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Abstract

The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological
information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await
discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should
be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn
improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in
CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug
targets and ‘‘driver genes.’’ We seek such genes, since driver genes have been proposed to drive onset and progression of a
disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be
the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our
methodology identifies ‘‘key’’ genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over
70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently
known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.
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Introduction

Understanding the role and function of proteins in diseases is a

foremost challenge. Since proteins bind to each other to perform a

function, utilizing networks of protein-protein interactions (PPIs) to

address this challenge has gained attention. A network (also called a

graph) is a common model of a set of objects (e.g., proteins) and

their interactions and hence, graph theoretic approaches, are

commonly used for analyzing network data. In a PPI network,

nodes correspond to proteins and links between them to physical

interactions between the proteins. Topological properties of PPI

networks have been studied to extract new disease-related

knowledge [1–4]. We build on those approaches and focus on

cardiovascular diseases to examine a predictive power of similarity

in PPI network wiring around proteins involved in these diseases.

Cardiovascular diseases (CVDs) is a group of diseases of the

heart and blood vessels and a major global cause of death, with

more people dying every year from CVDs than from any other

cause [5]. For example, 1 in 3 deaths in the United States is caused

by CVDs. Hence, controlling and preventing CVDs and their

complex pathogenesis, that is influenced by genetic, environmental

and lifestyle factors, have gained considerable attention [5]. CVDs

are studied in a mechanistic, genetic and biochemical contexts that

include genomic [6], gene expression [7] and proteomic studies

[8]. In cardiovascular research, proteomics is used in two ways: for

investigating protein function in different physiological and disease

processes (mechanistic studies) and for investigating difference in

protein levels and function in a diseased state of an organism

(biomarker studies) [8,9]. Proteomics research includes sample

pre-processing or sample pre-fractionation, mass spectrometry and

data analysis [10].

Integrated research of gene expression and protein-protein

interaction (PPI) networks can provide unique benefits to studying

molecular machinery of various diseases, including CVDs. There

are several studies which employ PPI networks in search for

biomarkers of CVDs [11–13]. For instance, Camargo and Azuaje

[11] constructed a PPI network consisting of human heart failure

relevant interactions, which they used to analyse a relationship

between gene co-expression and PPI network connectivity. They

used Gene Ontology (GO) [14] to establish a relationship between

the connectivity of proteins in the PPI network and their

involvement in specific disease-related processes. In a later work,

they suggested a set of potentially novel Dilated cardiomyopathy

signature genes by integrating functional PPI network information

and data sets describing gene expression profiles [12]. Jin et al.

[13] formed a cardiovascular-related PPI network based on PPI

and signal transduction data. They used statistical methods to

successfully discover biomarkers in the newly formed network.

Zhang et al. [15] introduced a computational method based on six

network topological features, and constructed a combined

classifier to predict candidate genes for coronary artery diseases.

It has been shown that directly linked proteins in the human PPI

network are more likely to cause similar diseases [2,3]. Also, Goh
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et al. [16] created a bipartite ‘‘diseasome’’ network, where one

partition consists of a set of diseases and the other of a set of

disease genes (and where by definition of a bipartite network, all

edges in the network go between the partitions). They used it to

generate two network projections: disease gene network and

human disease network (which they found is clustered according to

major disorder classes). By exploring centrality and peripherality of

genes in the network, they showed that contrary to essential

human genes which encode hub proteins, majority of disease genes

do not encode hubs, and are localized in the periphery of the

network [16]. Yidirim et al. [17] analyzed a bipartite network

composed of drugs and proteins targeted by drugs, linked by drug-

target binary associations, with a goal of understanding the

properties of drug targets in the context of cellular and disease

networks. They used the measure of shortest distance between

nodes in the network to find significant differences between

etiological and paliative drugs. Radivojac et al. [18] used machine

learning to detect gene-disease associations. They based their

approach on the PPI network, protein-disease associations, protein

sequence, functional annotation, and measure of distance in the

protein interaction network. Goldenberg et al. [19] used gene and

gene-product interaction network trying to identify genes that play

important role in initiation and progression of lung cancer. They

identified a small set of influential genes, looking into genes whose

neighbors show high expression change (in cancerous tissue versus

normal) regardless of their own expression.

Several methods have shown that PPI network topology around

proteins is a predictor of their function [4,20,21]. The method

proposed in [20] summarizes the local topology around a protein

in a PPI network into a ‘‘signature’’ of a protein, which is a vector

containing counts of small subgraphs (‘‘graphlets’’) that the protein

touches. Then, proteins in the PPI network are grouped based on

similarity of their ‘‘signatures,’’ and it has been shown that proteins

within those groups belong to same protein complexes, perform

the same biological function and are part of the same subcellular

components [20]. Also, the same similarity of the wiring (i.e.

topology) in the extended neighborhood around a protein in the

PPI network was used to predict the involvement of a protein in

disease [4,21]: a series of clustering methods was applied to the

proteins with similar PPI network wiring and the obtained clusters

were significantly enriched in cancer and disease related proteins.

