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ABSTRACT
Motivation: Understanding principles of cellular organiza-
tion and function can be enhanced if we detect known and
predict still undiscovered protein complexes within the cell’s
protein–protein interaction (PPI) network. Such predictions
may be used as an inexpensive tool to direct biological experi-
ments. The increasing amount of available PPI data neces-
sitates an accurate and scalable approach to protein complex
identification.
Results: We have developed the Restricted Neighborhood
Search Clustering Algorithm (RNSC) to efficiently partition
networks into clusters using a cost function. We applied
this cost-based clustering algorithm to PPI networks of
Saccharomyces cerevisiae, Drosophila melanogaster and
Caenorhabditis elegans to identify and predict protein com-
plexes. We have determined functional and graph-theoretic
properties of true protein complexes from the MIPS data-
base. Based on these properties, we defined filters to dis-
tinguish between identified network clusters and true protein
complexes.
Conclusions: Our application of the cost-based clustering
algorithm provides an accurate and scalable method of detect-
ing and predicting protein complexes within a PPI network.
Availability: The RNSC algorithm and data processing code
are available upon request from the authors.
Contact: ij@uhnres.utoronto.ca
Supplementary Information: Supplementary data are avail-
able at http://www.cs.utoronto.ca/∼juris/data/ppi04/

1 INTRODUCTION
Recent developments in the rapidly expanding fields of net-
work biology and cell biology have resulted in a deluge
of protein–protein interaction (PPI) data with accompanying
data on protein complexes emerging from these PPI networks
(Uetzet al., 2000; Itoet al., 2000, 2001; Giotet al., 2003; Li
et al., 2004; Gavinet al., 2003; Hoet al., 2003). An inevitable
consequence of this wealth of data is the need for efficient and
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accurate automated tools to identify and quantify significant
portions of these data. Our method relies on modeling the PPI
network with a graph, where nodes represent proteins and
edges correspond to interactions, and applying principles of
both graph theory and gene ontology to identify likely protein
complexes with scalable accuracy.

Modeling PPI networks with simple graphs has been used
for many applications, one of which is the prediction of pro-
tein complexes within the PPI networks (Bader and Hogue,
2003; Pržuljet al., 2004). Protein complexes generally corres-
pond to dense subgraphs in the PPI network; thus, proteins in
a given complex are highly interactive with each other (Bader
and Hogue, 2003; Pržuljet al., 2004). Previous approaches to
graph-theoretic cluster prediction include simple clustering
methods such as identification ofk-cores (Bader and Hogue,
2003) super-paramagnetic clustering (Spirin and Mirny, 2003)
and the highly connected subgraph approach (Hartuv and
Shamir, 2000; Pržuljet al., 2004). Although in this paper we
focus on graph clustering only, many other important applic-
ation of graph theory to cellular biology exist (e.g. Barabási
and Oltvai, 2004; Newman, 2003; Albert and Barabási, 2002;
Strogatz, 2001; Pržulj, 2004). The last one focuses specifically
on PPI networks.

We have developed and applied the Restricted Neighbor-
hood Search Clustering algorithm (RNSC), which partitions
the network’s node set into clusters based on a cost func-
tion that is assigned to each partitioning. We then filtered the
RNSC output so that only clusters that share characteristics
of known protein complexes are considered. This method was
applied to fourSaccharomyces cerevisiae PPI networks dis-
cussed in Pržuljet al. (2004), twoDrosophila melanogaster
PPI networks (Giotet al., 2003) and aCaenorhabditis elegans
PPI network (Liet al., 2004). Our criteria for filtering the
clusters included: cluster size, cluster density and functional
homogeneity, all of which are discussed later in this paper.
We compared the results of our method with known yeast
protein complexes (Meweset al., 2002) and found that optimi-
zing filter cutoff values leads to high matching rates and large
cluster sample sizes.
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2 SYSTEMS AND METHODS
Our protein complex prediction method relies on modeling
PPI data as graphs (or networks). A graphG = (V ,E) is a
setV of nodes, representing proteins, and a setE of edges,
representing interactions between pairs of proteins. Each edge
joins two nodes. We also useG(V ) to denote the set of nodes
V of G (West, 2001).

