as can be detected. So, instead of accuracy, our
main concerns here are the speed and the reliability of
the system.
We propose an original hierarchical segmentation

procedure based on robust spatial relationships between
the targeted structures. The use of these spatial relation-
ships is motivated by their high robustness and low
inter-patient variability, unlike other structure charac-
teristics such as shape or grey-level values. Furthermore,
using this strategy, we imitate the reasoning of a
physician when interpreting a medical image. The
segmentation of each structure is performed in two
steps: a first stage composed of automatic thresholding
and other low-level processing operations in a ROI
defined by previously segmented objects; and a second
stage consisting in refining the result using a 3D
deformable model.
The paper is organized as follows. In Section 2, the

proposed hierarchical procedure is detailed, and we
present the ROI construction for each targeted structure
in both image modalities and the first initial segmenta-
tion stage. Afterwards, in Section 3, the refinement
phase, performed with a deformable model combined
with spatial relationships, is described. In Section 4,
some final results are shown and discussed, and finally,
in Section 5, conclusions are presented.
2. Hierarchical procedure

2.1. Overview

In the developed hierarchical procedure, the extrac-
tion of a given structure is driven by information derived
from anatomical objects which are simpler to recognize
(thus, they have been previously segmented). This
information is composed of spatial constraints (direc-
tions, exclusions) inferred from the previously segmen-
ted structures and expressed by means of Regions Of
Interest (ROI) in which the search for new structures
will take place. As mentioned above, the segmentation
of each structure is performed in two steps in the
corresponding ROI: a first stage where a structure-
specific combination of low-level image processing
techniques provide an initial segmentation; and a second
stage in which a 3D simplex mesh deformable model
refines the previous results.
Our registration methodology requires a list of

homologous structures that can always be found and
recognized in thoracic/abdominal emission PET and CT
images in a robust way. Based on discussions with
medical experts, we finally chose to segment the
following structures: skin, skeleton, lungs, kidneys and
liver. Since the skeleton is difficult to extract with
enough robustness in emission PET scans, it is only used
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Fig. 1. Segmented structures and hierarchical order of the segmentation procedure (from left to right): skin (simplest structure to recognize), skeleton

(only in CT images), lungs, kidneys and liver (hardest structure to recognize).
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for the CT image segmentation as a support structure
constraining the construction of some ROIs, but does
not play any role in the registration procedure.
Segmentation of the targeted anatomical structures is

a challenging task, in particular in functional images.
The main problem is that, due to the presence of
acquisition artifacts and a strong inter-patient varia-
bility, information directly provided by the images for a
given structure (i.e. its grey-level values) is not robust
and stable enough to guide its segmentation. Conse-
quently, other types of information must be used to
complement or constrain information provided by the
image. A classical way to introduce such prior informa-
tion is to use atlases or anatomical models. Its use is
always open to criticism when working with pathologi-
cal images, in particular in oncology applications where
tumors may modify the morphology of a given
structure. Furthermore, the large structure deformations
involved in thoracic and abdominal regions would
require a previous registration phase between the atlas
and the images to segment, thus considerably increasing
the computational cost of the algorithm. On the
contrary, we have chosen to mathematically model
robust spatial relationships that shall provide prior
constraints to combine with information from the
images.
Spatial relationships have been rarely used in medical

image segmentation algorithms. Some exceptions can be
found in [2–4], where they are employed in brain
imaging applications. They take benefit of considering
human body as a structured scene, where some relations
between organs possess a high degree of robustness and
have a low inter-subject variability. Many examples of
stable spatial relations can also be found in thoracic and
abdominal regions only using basic knowledge on
human anatomy: ‘‘stomach is placed above kidneys’’,
‘‘lungs are included inside the thoracic cage’’, ‘‘liver is
placed under the lungs’’, ‘‘kidneys are closer to liver
than to lungs’’, .... Although such spatial relationships
may seem trivial, their addition to an image processing
algorithm can considerably help in constraining or
rejecting possible solutions. Therefore, the proposed
hierarchical procedure classifies the different anatomical
structures in a progressive fashion. The extraction of a
given structure will be constrained by the information
derived from those which are simpler to recognize. An
anatomical structure is considered as simple to segment
if its associated intensities are fairly homogeneous, if it is
well contrasted with respect to neighboring structures
and if its morphology, spatial location and relationships
are robust and not very variable among different
patients.
In general, spatial relations are categorized into three