This lead to predictions of new melanogenesis related genes purely

from the topology of the human PPI network and the predictions

were phenotypically validated [4,21].

Janjić and Pržulj [22] demonstrate the existence of topologically

and functionally homogeneous ‘‘core subnetwork’’ of the human

PPI network, which is enriched in disease genes, drug targets, and

a small number of genes that have theoretically been proposed to

be absolutely required for tumor formation and that are usually

referred to as ‘‘driver genes’’ [23]. They call this subnetwork the

‘‘Core Diseasome’’ [22]. They postulate that the Core Diseasome

subnetwork is the key to disease onset and progression and hence

should be the primary object of therapeutic intervention. They

find this subnetwork purely computationally by utilizing the

k{core decomposition algorithm [24,25] applied to the human

PPI network. GRAAL family of network alignment algorithms

[26–30] uses the wiring around nodes to align topologically similar

nodes across different PPI networks. They were utilized to prove

that the Core Diseasome, obtained purely by k-core decomposi-

tion of the human PPI network, has a unique topology in PPI

network.

Hence, it seems that the evolution has constrained the

interactome topology so that similar topology is selected for

similar biological function. A complete explanation of why is this

true is beyond the scope of this study and is a subject of future

research. Here, we explore this issue further by examining if it

holds for genes implicated in CVDs. This may also lead to

improvements in a choice of therapy, which is important given the

fact that CVDs are currently a major global cause of death [5].

This Study
We explore the relationship between the wiring around proteins

(we use terms protein and gene interchangeably) in the human PPI

network and their involvement in CVDs. In particular, we find

clusters of proteins with similar wiring to the proteins already

known to be involved in CVDs (see sections Similarity Measure

and Clustering Methods). We identify a consensus set of CVD

genes from clusters that are statistically significantly enriched with

CVD-related genes (see section Similarity Measure). Then, to

validate potential gene candidates that might drive CVD onset

and progression and are drug targets, we utilize the method of [22]

mentioned above (see section The Core of Cardiovascular

Diseasome) and find that this consensus set of genes is enriched

in drug targets and driver genes (see section The Key Cardiovas-

cular Disease Genes). Furthermore, this consensus set has a large

overlap with the Core Diseasome. We also find that many of these

genes are functionally similar to known CVD drug targets. Hence,

we call this consensus set the Key CVD Genes and we use the same

methodology to predict new CVD gene candidates. We validate

that the predicted genes are functionally similar to currently

known CVD drug targets, indicating that our methodology may

be used for finding new genes relevant for CVD therapy (see

section Therapeutic Properties of Key and Predicted CVD Genes).

This combination of methods has not been used before. Also, no

similar methodology has previously been applied to CVD-related

genes. It produces highly confident CVD gene predictions, as

evident by literature validations and therapeutically relevant

functional enrichments (discussed in detail in the Results and

Discussion section).

Methods

In this paper we introduce a methodology to identify important

CVD genes that could be used to predict new therapeutically

relevant CVD genes (shown on the flowchart in Fig. 1). Here, we

describe all the steps in more detail.

Data Sets
We use the latest human PPI network data from I2D, version

2.0.0 (http://ophid.utoronto.ca/), because I2D integrates most of

the available PPI data (http://ophid.utoronto.ca/ophidv2.204/

statistics.jsp). We remove all self-interactions, as well as any low

confidence (originating from only one source) and predicted

interactions. To further reduce noise in the PPI network, we

remove all proteins with degree lower than 4 (where degree is the

number of interactors with the protein of interest), since their low

connectivity may be a result of a lack of experiments performed for

detecting their interactions, i.e. they may be involved in false

negative interactions. The resulting human PPI network has

82,649 interactions between 7,551 proteins.

We obtain the list of genes involved in CVDs from two sources

to increase coverage: (i) Disease Ontology (DO) Lite (http://

django.nubic.northwestern.edu/fundo/) [31] and (ii) pathways

from KEGG database (http://www.genome.jp/kegg/), download-

ed in September 2012. The list includes genes known to be

involved in the following CVDs in DO: aortic-aneurysm,

atherosclerosis, brain-ischemia, cardiovascular-disease, cerebro-

vascular disorder, heart-disease, heart-failure, intermediate-coro-
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nary-syndrome, ischemia, moyamoya-disease, pseudoxanthoma-

elasticum (which later may result in the form of premature

atherosclerosis), stroke, Takayasu’s-arteritis, thrombophilia,

thrombophlebitis, vascular-dementia, vascular-disease, and vascu-

litis. We obtain additional genes from the following KEGG

pathways: hypertrophic cardiomyopathy, arythmogenicright ven-

tricular cardiomyopathy, dilated cardiomyopathy, and viral

myocarditis. This results in the set of 656 CVD-related genes,

out of which we analyze 423 genes that are present in human PPI

network.