We used fourS.cerevisiae PPI networks originating from
von Meringet al. (2002) comprising 2455, 11 000, 45 000 and
78 390 interactions. We call these networksY2k, Y11k, Y45k and
Y78k respectively, the smallest one containing high confidence
interactions only, and the larger ones having an increas-
ing number of lower confidence interactions. We used two
D.melanogaster PPI networks, one derived from the entire
fruitfly network of interactions given in Giotet al. (2003),
and one derived from those interactions with confidence
>0.5; these have 20 007 and 4637 interactions respectively,
and we call these networksF20k and F4k. We also used a
C.elegans PPI network, W5k, consisting of 5222 interac-
tions (Li et al., 2004) (also see supplementary information;
www.cs.utoronto.ca/∼juris/data/ppi04/).

We have analyzed these networks using a two-step pro-
cess. First, we clustered them using the RNSC algorithm.
Second, we filtered the results based on cluster size, dens-
ity and functional homogeneity. This approach preserves only
those clusters that exhibit properties more frequently observed
in true biological complexes.

To evaluate the effectiveness of our algorithm for detect-
ing protein complexes, we compared the filtered clusters of
the yeast PPI networks with known protein complexes in the
MIPS yeast complex database (Meweset al., 2002). Whether
or not a given cluster is deemed to match a given MIPS
complex depends on the matching criteria detailed below.

2.1 Clustering
The bulk of the computation time was spent clustering the
PPI networks using RNSC algorithm, which is described in
Section 2.6. The Results included very small clusters and
clusters which were either insufficiently dense, or whose com-
ponent proteins had only a weak functional homogeneity. To
achieve a high prediction rate, we discarded these clusters.
The appearance of these clusters is not a problem with the
algorithm, where each protein must be assigned to a cluster
(see Section 2.6); rather, it is a result of partitioning sparse
networks.

2.2 Cluster size
The motivation to discard small clusters comes from two ideas.
First, any overlap proportion between a small predicted com-
plex and a known complex is more likely to be by chance
than the same overlap proportion involving a larger predicted
complex. Second, small known complexes frequently have
low density in current PPI networks and are therefore diffi-
cult to detect using a clustering algorithm. We experimentally

determined a lower bound for a cluster size and discarded all
predicted complexes with size below this lower bound. The
size bound is dependent on the PPI network in question.

2.3 Cluster density
Protein complexes usually exhibit high interaction rates with
each other. Therefore, lower-density clusters are less likely
corresponding to known protein complexes. By discarding
clusters whose densities lie below a certain threshold, we can
increase the prediction rate of our algorithm.

2.4 Functional homogeneity
Known protein complexes often exhibit high functional homo-
geneity (Buet al., 2003; Pržuljet al., 2004), i.e. a large
proportion of proteins within a known complex likely belongs
to the same functional group. This property also holds for
dense regions of PPI networks (Buet al., 2003; Pržuljet al.,
2004). The functional homogeneityP -value is the probability
that a given set of proteins is enriched by a given func-
tional group merely by chance, following the hypergeometric
distribution. TheP -value for a clusterC and a functional
groupF is:

P = 1 −
k−1∑

i=0

(|F |
i

)(|V |−|F |
|C|−i

)
(|V |
|C|

) , (1)

whereC containsk proteins inF , and the entire PPI network
contains|V | proteins (also used in Buet al., 2003; Pržuljet al.,
2004). We consider theP -value of a cluster to be its smallest
P -value over all functional groups. Functional group data are
derived from von Meringet al. (2002) for the yeast networks.

We discarded all clusters withP -value above a given,
experimentally derived threshold (see Section 3.1). Although
our model of functional homogeneity is very simple, using
it to evaluate PPI network clusters as potential protein com-
plexes is effective, since known protein complexes have low
P -values. Sensible cutoffs for the clusterP -values range from
10−2 to 10−8 for the networks. For our matching data, we
chose a cutoff of 10−3 for each network, because it offers
a compromise between complex-cluster matching rate and a
cluster passing rate, i.e. we can get a large sample of clusters
with high matching rates (see Section 3.2).