classes: topological, distance and orientation relations
[5]. Morphological and symmetry relations are some-
times added as new classes. In our work, topological,
orientation and symmetry spatial relations are used as
prior constraints. This information is employed to
construct ROI (see Section 2.2) in which the search for
new structures will take place. Furthermore, as it is
shown in Sections 2.3 and 3, spatial relationships are
also used to select structures in the ROI corresponding
to a given criterion and to constrain the subsequent
deformable model phase.
The proposed hierarchical method requires a specific

order for the segmentation of the structures. This order,
which has been chosen based on structure recognition
simplicity and relationship robustness, is (see Fig. 1):
skin; skeleton (only for CT scan); lungs; kidneys; and
liver.

2.2. Construction of the ROI by means of spatial

relationships

As described above, the search of a given structure is
limited to a ROI defined using robust and stable spatial
relationships with respect to previously segmented
structures. Relationships used in the proposed proce-
dure include direction, symmetry and exclusion rela-
tions. The ROI for each structure is defined as follows.

2.2.1. Skin and skeleton

The skin constitutes the first step of the segmentation
procedure in CT and PET images and therefore no ROI
is used. Concerning skeleton segmentation in CT scan, it
is only constrained to be placed inside the skin volume.

2.2.2. Lungs

In CT images, the lung ROI is derived from the skin,
i.e., lungs must be included in the area delimited by the
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skin. In emission PET images3 lungs are difficult to
recognize. Therefore, we use the transmission PET
image, in which lungs are easier to segment in order to
obtain the lung ROI for the emission PET image,
making the assumption that there are no large lung
deformations between emission and transmission scans.
The segmentation procedure detailed in Section 2.3 is
used to recognize the lungs in the transmission image.
Then, we dilate (mathematical morphology dilation)
them in order to construct a ROI for the lungs in the
emission image.
2.2.3. Kidneys and liver

In CT images, an upper bound in the z-axis is derived
from previously segmented lungs based on the following
spatial relationship: ‘‘liver and kidneys are under the
lungs’’. This upper limit, computed on each 2D coronal
slice, is composed of the lower lung contours and a line
linking two automatically extracted landmarks: the
lower-left4 limit of the right lung (point B in Fig. 2)
and the lower-right limit of the left lung (point C in
Fig. 2).
The automatic detection of these landmarks is

achieved by the following procedure. For each 2D
coronal slice, the first lung contour point, starting from
left columns of the 2D slice, is selected (point A in
Fig. 2). Starting from this point, the next landmark is
defined as the one which has maxðx þ zÞ, x and z being
spatial coordinates of the image (point B). In order to
compute the corresponding points in the left lung, the
same procedure is applied in a symmetrical way, this
time the second landmark point corresponding to
maxðz � xÞ (point C in Fig. 2). Once points B and C
are found, a line linking them is automatically drawn,
defining, together with the lower lung contours, the
upper limit of kidneys and liver ROIs for each 2D
coronal slice. This upper bound has proved to be very
helpful for separating the liver from the heart, in
particular in CT images, where these structures have
similar grey-level intensities.
A lower bound is also computed using the top of the

pelvis, which is extracted from the skeleton. The top of
the pelvis is found by the following procedure. The area
of the skeleton surface is computed for each 2D axial
slice. We have observed that this area can be used to
detect the first 2D axial slice in which the spine is visible,
coming from the pelvic region in a foot-to-head
scanning: the top of the pelvis is obtained when the
2D axial skeleton area is below a given threshold which
is chosen in an experimental way.
3The majority of PET acquisition protocols produce two PET

images: emission and transmission ones. Transmission PET image is

only used to correct attenuation in the emission PET one and it is not

employed for medical purposes.
4In medical imaging the ‘‘left is right’’convention is used.
Finally, ribs are also used to laterally limit the ROI
corresponding to kidneys and liver. First, we remove z

slices under the top of the pelvis that has been computed
just before. The next step separates the ribs from the rest
of the skeleton by computing symmetrical pairs of
objects distant from the image symmetry plane in each
2D coronal slice. Image symmetry plane and selection of
symmetrical pairs of objects algorithms are detailed in
Section 2.3. Once ribs are found for each 2D coronal
slice, a line linking each rib with its two neighbor ribs is
drawn, defining other limits of the ROI, as can be seen
in Fig. 3.
In PET images, as skeleton is not available, we only

use the upper bound derived from segmented lungs.
Concerning the ROI for the liver, in addition the

previously segmented kidneys are suppressed from the
ROI in order to avoid overlap between these structures.
An example of liver ROI for both CT and emission PET
images is presented in Fig. 3.