We download the drug target data from Drugbank (http://

http://www.drugbank.ca/): there are 1,245 drug targets in our

PPI network, among which 199 are known CVD genes.

Similarity Measure
As stated above, a network (also called a graph) is a set of nodes

that are linked by edges. Graphlets are small connected non-

isomorphic induced subgraphs of a network [32] (denoted by G0 to

G29 at the top of Fig. 2). To find proteins in a network with similar

wiring around them, we use the similarity measure introduced in

[20]. This similarity measure is a generalization of the degree of a

node and it counts the number of all two to five node graphlets

that a node touches, taking into account different ‘‘symmetry

groups’’ within each graphlet (numbered from 0 to 72 at the top of

Fig. 2, introduced in [22]). For example, it is topologically relevant

whether a node touches graphlet G4 at the middle node, or at one

of the end nodes (top of Fig. 2). These counts are coordinates in

the 73-dimensional Graphlet Degree Vector (GDV) of a node (detailed

in [33]). An illustration of a GDV of node v is given at the bottom

of Fig. 2, introduced in [22].

We compute the similarity between GDVs of nodes u and v in

graph G as follows [20]. If ui is the ith coordinate in the GDV of

node u, and vi is the ith coordinate in the GDV of node v, than the

distance between these two coordinates is computed as:

Di(u,v)~wi|
Dlog(uiz1){log(viz1)D

log(max(ui,vi)z2)
: ð1Þ

In formula (1), wi represents the weight of coordinate i, which

takes into account dependencies between orbits, as described in

[20]. The total distance between GDVs of nodes u and v,

normalized in ½0,1� range, is calculated as:

D(u,v)~

P72
i~0 DiP72
i~0 wi

: ð2Þ

Finally, GDV similarity of the two nodes is computed as:

S(u,v)~1{D(u,v): ð3Þ

As mentioned above, GDV similarity between proteins in the

human PPI network has already been used to successfully predict

protein function and involvement in disease [4,20,21,34]. Here,

we examine its usability for predicting CVD-related genes. We use

it to make clusters of proteins with similar wiring in the PPI

network (see below).

Clustering Methods
By using the above described GDV similarity between proteins

in the human PPI network, we obtain clusters of proteins with

similar wiring around them in the PPI network. Clustering is a

hard problem and a major research area in its own. Some

clustering methods, such as K-nearest neighbours(KNN), produce

overlapping clusters, while others, such as K-medoids, or

Hierarchical clustering, produce clusters with non-overlapping

sets of elements. We use a method that produces non-overlapping

clusters to avoid enrichments in clusters that are due to cluster

overlap. Since the choice of the best clustering method is heavily

data dependent, we try two methods described below (step 1. in

Fig. 1).

Note that a success of a particular clustering method depends on

the data and can be different for different networks [35].

Discussing the reasons for different performance of different

clustering methods is beyond the scope of this paper.

Hierarchical Clustering (HIE). This method creates a

dendogram that represents a cluster tree, which is a multilevel

hierarchy meaning that clusters at one level of the hierarchy are

joined into a cluster at the next level. The process of creating

clusters starts by assigning each node to its own cluster and

follows by finding the ‘‘closest’’ pair of clusters to merge into a

single cluster. Recall that, we specify the closeness between a

pair of nodes by their GDV similarity. If there are many closest

pairs, a single pair is chosen randomly. Then, we compute the

‘‘closeness’’ between the newly formed cluster and each of the

old clusters as the average of GDV similarities between the

nodes of the clusters. Again, the closest pair of clusters is

merged into a single cluster. This process repeats until all nodes

are clustered into one cluster. In order to create the desired

number of disjoint clusters it is necessary to cut the hierarchical

tree at some point. We denote the minimal number of clusters

that are obtained with a cut by KH .

K-medoids Clustering (KM). A medoid is a node in a cluster

whose average distance to all other nodes in the cluster is minimal.

The algorithm randomly picks KKM nodes as cluster medoids and

assigns all remaining nodes to KKM clusters. Each node is assigned

to the cluster with the medoid minimally distant from the node in

question. Ties are broken randomly. Then, in each cluster, a new

medoid node is found with respect to the nodes of the cluster. All

non-medoid nodes in the network are then reassigned to new KKM

clusters with these new medoids. These steps are repeated until the

same set of nodes is chosen as cluster medoids.