2.5 Matching criteria
We need to develop matching criteria to decide whether a
given PPI network cluster matches a known biological com-
plex. From the standpoint of considering the practicality of
our results, it makes sense to consider a predicted cluster and
a known protein complex to be matched if a large proportion
of each protein (node) set overlaps, or if the set of cluster
nodes is nearly entirely contained within a set of proteins in a
complex. Having a large cluster containing a small complex
is not as biologically revealing, and thus we do not consider
this case.
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For a very large protein complex and a matching PPI
network cluster, a given overlap proportion is more significant
than it would be in a small complex and a matching cluster.
For example, an overlap of five proteins between a complex
and a cluster each of size six is less significant (i.e. more likely
to occur at random) than an overlap of 50 proteins between a
complex and a cluster each of size 60. Bearing this in mind,
we consider a clusterCl to match a complexCo by overlap if
both:

|V (Cl) ∪ V (Co)|
|V (Cl)| ≥ Pcluster

log10[7 + |V (Cl)|] (2)

and |V (Cl) ∪ V (Co)|
|V (Co)| ≥ Pcomplex

log10[7 + |V (Co)|] (3)

are satisfied, and we consider a cluster to match a complex by
containment if:

|V (Cl) ∪ V (Co)|
|V (Cl)| ≥ Pcontain. (4)

For these three equations,Pcluster, PcomplexandPcontaincon-
tain are all user-defined, experimentally derived proportions
between 0 and 1. Note that in matching analysis, we do not
consider proteins in a given protein complex if they do not
appear in the applicable PPI network. Adding 7 to|V (Cl)|
in Equations (2) and (3) is done because it was empirically
found to yield good thresholds. In fact, Equations (2)–(4)
are entirely the result of empirical optimization: the equa-
tions generate sensible values such that a match is an overlap
that represents high statistical significance without being too
stringent a requirement (Fig. 1 and Section 3.2).

2.6 The RNSC algorithm
A clustering of a networkG(V ,E) is a decomposition of the
set of nodesV into subsets of nodes that are highly intercon-
nected (i.e. these subsets of nodes induce dense subgraphs).
Our clustering algorithm is the RNSC, which is a cost-based
local search algorithm based loosely on the tabu search meta-
heuristic (Glover, 1989). In the context of this algorithm, a
clustering of a networkG = (V ,E) is equivalent to a par-
titioning of the node setV . The RNSC efficiently searches
the space of partitions ofV , each of which is assigned a cost,
for a clustering with low cost. The algorithm searches using
a simple integer-valued cost function (called the naive cost
function) as a preprocessor before it searches using a more
expressive (but less efficient) real-valued cost function (called
the scaled cost function). The initial clustering is random or
user-input.

The RNSC searches for a low-cost clustering by first com-
posing an initial random clustering, then iteratively moving
one node from one cluster to another in a randomized fash-
ion to improve the clustering’s cost. A general move is one
that reduces the clustering cost by a near-optimal amount.

Fig. 1. The overlap requirements for a match between a cluster and a
complex. Thex-axis is the larger of the complex size and the cluster
size, and they-axis is the overlap size needed to consider the complex
and the cluster to be matched. The linesy = 0.5x andy = 0.7x are
given for reference only. This figure can be viewed in colour on
Bioinformatics online.

The common problem among local search algorithms is their
tendency to settle in poor local minima. This problem can be
largely avoided by using diversification and multiple experi-
ments. Thus, our algorithm makes diversification moves,
which shuffle the clustering by occasionally dispersing the
contents of a cluster at random. In addition, the RNSC main-
tains a list of tabu (forbidden) moves to prevent cycling back
to the previously explored partitioning. Since the RNSC is
randomized, different runs on the same input data will result
in different clusterings.

The algorithm maintains many data structures and incurs a
large memory cost for the sake of time-efficiency. Ordinarily,
maintenance of the data structures for such a search algorithm
would present a prohibitive cost in computation. However,
there are many problem-specific properties related to both
graph clustering and the chosen cost functions that allow the
RNSC to perform very efficiently (a more detailed explana-
tion of the RNSC algorithm can be found in the supplementary
information (King, 2004). To achieve high accuracy in pre-
dicting true protein complexes, the RNSC output is filtered,
using the following criteria: setting a maximumP -value for
functional homogeneity, a minimum density and a minimum
size. Only clusters that satisfy these criteria are presented as
predicted protein complexes.

3 EXPERIMENTS AND RESULTS
Each network was clustered at least four times using the RNSC
algorithm running under Linux. Each run took between 4 s
and 67 min on a 2.8 GHz processor, withY2k being the fast-
est andF20k being the most time consuming. We considered
the lowest-cost clustering produced by these runs for each
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Table 1. Cluster size lower bounds forS.cerevisiae PPI networks’ clusters,
needed to pass through the filter

Network Minimum size Total clusters Passing clusters

Y2k 4 393 48
Y11k 5 974 84
Y45k 7 181 86
Y78k 8 1811 90

For example, forY2k network, out of 393 clusters in total, 48 were of size at least 4.

network. Resulting clusters are available in the Supplementary
information.