2.3. Initial segmentation

The initial segmentation of each structure is obtained
by means of the following sequence of operations (in
this order) that are applied in the corresponding ROI:
1.
 automatic thresholding;

2.
 binary erosion;

3.
 selection of connected components;

4.
 binary dilation;

5.
 consistency check.
2.3.1. k-means

The well-known k-means automatic thresholding
method [6] is the first step of the initial segmentation
procedure. This method is able to provide satisfactory
classification results only if it is applied in a restricted
ROI, in which not too many structures (and thus, not
too many different grey-level values) appear. Otherwise
this method will produce several segmentation errors.
This will be typically the case for the liver because it will
be classified in the same class as the heart due to the high
similarity between their intensities. The use of spatial
relationships to construct the ROI solves this problem
and allows us to apply automatic thresholding. Never-
theless, an initial phase of parameter tuning (number of
classes and their centers) must be performed for each
structure. In our case, after this training phase,
parameters have proved to be robust enough in order
to fix them (for a given anatomical structure) for the
whole set of processed images.

2.3.2. Mathematical morphology

The two basic binary mathematical morphology
operations, erosion and dilation, are used in the initial
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Fig. 2. Landmarks (points A, B, C and D) and upper bound obtained from the lungs in CT (left) and emission PET (right) images in order to built

liver and kidneys ROI.

Fig. 3. Region of Interest (in red) for liver in CT (left) and PET (right)

images.
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segmentation procedure. The former, applied after the
k-means stage, aims at separating undesirable compo-
nents from relevant structures and dilation, applied after
the selection of connected components stage, recovers
some of the data lost in the erosion step.

2.3.3. Selection of connected components

This stage consists in selecting the correct connected
components among those classified by the automatic
thresholding phase as having similar intensities as the
targeted structure.
In the case of liver and lung segmentation, the chosen

criterion is to select the largest connected components.
A noteworthy exception is the case of kidneys because
they are not the largest connected components in the
ROI. The two most symmetrical components with
respect to the body symmetry plane are selected, as
illustrated in Fig. 4. The symmetry plane computation is
based on an algorithm originally developed for brain
images [7]. The search of the symmetry plane is seen
as a mono-modal registration problem and it is ex-
pressed as the maximization of the following symmetry
measure sf ðPÞ:

sf ðPÞ ¼ 1�
k f � ePðf Þk

2
2

2k f k22
ð1Þ

for a 3D grey-level image f, where ePðf Þ is its reflection
with respect to a given plane P and k f k2 denotes the l2
metric of f.
Once the best reflection symmetry plane is computed,

the selection of the most symmetrical components is
achieved using a symmetry measure for fuzzy sets, as
proposed in [8], which, for a pair of binary objects ðA;BÞ
can be formulated as

SðA; ePðBÞÞ ¼
jA \ ePðBÞj

jA [ ePðBÞj
:

The pair of connected components having the highest
measure will be chosen as the most symmetrical one.
2.3.4. Consistency verification

Robustness is a major concern for any medical image
processing algorithm. In order to improve the robust-
ness of the initial segmentation procedure (in particular
of the steps involving parameter tuning), we automati-
cally verify result consistency after each critical phase.
To this purpose a set of routines have been developed
that systematically check for certain parameters of the
extracted organ, like dimensions, volume or compact-
ness, to be within the expected range. As a matter of
fact, physicians usually ask for an interactive control of
structure segmentation procedures, therefore, these
check routines will help the development of an user-
friendly segmentation interface. From the robustness
point of view, the most critical operations include
automatic thresholding and selection of connected
component stages. Nevertheless, due to the limited size
of ROIs where structures are searched, errors produced
by these stages have been well identified and taken into
account in the procedure.
In each image processing step, when consistency

measures are finally within the expected range, the
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Fig. 4. Symmetry plane and kidney symmetry in grey-level CT (left) and PET (right) images.
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detected region is the input of the following regulariza-
tion phase.
3. Refinement with a deformable model