Statistical Significance
For each cluster obtained by using each of the clustering

methods described above, we compute the enrichment in CVD-

related proteins (or equivalently, genes). We compute statistical

significance (p-value) of obtaining this or higher enrichment purely

by chance. The p-value is computed in a standard way, by using

the hypergeometric cumulative distribution as follows. We denote

the number of genes in the human PPI network with M, the

number of genes that are involved in CVDs with K , and the size of

the cluster in question with N. The p-value, or the probability that

X or more disease genes will be found in the cluster by chance, is

computed as follows:

Figure 1. Flowchart of our approach. Parallelograms denote inputs and outputs. Rectangles denote analyses. Rhombuses denote choices to be
made.
doi:10.1371/journal.pone.0071537.g001
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p~1{
XX{1

i~0

K

i

� �
M{K

N{i

� �

M

N

� � : ð4Þ

We apply Benjamini-Hochberg false discovery rate (FDR) correction

[36] on the resulting p-values in order to take into account a

possibility of obtaining significant p-values in a large number of

experiments purely by chance. We report such corrected p-values.

Sensible cut-offs for p-values are in the range from 10{2 to 10{8

[37]. We use the p-value of 0:01 as a cut-off to define clusters

statistically significantly enriched in CVD-related genes.

First, we apply Hierarchical clustering to our PPI network. In

different runs of the algorithm, we choose the minimum number of

resulting clusters KH to be: 50, 75, 100, 200, 500, 700, 1000 and

2000. These numbers are chosen to cover different sizes of clusters

in order to identify the optimal size at which the enrichment in

CVD genes would occur. Unfortunately, the obtained clusters

were not statistically significantly enriched with CVD genes,

indicating that HIE can not be used for obtaining clusters of CVD-

enriched genes purely from the topology of the PPI network.

KM method produced clusters of proteins statistically signifi-

cantly enriched in CVD genes. The number of medoids, and

therefore clusters, KKM , that we use are: 50, 75, 100, 200, 300,

500, 700 and 1000. KKM larger than 1000 caused clusters to be

too small for any statistical analyses. The obtained clusters depend

on the initial random choice of medoids, as previously explained.

Figure 2. 73 Graphlets and Graphlet Degree Vector (GDV) of a node. Above: Graphlets with up to five nodes, denoted by G0,G1,G2, . . .G29.
They contain 73 ‘‘symmetry groups,’’ denoted by 0,1,2, . . . ,72. Within a graphlet, nodes belonging to the same symmetry group are of the same
shade [33]. Below: An illustration of the GDV of node v. GDV (v)~(2,1,1,0,0,1,0 . . . ,0), meaning that v is touched by two edges (orbit 0), illustrated in
the left panel, an end-node of one graphlet G1 (orbit 1), illustrated in the middle panel, the middle node of one graphlet G1 (orbit 2), illustrated in the
left panel again, no nodes of a triangle (orbit 3 in graphlet G2), no end-node of graphlet G3 (orbit 4), one middle node of graphlet G3 (orbit 5),
illustrated in the right panel, and no other orbits [22]-Reproduced by permission of The Royal Society of Chemistry (http://pubs.rsc.org/en/content/
articlehtml/2012/mb/c2mb25230a).
doi:10.1371/journal.pone.0071537.g002
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Hence, for each value of KKM mentioned above, we repeat the

experiment five times. To increase coverage, we take a union of

genes that are found in statistically significantly enriched clusters

for all five experiments per choice of KKM (step 2. in Fig. 1). As a

result, in CVD enriched clusters we identify following gene sets:

N For KKM~50: 86 CVD genes and 572 non-CVD genes;

N For KKM~75: 48 CVD genes and 282 non-CVD genes;

N For KKM~100: 54 CVD genes and 282 non-CVD genes;

N For KKM~200: 75 CVD genes and 277 non-CVD genes;

N For KKM~300: 13 CVD genes and 40 non-CVD genes;

N For KKM~700: 17 CVD genes and 23 non-CVD genes.

To find the ‘‘most important’’ CVD genes, we apply an

additional filter: we seek CVD genes that are in the intersection of

the above gene sets, obtained from statistically significantly

enriched clusters for different values of KKM (step 4. in Fig. 1).

We find 10 such genes (listed in Table 1)and analyse them further

(see below).

The Core of Cardiovascular Diseasome
We apply the k{core decomposition algorithm to the human

PPI network [24,25]. The PPI network is iteratively pruned in

search of its subnetwork in which all nodes are of degree at least k.

The steps of the algorithm are:

1. All nodes of degree ƒ1, along with their edges, are

removed from the network;

2. In the resulting network, all nodes of degree ƒ2, along

with their edges are removed from the network;

3. The process is repeated until only nodes of degree at least k

remain in the resulting pruned network. The largest value

of k for which the resulting network is not empty is called

kmax, and the corresponding subnetwork is called kmax-core,

or the core of the network.