The thresholds for cluster size, density and functional
homogeneity are a matter of compromise; although increas-
ing the strictness of the thresholds generally increases the
prediction rate, it reduces the number of passing predictions
(see Section 3.1). In the case where few protein complexes
are known for the PPI network (e.g. fruitfly and worm),
this scalability is extremely useful, since we can make the
thresholds strict at the beginning, and relax them as we ana-
lyze the growing set of predicted protein complexes (clusters).
We have chosen the following matching thresholds:Pcluster =
Pcomplex= 0.7 andPcluster = 0.9.

3.1 Filter cutoffs
All of the three filter cutoffs (for cluster size, density and
functional homogeneity) were chosen to yield reasonably high
sample sizes while ensuring that clusters passing through the
filter had a good chance of matching known complexes. In
the case of the yeast networks, the minimum cluster size
cutoff increased with the size of the network accordingly.
Table 1 shows the chosen size cutoffs for the yeast PPI net-
works, along with the sizes of the cluster sets that pass the
size cutoff.

We imposed a lower bound on the density of predicted com-
plexes. As seen in Figure 2, a significant decrease in the
passing rate of the RNSC clusters occurs when the cluster
density cutoff is between 0.65 and 0.75. In general, known
complexes tend to have high density in the PPI network, but
very few large complexes have density 1 (See Supplementary
Information). A density cutoff in the range of 0.65 and 0.75
allows a good compromise between passing sample size and
prediction rate, but a cutoff closer to 0.9 may give a very high
passing rate in a small sample size. For experimental results
in the yeast networks, we used a cutoff of 0.7.

As with cluster size and density, for functional homogen-
eity (P -value) filtering we wish to maintain both a reasonable
sample size and a high matching rate among passing clusters.
Figure 3 shows the effect of changing thresholds for both
density andP -value (after filtering for size) inY78k. Figure 4
shows the effect of these thresholds on the sample size inY78k.

Fig. 2. The proportion of RNSC clusters which pass the cluster
density filter (i.e. cluster passing rate) and the proportion of these
passing clusters that match known complexes (cluster matching rate)
for yeast networksY2k , Y11k , Y45k and Y78k . These rates are for
clusters that have already been filtered for size, but not for functional
homogeneity.

Fig. 3. Proportion of passing clusters inY78k which match a known
complex from MIPS. The sample is the set of clusters passing first
the size restriction, then theP -value restriction and density restric-
tion. TheP -value and density restrictions are given on thex- and
y-axes. We chose 0.7 and 10−3 as our density andP -value cutoffs,
respectively. This figure can be viewed in colour onBioinformatics
online.

For our experimental cluster passing rates, we chose aP -value
cutoff of 10−3.

3.2 Results
Matching rates for the yeast networks are shown in Table 2
for density≥0.7 andP ≤ 10−3, using the size cutoffs found
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Fig. 4. The effect of changingP -value and density cutoffs on the
sample size, i.e. the number of clusters that pass the filter criteria
for Y78k . Clusters are first filtered by size, then byP -value and
density. We chose 0.7 and 10−3 as our density andP -value cutoffs,
respectively. This figure can be viewed in colour onBioinformatics
online.

Table 2. Matching data for density≥0.7 andP ≤ 10−3; using both RNSC
and MCL algorithms (van Dongen, 2002); MCL values shown in parentheses

Graph Minimum size Passing clusters Matched clusters Prediction
rate (%)

Y2k 4 28 (8) 23 (9) 82.1 (88.9)
Y11k 5 45 (8) 30 (12) 66.7 (75)
Y45k 7 32 (2) 21 (4) 65.6 (50)
Y78k 8 31 (3) 22 (6) 73.3 (50)

Passing clusters are those that pass all filtering criteria, and matching clusters are those
passing clusters that satisfy the matching criteria with at least one complex from MIPS.

to provide good passing sample sizes (described in Table 1).
The table also contains results reached by replacing the output
of the RNSC algorithm with the output of the MCL (Markov
Cluster) algorithm (van Dongen, 2002). The fact that all of
the filter cutoffs can be adjusted means that there are count-
less samples of varying size and matching rate. An example
is presented in Figure 5, where each choice of filter cutoffs
is represented as a point. In spite of the noise, the results for
Y78k are the best: for a given false positive rate, the true posi-
tive rate forY78k is the highest of the four. This may be because
the larger dataset carries much more statistical significance,
in spite of it containing more noise.