The previous initial segmentation phase provides a
good approximation of the structures, indicating their
location in an accurate way. However, this result cannot
be considered as an accurate final segmentation result,
even in our context of initial registration. The main
problem is the lack of regularization. This problem is
overcome using a 3D simplex mesh deformable
model [9].
Deformable models [10] are curves or surfaces defined

in a given image domain which evolve under the
influence of constraints computed from image data
(usually an edge map) and regularity constraints. They
have been largely used in several image processing and
computer vision applications. Basically, there are two
main types of deformable models: parametric [10] and
geometric [11,12] ones.
Due to the particular requirements of our application,

a parametric technique has been chosen. Geometric
deformable models allow the structure topology to
change but in our specific problem, this is not needed
and is even undesirable, according to the physician’s
point of view. Furthermore, when parametric deform-
able models are implemented using a discrete represen-
tation, a fast convergence can be obtained. Parametric
techniques have also the advantage of naturally allowing
the use of initial results (as obtained in the first
segmentation phase) and the introduction of hetero-
geneous prior information.

3.1. Evolution of the deformation model

The evolution of the deformable surface X is
described by the following dynamic force equation

g
@X

@t
¼ FintðXÞ þ FextðXÞ; ð2Þ
where Fint is the internal force related to physical
properties or constraints of the model that specifies the
regularity (elasticity and stiffness) of the surface and Fext

is the external force that drives the surface towards the
desired features in the image. The final solution is the
steady state of the previous equation. The chosen
internal force is

Fint ¼ ar2X� br2ðr2XÞ; ð3Þ

where a and b, respectively, control surface tension
(prevent it from stretching) and rigidity (prevent it from
bending) and r2 is the Laplacian operator.

3.1.1. Gradient vector flow

The choice of the external force is crucial in order to
make the deformable model evolve towards contours of
the object to segment. Xu et al. [13] have proposed an
external force based on the diffusion of the gradient
vector associated to a given contour map, called
Gradient Vector Flow (GVF), and its generalization
[14] assures a large capture range and convergence
towards possible contour concavities. The GVF techni-
que produces dense vector fields by solving the equation
of vectorial diffusion that distributes gradient vectors of
a binary or grey-level contour map computed from the
image. The GVF field uðxÞ of the function f ðxÞ is defined
as the equilibrium solution of the following vector
diffusion equation:

ut ¼ gðjrf jÞr2u� hðjrf jÞ; ðu� rf Þ;

uðx; 0Þ ¼ rf ðxÞ;

(
ð4Þ

where ut ¼ du=dt and t is the time parameter.
The function f ðxÞ can be any edge map. Here a

classical Canny–Deriche [15] edge detector followed by a
hysteresis thresholding is used for computational cost
reasons. Functions gð�Þ and hð�Þ are weighting functions
that apply, respectively, to smoothing and data terms.
They depend on the contour map gradient, which is
spatially variable, thus, these functions will also vary
through the space domain. As it is desirable that the
vector field will vary in a slow and smooth fashion far
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away from contours (where the gradient is weak), but at
the same time will act as rf near them, gð�Þ and hð�Þmust
be decreasing and increasing functions of j 5 f j,
respectively. The following weighting functions accom-
plish these conditions:

gðjrf jÞ ¼ e�
j5f j

Kð Þ
2

; ð5Þ

hðjrf jÞ ¼ 1� gðjrf jÞ; ð6Þ

where K determines the trade-off between the field
smoothness and the fidelity to the image contour
gradients. An example of a GVF vector field, computed
on an emission PET grey-level image, is shown in Fig. 5.