The Core Diseasome is obtained purely computationally by

computing the kmax-core decomposition of the human PPI

network, along with the kmax-core decomposition of its subnetwork

of only disease genes, described in [22]. Therefore, to investigate

the importance of the 10 above described CVD related genes, we

find the core of the human PPI network and check if these 10

genes are in it. Also we find the core of the PPI subnetwork

consisting only of CVD related genes, and we check if this set of 10

genes appears in it (step 5. in Fig. 1). Since the core of the PPI

network is known to contain driver genes and drug targets [22], we

examine if any of the 10 genes are among the 15 known driver

genes, or are drug targets [23,38–40] (step 5. in Fig. 1). We obtain

statistically significant findings (detailed in the Results and

Discussion section), which allow us to postulate that these 10

genes are the Key CVD Genes. We further successfully validate this

by checking the statistical significance of the overlap between Key

CVD Genes and the Core Diseasome [22] (step 6. in Fig. 1).

Table 1. The Ten Key Cardiovascular Disease Genes.

Entrez ID Gene name GO term Cardiovascular disease (CVD)

25 ABL1 Intracellular signaling cascade (BP),
Signal transducer activity (MF)

Viral myocarditis.

6464 SHC1 Intracellular signaling cascade (BP),
Signal transducer activity (MF)

Atherosclerosis.

6667 SP1 Enzyme binding (MF) Trombophlebitis.

367 AR Intracellular signaling cascade (BP),
Intracellular receptor-mediated
signaling pathway (BP), Signal
transducer activity (MF)

Atherosclerosis.

1499 CTNNB1 Intracellular signaling cascade (BP),
Intracellular receptor-mediated
signaling pathway (BP), Enzyme binding (MF),
Signal transducer activity (MF)

Arythmogenic right ventricular
cardiomyopathy (ARVC).

2534 FYN Intracellular signaling cascade (BP) Viral myocarditis.

60 ACTB Enzyme binding (MF) Arythmogenic right ventricular
cardiomyopathy(ARVC), Hypertrophic
cardiomyopathy (HCM), Viral myocarditis,
Dilated Cardiomyopathy (DCM).

10014 HDAC5 Heart failure.

1956 EGFR Intracellular signaling cascade (BP),
Enzyme binding (MF), Signal transducer
activity (MF)

Trombophlebitis, Stroke.

2099 ESR1 Intracellular signaling cascade (BP),
Intracellular receptor-mediated
signaling pathway (BP), Signal
transducer activity (MF)

Stroke, Atherosclerosis, Cerebrovascular
disorder.

The first two columns: ten Key CVD genes (Entrez Gene IDs and Official Gene Symbols respectively). The third column: GO terms that the genes are annotated with. We
only take into consideration GO terms in which this set of 10 genes is statistically significantly enriched. We only list GO terms that correspond to biological functions
that the three drug mechanisms of interest rely on. BP denotes ‘‘biological process,’’ while MF denotes ‘‘molecular function’’ of GO. The fourth column: CVDs that the
genes are associated with.
doi:10.1371/journal.pone.0071537.t001
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Predicting New CVD Genes
We use the above described method (steps 1–4 in Fig. 1) to

predict novel CVD genes. We consider the 17 genes not currently

known to be involved in CVDs, that are in clusters statistically

significantly enriched in CVD genes, regardless of the value of the

initial parameter KKM . These genes are listed in Table 2.

Note that these 17 genes may have various GDV similarity to

CVD genes, since all genes had to be assigned to clusters. Hence

we seek only genes that are statistically significantly similar in

topology to CVD genes. To do that, we compute the distribution

of GDV similarities of all pairs of proteins in the human PPI

network (Fig. 3). The top 1% of the most GDV-similar nodes have

GDV similarity of at least 89% (corresponding to p-value of 0.01).

Hence, amongst the 17 non-CVD genes, we look for those that are

at least 89% GDV-similar to a CVD gene (step 7 in Fig. 1).

Results and Discussion

Here, first we reason about the importance of the 10 CVD

genes (listed in Table 1) identified by our methodology. Then, we

validate our predicted CVD genes (listed in Table 2). Next we

explain the therapeutic potential of the genes identified by our

methodology. Finally, we provide a comparison with other

approaches. The results are summarized in Fig.4.

Table 2. Predicted CVD genes.

Entrez ID Gene name GO term Reference PubMed ID

1387 CREBBP Receptor binding (MF), Signal transduction (BP). 14724353

4193 MDM2 Enzyme binding (MF). 18375498, 22821713

3065 HDAC1 Enzyme binding (MF). 22226905

4088 SMAD3 Enzyme binding (MF), Receptor binding (MF), Enzyme
linked receptor protein signaling pathway (BP).

22167769, 22633655

4087 SMAD2 Enzyme binding (MF), Receptor binding (MF), Signal
transduction (BP), Intracellular signaling cascade (BP),
Enzyme linked receptor protein signaling pathway (BP).