Figure 6A shows an example of a predicted complex (i.e.
a RNSC cluster) and the true protein complex from MIPS
that it matches in the yeast networkY11k. The RNSC cluster
has size 8, density 0.964, andP -value 3.98× 10−8. The
known cluster, COPI, has size 8, density 0.786, andP -value

Fig. 5. True positive rate versus false positive rate for filtered yeast
clusters: the proportion of matched clusters accepted by the filter
versus the proportion of unmatched clusters accepted by the filter.
The points represent all tested filter cutoffs for size,P -value and
density. Clusters of size less than two are ignored in these data. The
curvey = √

x is given as a reference. This figure can be viewed in
colour onBioinformatics online.

3.29 × 10−10. COPI is an intracellular transport complex
that contributes to the coating of membrane vesicles within
the cell. Although the ADPribosylation factor protein (Arf1),
which is in COPI but not the predicted complex, has the same
gene ontological function as the rest of the proteins in COPI,
it is incident with only one edge in the complex. Gpt2, which
is contained in the predicted complex but not the known com-
plex, is incident with six edges in the cluster. Gpt2 is glutamic
pyruvate transaminase 2 with a strong similarity to Sct1p
(GAT1), and is responsible for transaminase and transferase
activity and lipid biosynthesis; Gpt2 is located in endoplasmic
reticulum. Although Gpt2 is assigned a different functional
group by von Meringet al. (2002) according to MIPS, each of
these nine proteins is responsible for cellular transport, trans-
port facilitation and transport routes (Meweset al., 2002; von
Meringet al., 2002), and most are listed as probable members
of membrane biogenesis and traffic complex. This suggests
that Gpt2 likely belongs to the COPI complex.

Figure 6B shows an unmatched RNSC cluster inY11k. How-
ever, it exhibits all of the properties that we are looking for:
it has sufficient size, 7, and high density, 0.810; its functional
homogeneityP -value is 9.31× 10−6, with six of its seven
proteins contributing to metabolism. Moreover, it comprises
five members involved in pyrimidine base biosynthesis (Ura1,
2, 3, 5, 10). This suggests that biological validation of this set
of proteins forming a protein complex may be worthwhile.

Figure 6C shows an example of a containment match: an
RNSC cluster inY11k is contained within a MIPS complex
(note that the cluster contains most of the edges within the
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Fig. 6. Examples of matched and predicted protein complexes: (A) MIPS complex COPI in the yeast networkY11k and the matching complex
predicted by RNSC. Each has size 8, and their overlap is 7. (B) An unmatched cluster in the yeast networkY11k . The cluster has no overlap
greater than one protein with any known complex. It passed through the filter, and exhibits characteristics of a protein complex. (C) This
RNSC cluster inY11k is contained within a larger MIPS complex. Note that the cluster contains most of the edges in the complex.

complex). Indeed, the nodes of the complex that are not
included in the cluster do not exhibit the ideal graph-theoretic
properties of protein complexes. They are sparsely connected
and largely heterogeneous. This MIPS complex is responsible
for transcription and transcriptional control, genome mainten-
ance and chromatin structure remodeling. Clearly, decreasing
the number of false negatives in current PPI databases should
lead to better overlap between predicted and true protein
complexes. Text analysis and manual curation of PubMed
resources will help substantially (Shatkay and Feldman, 2003;
Xenarioset al., 2000; Zanzoniet al., 2002; Periet al., 2003).

Similarly as in Pržuljet al. (2004), RNSC identified Rib1-
5, Rib7 as a functionally homogeneous cluster (riboflavin

biosynthesis) with density 1.0 inY11k. In Y2k RNSC iden-
tified only cluster comprising Rib1, Rib3 and Rib5 with a
density 0.67. InY45k andY78k, Rib1–5 and Rib7 have density
1.0 among themselves, but the proteins are highly interactive
with other proteins. Although SGD lists all six proteins dir-
ectly annotated to the vitamin B2 biosynthesis (Cherryet al.,
1998; Christieet al., 2004), Rib1–5, Rib7 do not form a cluster
in either of these two PPI networks; rather, the Rib proteins
are divided among several clusters. This is a case in which
hierarchical cluster analysis may provide some insight; i.e.,
considering all four networks for yeast simultaneously.