3.1.2. ROI constraining the deformable model

In order to prevent the deformable model from
progressing beyond the limit of some structures, we
propose to introduce prior information derived from
spatial relationships between structures, which have
already been used in the initial segmentation stage, into
the deformable model formulation, resulting in a new
external force.
An approach for integrating spatial relations into

deformable models has been proposed in [4]. This
approach deals with relations represented by fuzzy sets
which can be seen as fuzzy ROIs. In our case, the ROIs
are binary and are therefore considered as a particular
case of the previous approach. The integration is
performed by means of an additional term inserted in
the external force formulation. This term, called a
limiting force, should be combined with the one derived
from the image data and must constrain the model to
prevent it from going outside the ROI. Furthermore, the
model must be only driven by the data term within the
ROI, thus the limiting force will be zero inside the ROI.
Therefore, the external force is not only derived from

image edges but also constrains the deformable model to
stay in the ROI. It can be written as a linear
combination:

Fext ¼ lvþ mFROI ; ð7Þ

where v is the GVF field, FROI is the force attached to
the ROI and l and m are weighting parameters.
Fig. 5. Axial slice of GVF computed on an emission PET image (a) and deta

deformable model (d).
The second term of the external force is used to
prevent the deformable model from going outside the
ROI. This has proved to be very useful for example for
separating the liver from the heart. FROI is a distance
potential force [16] and it can be written as follows:

FROI ðxÞ ¼ �
rdðxÞ

krdðxÞk
; ð8Þ

where d is a distance map to the ROI. It should be noted
that we also use the ROI as a mask on the GVF and thus
the GVF is equal to zero outside the ROI. Finally, we
also use the ROI as a mask on the obtained segmenta-
tion to ensure that no objects are overlapping.
3.2. Simplex mesh deformable model

A discrete representation has to be chosen in order to
implement the parametric deformable model to achieve
the refinement stage. Simplex meshes, introduced in [9],
are the selected discrete representation. This decision
avoids problems due to surface parameterization while
remaining a reasonable computational cost algorithm.
In addition, local shape constraints can be added to the
model in an easy way, and there are also simple
discretization methods for the evolution equations and
topologic and geometric adaptation algorithms. Other
good properties of this approach include that they are
topologically dual to triangulations and have a constant
vertex connectivity. Complete details on simplex meshes
can be found in [9].
The following procedure is used to obtain simplex

meshes. First, initial structure segmentations are system-
atically eroded in order to ensure that this initialization
is inside the targeted object. The next step consists in
transforming them into a triangulation. This transfor-
mation is performed by means of an isosurface
algorithm [17] based on tetrahedra. Once the triangula-
tion is computed, the mesh must be decimated in order
to reduce the number of triangles to a manageable
quantity. The last step converts the triangular mesh into
a simplex mesh [9], using the dual operation. The
evolution of each vertex of the simplex mesh is
controlled by the dynamical equation (2), which is
il (b); example of an initial segmentation (c) and its refinement with the
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discretized by means of the finite difference method [18].
An example of the influence of this regularization phase
is shown in Fig. 5.
Fig. 7. CT axial slices of final segmentation results.
4. Results

In our work, 20 data sets composed of CT and PET
(emission and transmission) scans of thoracic and/or
abdominal regions provided by three different hospitals
have been used. Some structure segmentation results in
both CT and emission PET images are shown in Figs.
6–8. In the first example, simplex meshes of final
segmented structures (skeleton, lungs, kidneys and liver)
are superimposed on CT and PET grey-level images. In
the second (CT) and third (PET) images, 2D axial slices
of original grey-level volumes are superimposed with
contours of final segmentation results corresponding to
lung, kidney and liver structures.
A quantitative validation of these results is lacking

because it would require too much additional time, since
it involves the tedious acquisition of manual ground-
truth segmentations (in emission PET images, more than
tedious, manual structure segmentations will not be
reliable enough to assess a segmentation procedure).
Furthermore, the end-goal validation criterion is not the
segmentation accuracy, but the final mapping of the
anatomy in both data sets.
Nevertheless, we have assessed segmentation results in

two different ways: a visual inspection of these results;
and a retrospective segmentation evaluation from the
assessment of final registration results.
Visual inspection of segmentation results have been

done by superimposing them on original grey-level
images and comparing corresponding structure con-
Fig. 6. Left: examples of simplex meshes of the segmented structures (top: CT lung; bottom: PET liver). Middle: 3D rendering of CT segmented