20829218, 22049534

3725 JUN, c-JUN Signal transduction (BP), Response to drug (BP), Enzyme
linked receptor protein signaling pathway (BP).

22664133

672 BRCA1 Enzyme binding (MF), Receptor binding (MF), Signal
transduction (BP), Intracellular signaling cascade (BP).

22186889

4609 MYC 22402364

6714 SRC Signal transduction (BP), Intracellular signaling cascade (BP),
Enzyme linked receptor protein signaling pathway (BP).

22287273

2033 EP300 Receptor binding (MF), Signal transduction (BP),
Response to drug (BP).

20375365

7157 TP53 Enzyme binding (MF), Signal transduction (BP), Intracellular
signaling cascade (BP), Response to drug (BP).

23074332, 22189267

2885 GRB2 Receptor binding (MF), Signal transduction (BP), Intracellular
signaling cascade (BP), Enzyme linked receptor protein
signaling pathway (BP).

12639989

8517 IKBKG Signal transduction (BP), Intracellular signaling cascade (BP). –

3320 HSP90AA1, HSP90AA2 Signal transduction (BP). –

5295 PIK3R1 Enzyme binding (MF), Receptor binding (MF), Signal
transduction (BP), Intracellular signaling cascade (BP),
Enzyme linked receptor protein signaling pathway (BP).

–

7543 YWHAZ Signal transduction (BP), Response to drug (BP). –

10971 YWHAQ Signal transduction (BP), Intracellular signaling cascade (BP). –

The first two columns: predicted CVD genes (Entrez Gene IDs and Official Gene Symbols respectively). The third column: GO terms that the genes are annotated with.
We only take into consideration GO terms in which this set of 17 genes is statistically significantly enriched. We only list GO terms that correspond to biological
functions that the three drug mechanisms of interest rely on. BP denotes ‘‘biological process,’’ while MF denotes ‘‘molecular function’’ of GO. The fourth column: if we
validate that the predicted gene is associated with a CVD, we give the PubMed ID of the corresponding reference; ‘‘–’’means that we found no literature validation.
doi:10.1371/journal.pone.0071537.t002

Figure 3. The distribution of GDV similarity of protein pairs in
the human PPI network. Horizontal axis represents GDV-similarities
of node pairs in the network in bins of 1%. Vertical axis represents
percentages of protein pairs that have a particular GDV-similarity.
doi:10.1371/journal.pone.0071537.g003
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The Key Cardiovascular Disease Genes
We examine the importance of the 10 Key CVD genes as

described in the section The Core of Cardiovascular Diseasome.

We ask if they are in the kmax-core of the PPI network and the

kmax-core of the PPI subnetwork of CVD genes only (steps 5–6 in

Fig. 1), and if they are enriched in drug targets and driver genes.

We compute the kmax-core decomposition of the PPI network: it

consists of 372 proteins (recall that the entire PPI network has

7551 proteins). There are 44 genes in the intersection between

these 372 proteins and the entire set of 423 CVD proteins in the

PPI network. Interestingly, all 10 Key CVD genes, are among

these 44 CVD -related genes that are in the core of the human PPI

network. We calculate p-value for this to occur using the

hypergeometric cumulative distribution with respect to entire

human PPI network and with respect to 423 CVD-related genes.

We find that both p-values are statistically significant, the first

being 7:5:10{14 and the second being 5:5:10{11. Furthermore,

the connected subnetwork of the PPI network that consists only of

CVD-related genes has 362 proteins, and its core consists of 43

genes. Again, all 10 Key CVD genes are in this core (p-value

~2:10{10 with respect to the 362 CVD proteins).

Also, three of the Key CVD genes: ABL1, CTNNB1, and

EGFR, are among the 15 known driver genes. The two p-values,

computed as described above are 7:5:10{7 (with respect to entire

PPI network), and 1:85:10{4(with respect to 423 CVD genes).

We find that six out of the 10 genes are among the 1245 known

drug targets that are present in the human PPI network. Table 3

lists Key CVD genes that are known drug targets and number of

drugs from Drugbank that target the corresponding gene. Since

199 out of 423 CVD genes in PPI network are known drug targets,

the p-value of getting 6 to occur amongst 10 Key CVD genes is not

statistically significant. However, with respect to entire PPI

network, this finding is statistically significant (p-value ~0:0023).

Hence, we demonstrated the importance of 10 Key CVD genes.