The results for the fly and worm networks are less definitive.
As there are no comprehensive sources for complexes and
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functional classifications for these networks, we could neither
constructP -values for the clusters nor compare them to a set
of known complexes. In these networks, we filtered clusters
for size and density. The predicted complexes are given in
the Supplementary information. ForF20k, there are only five
predicted complexes, the largest of which has size 5. This is
due to the fact that the current fruitfly network is extremely
sparse. ForF5k, the less noisy dataset for fruit-fly, there are
42 predicted complexes, all of size 3 and 4. ForW5k, there
are 32 predicted complexes, including 3 of size≥10. In the
future, more complete PPI data will likely lead to a larger,
more significant set of predicted complexes for fly and worm.

4 DISCUSSION
Our results suggest that true protein complexes exhibit certain
graph-theoretic properties and functional homogeneity. Thus,
using size, density and functional homogeneity as filtering cri-
teria for network clusters is a reasonable approach to predict
novel protein complexes. However, there are some problems
withthisapproach. Whileproteincomplexesareusuallyexpec-
ted to have high density in PPI networks, not all do. A related
problem is the incompleteness of current PPI networks. The
more complete and accurate our PPI and known protein com-
plexes datasets are, the more accurately we can analyze the PPI
networks. Further, the functional homogeneity, while accurate
for the most part, seems to be an incomplete, oversimplified
model. Many known complexes show low functional homo-
geneity. Also, many proteins belong to multiple functional
groups. In addition, many proteins are of unknown function.

Even with such a simple filtering model and incomplete
data, we managed to achieve very high matching rates between
PPI network clusters and known protein complexes (Table 2).
In comparison, Bader and Hogue generated a set of 209 pre-
dicted complexes, of which 54 match the MIPS database in
at least 20% of their proteins in a yeast PPI network of some
15 000 interactions (Bader and Hogue, 2003). In Pržuljet al.
(2004), a set of 31 predicted complexes is given forY11k,
of which 27 were reported to have high overlaps with MIPS
complexes. Jansenet al. (2002) predicted that pairs of nodes
to be in the same cluster; they, like us, achieved low error
rates (as low as 0% for five predicted pairs) that increased
with the sample size. However, their findings cannot easily be
applied to predicting entire complexes, but only interactions
within them (Jansenet al., 2002). Our results complement
these efforts to better understand protein complexes within
networks or protein–protein interactions.

Many clustering algorithms are available. Most, including
the single-linkage and UGPMA algorithms, are applicable to
points in a geometric space rather than networks such as PPI
networks. As shown in Table 2, using the MCL algorithm
rather than the RNSC algorithm to cluster the graph results in
less significant datasets. Further details of the comparison of
the two algorithms is provided in King (2004).

5 CONCLUSIONS AND FUTURE WORK
Using the RNSC algorithm to cluster PPI networks and filter-
ing based on graph-theoretic resemblance to typical known
protein complexes provides an effective method for pre-
dicting protein complexes. There is mounting evidence that
employing graph-theoretic techniques can be useful in pro-
tein network analysis, as also demonstrated by recent research
(Lappe and Holm, 2004; Pržuljet al., 2004; Pržulj, 2004; Yu
et al., 2004). Our results suggest that we can predict protein
complexes with high confidence using RNSC algorithm with
filtering.

These predictions can be used to make biological experi-
ments more focused, efficient and less expensive. Not only do
the results warrant investigation where predicted complexes
are unknown, but in some cases they warrant re-examination
of current results. In order for this predictor (and other graph-
theoretic tools) to work best, our knowledge of the networks
needs to be improved. As more PPI data become available,
automated tools for their analysis will need to become scalable
and accurate.

There is a huge amount of further research to be done in the
area of PPI network analysis. On the side of gene ontology, it
will be helpful to investigate improved functional homogen-
eity models. Clearly, the mono-functional model of functional
homogeneity that we use stands to be improved, most likely
at a cost of simplicity. Just as protein function can be used to
help predict protein complexes, knowledge of complexes can
be used to predict previously unknown cellular function (Bu
et al., 2003).

Clustering could likely be improved by applying hierarch-
ical complex predictions. For example, in yeast we predicted
protein complexes using four PPI networks of increasing size.
Determining how the predicted complexes in one such net-
work relate to those in another network will hopefully give us
further insight to the nature of protein interactions.

We have developed an accurate and scalable method of pre-
dicting protein complexes from PPI data. Biological research
will inevitably continue to be hypothesis driven, but compu-
tational analysis methods, such as ours, are likely to become
indispensable for their ability to systematically identify areas
of significance, and at a much lower cost.
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