structures superimposed on a coronal slice. Right: 3D rendering of PET segmented structures superimposed on a coronal slice.
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Fig. 8. PET axial slices of final segmentation results.
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tours. The visual accuracy criterion has taken into
account our context of initial registration and it should
be more severe if these segmented structures would be
used as final results. Segmentation results have been
positively evaluated by medical experts, in all CT and
PET structures. Lung segmentation results are very
accurate in CT images (in practice, we obtain global
sub-voxel segmentation accuracy) while in PET ones,
some insignificant errors (these errors do not induce
further misregistrations) appear due to the low SNR of
these images. Concerning kidney segmentation, the
symmetry plane procedure has proved to be very
efficient and the only problem has been the classification
of the inner part of these structures, that sometimes has
different grey-level values. A 3D hole filling processing
stage has solved this situation. The liver is the most
difficult structure to segment both in CT and PET
images due to the high presence of neighboring
structures with similar grey-level values. A reasonable
approximation of the liver is obtained, notably separat-
ing it from kidneys and heart. Nevertheless, we have
sometimes found unidentified small structures close to
the liver that our procedure does not separate. In our
application, such situation is not a major concern but in



ARTICLE IN PRESS
O. Camara et al. / Real-Time Imaging 10 (2004) 263–273272
other medical segmentation applications it must be
classified as a bad segmentation result.
The second way of evaluating segmentation result

accuracy is based on the assessment of final registration
results obtained by the proposed methodology. As a
matter of fact, the transformation computation between
CT and PET images strongly depends on the anatomical
information that we are capable to extract from both
data volumes, i.e., it depends on the segmentation result
accuracy. Therefore, the evaluation of final registration
results can also be seen as a retrospective assessment of
the segmentation stage. We have developed a non-linear
registration evaluation protocol [19] that provides a
semi-quantitative measure of the registration accuracy.
Mean detected registration errors are lower than
1 cm (thus, within the acceptable error range) for the
majority of the evaluated regions including lungs,
kidneys, liver and heart. On the other hand, some
significant misregistrations appear near the stomach.
These data illustrate the fact that registration is
better achieved around structures that have been
recognized with the segmentation procedure detailed in
this paper.
5. Conclusions

In this paper, we have presented an original hier-
archical segmentation procedure aiming at segmenting
several significant anatomical structures (lungs, kidneys,
liver) in CT and emission PET images. The segmenta-
tion strategy has been implemented according to the
special characteristics of the structures, the images
involved in the application and our context of initial
registration. For each particular structure, specific prior
information has been used that cannot be generalized to
other structures or even to the same structures imaged
with other modalities.
The main concerns in this application has been

robustness and convergence speed and the proposed
segmentation procedure has been designed in order to
satisfy them. Concerning robustness, consistency check
routines have been added after segmentation steps
involving less robust parameter tuning. With respect to
convergence speed, the procedure employs low compu-
tational cost algorithms in the initial segmentation
phase, while the regularization phase has been imple-
mented to assure a fast convergence as well. For a pair
of images with standard dimensions (CT image with a
size of 512 512 60 voxels and a PET image with
144 144 200 voxels), the initial segmentation phase
takes about 60 s and the regularization phase about 90 s
for each structure. These computation times fulfill time
constraints of our algorithm, thus having a larger time
margin for registration algorithms of the proposed
methodology.
The use of a hierarchical procedure takes advantage
of stable spatial relationships between structures to
construct the ROIs where the search of a given structure
takes place. The ROI construction is very structure-
specific because it is based on spatial relationships which
can be valid only for a given anatomical feature. In this
way, segmentation of the most difficult structures, such
as liver in emission PET scans, has been achieved by
using classical image processing techniques that could
not be used without spatial constraints provided by
simpler and previously segmented structures.
Using this hierarchical procedure, a good trade-off

between speed and segmentation accuracy has been
achieved. An important drawback of this strategy could
be the error propagation between different segmentation
stages, i.e., errors obtained in the segmentation of
simpler structures will highly influence the segmentation
of subsequent structures. Here again, the consistency
checks included in the procedure appear to be very
important and allow us to avoid such problems.
Final segmentation results have proved to be accurate

enough to guide the structure registration procedure
that will initialize, close to the final solution near
segmented structures, the refinement registration step
working with the whole set of intensities. A visual
inspection of the results has been done because a
quantitative validation would ask for a tedious manual
segmentation of several structures in CT and
emission PET images. Furthermore, such manual
segmentations will not be reliable enough for segmented
structures in emission PET images due to their low
SNR. Moreover it has been shown that the proposed
segmentation leads to very accurate registration results.
Future work will focus on the addition of other
structures such as the heart and the stomach to the
hierarchical segmentation procedure.
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