As described in the Introduction, the Core Diseasome has been

postulated to be the subnetwork of the PPI network that is the key

to disease onset and progression and hence should be the primary

object of therapeutic intervention [22]. Therefore we further

validate the importance of our Key CVD Genes, by checking if

Figure 4. Summary of the results. The Core Diseasome of [22] is overlaid with the results of this study. Green nodes are the Key CVD Genes (from
Table 1), which are in the Core Diseasome. Blue nodes are predicted CVD genes (from Table 2) that we validated in the literature and that are in the
Core Diseasome. Red nodes are non-validated CVD gene predictions (from Table 2) that are in the Core Diseasome. Triangular nodes are drug targets.
Driver genes are bordered in red.
doi:10.1371/journal.pone.0071537.g004
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they are a part of the Core Diseasome (step 6 in Fig. 1). We find

that the following 8 out of the 10 Key CVD genes are in the Core

Diseasome: SHC1, EGFR, ABL1, CTNNB1, ESR1, AR, SP1,

HDAC5 (Fig.4). We check the probability for this or higher

enrichment to occur purely by chance. This overlap is statistically

significant with p-values of 9:9:10{15 and 1:3:10{9 respectively (p-

values computed as described in the beginning of this section).

Note that GDV similarity measure is not necessary for the

formation of the Core Diseasome, while the 10 Key CVD genes

are obtained solely by using GDV similarity. Hence, validating the

importance of Key CVD genes by checking their overlap with the

Core Diseasome is not computationally biased.

Validation of CVD Gene Predictions
We predict new 17 CVD genes, listed in Table 2, as the result of

the same methodology that we used to identify the Key CVD

genes (as described in the section Predicting New CVD Genes).

We confirm that all of the 17 predicted genes are statistically

significantly similar to some of the CVD genes.

To validate our predictions, we perform literature curation for

possible CVDs that these 17 genes may be involved in. In the next

section, we also examine therapeutic potential of these predictions.

We do the literature validations by text mining using

CiteXplore (http://www.ebi.ac.uk/citexplore/): for the 17 pre-

dicted genes, we search PubMed abstracts with CiteXplore using

their official gene symbols. In Table 2, we list the results of this

literature mining and we discuss these findings below.

CREBBP gene is mentioned in connection with pathophysio-

logical changes in cerebral vessels predisposing to stroke [41].

Gerzanich et al. [41] study three models of human conditions

associated with stroke: chronic angiotensin II-hypertension,

chronic nicotine administration and oxidative endothelial injury.

All three models show significant up-regulation of expression of

proliferative cell nuclear antigen (PCNA) in arterioles in situ,

which is associated with increased activation of the nuclear

transcription factor, phospho-cAMP response element binding

protein (phospho-CREB).

It is shown that dilated cardiomyopathy tissues contain elevated

levels of p53 and its regulators MDM2 and HAUSP (p-

valueƒ0:01) compared to non-failing hearts [42]. Also, regulation

of MDM2 is critical in cardiac endocardial cushion morphogenesis

during heart development [43]. Chen et al. [44] show that down-

regulation of HDAC1 gene and the modifications on histone 3

lysine 4 (H3K4) and H3K9 significantly affect microRNA-29b

expression in the context of signaling regulation of microRNA-

29b, which is connected to novel mechanisms for cardiovascular

diseases.

Aneurysms-osteoarthritis syndrome (AOS) is a newly discovered

autosomal dominant syndromic form of thoracic aortic aneurysms

and dissections, that is characterised by the presence of arterial

aneurysms and tortuosity, mild craniofacial, skeletal and cutaneous

anomalies, and early-onset osteoarthritis. AOS is caused by

mutations in the SMAD3 gene [45]. It is known that aggressive

cardiovascular phenotype of aneurysms-osteoarthritis syndrome is

caused by pathogenic SMAD3 variants [46]. Also, SMAD2

dysregulation is associated with thoracic aortic aneurysms [47].

Inhibition of SMAD2 phosphorylation preserves cardiac function

during pressure overload [48].

JUN gene is linked to different types of mitral valvular disease

(MVD), including mitral regurgitation (MR) and mitral stenosis

(MS) [49]. It is shown that c-Jun mRNA are significantly

upregulated in patients with MS compared with those with MR

(with p-value ƒ0:05) and that phosphorylated c-Jun N-terminal

kinase in the MR group of patients is significantly greater than that

in the MS group (with p-value ƒ0:001).

It is demonstrated that proper expression of MYC in cardiac

fibroblasts and myocytes is essential to cardiac angiogenesis,

therefore MYC is required for proper coronary vascular formation

[50]. It is shown that SRC protein regulates focal adhesion protein

function, which influences contractility of vascular smooth muscle

[51]. This also points to novel therapeutic approaches to CVDs, in

terms of targeting SRC protein [51]. BRCA1 is an essential

regulator of heart fuction [52]. BRCA1 and MYC are also driver

genes [23](see Fig. 4).

Inhibition of EP300 can neutralize deficiency of KLF15 which

is shown to be a molecular link between heart failure and aortic

aneurysm formation [53].

It is known that TP53 is involved in cardiovascular functioning

[54]. TP53 is also mentioned as one of the candidate genes

associated with proatherogenic and inflammatory processes in

chronic kidney disease (CKD) [55]. Zawada et al. aimed to point

to new therapeutic strategies in CKD-associated atherosclerotic

disease [55].

It is shown that GRB2 plays a role in the signaling pathway for

cardiac hypertrophy and fibrosis [55].

For genes IKBKG, HSP90AA1, HSP90AA2, PIK3R1,

YWHAZ, and YWHAQ, we found no evidence in the literature

for their connection to cardiovascular diseases. However, due to

the high literature validation score of our CVD gene predictions

(over 70% of our predictions are successfully validated in the

literature), we predict that these genes are also involved in the

processes related to cardiovascular diseases (step 8 in Fig. 1). Two

of these genes (PIK3R1 and HSP90AA1) are part of the Core

Diseasome, as shown in Fig. 4. PIK3R1 is associated with cancer

and over-nutrition, while HSP90AA1 is associated with Alzhei-

mer’s disease, cancer, eating disorder, herpes, and Fanconi’s

anemia.

Therapeutic Properties of Key and Predicted CVD Genes
The most common mechanisms by which drugs work are: (1)

antibiotics, which disrupt bacterial cells causing them to die, or

interfere with their essential reproduction machinery; (2) replace-

ment drugs, which work by replacing substances missing from the

body; (3) enzyme-acting drugs, which modify the enzymatic

activity; (4) receptor-acting drugs, that either deliberately trigger

cell surface receptors to activate the signaling machinery, or bind

to those receptors to prevent ligands from performing their

intended function; and (5) inter-cellular transport altering drugs,

which modify the flow of molecules to and from a cell, thus

Table 3. The Key Cardiovascular Disease Genes that are
known drug targets.

Entrez ID Gene name Number of Drugs

367 AR 40

2099 ESR1 61

25 ABL1 11

1499 CTNNB1 1

2534 FYN 2

1956 EGFR 10

The first column: Entrez Gene ID. The second column: Official Gene Symbol. The
third column: the number of drugs from Drugbank that target the
corresponding gene.
doi:10.1371/journal.pone.0071537.t003
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changing their chemical composition and hijacking communica-

tion channels. Currently, therapeutic treatment of CVDs is

achieved through drug mechanism types (3), (4) and (5) [57–59],

while (1) is argued to have non-beneficial, or even harmful effects

in treatment of CVDs [60]. This means that to be a CVD drug

target, a protein would need to have a biological function that

would facilitate the workings of the three above-mentioned drug

mechanism types, (3), (4) and (5).

We use DAVID online tool (http://david.abcc.ncifcrf.gov/) to

calculate Gene Ontology (GO) terms enrichments for the set of 17

predicted CVD proteins and the set of 10 Key CVD proteins. We

upload each gene set separately to DAVID and use the entire set

of human genes as a background set. We consider GO terms that

correspond to enrichments that have p-values ƒ 0.05 after the

Benjamini-Hochberg false discovery rate (FDR) correction is applied. We

find that the 10 Key CVD genes are statistically significantly

enriched in the following GO terms which correspond to

biological functions that the three drug mechanisms discussed

above rely on: intracellular signaling cascade, intracellular

receptor-mediated signaling pathway, signal transducer activity,

and enzyme binding. We list these GO terms with their

corresponding genes in Table 1. We find that the 17 predicted

genes are statistically significantly enriched with the following GO

terms which correspond to biological functions that the three drug

mechanisms discussed above rely on: intracellular signaling

cascade, signal transduction, enzyme linked receptor protein

signaling pathway, response to drug, enzyme binding, and

receptor binding. We list these GO terms with their corresponding

genes in Table 2. We also check 199 known drug targets among

CVD genes and find that they are statistically significantly

enriched, with p-values ƒ 0.05, in biological functions that we

list in Tables 1 and 2. This indicates that our methodology

identifies important drug targets.

Comparison with Other Approaches
Our methodology is based solely on network topology. In

particular, we rely on GDV similarity between proteins in the PPI

network. We compare it with baseline network topology based

approaches to justify the use of GVD similarity for analyzing this

particular dataset.

We examine clustering of proteins in the PPI network based

only on the degrees (i.e. connectivity) of the nodes in the network.

This method fails to identify any clusters statistically significantly

enriched in CVD genes. Since guilt-by-association approach,

based on protein interactors (neighbours) has become a relatively

standard approach, we try to use it to identify ‘‘key’’ CVD genes.

Hence, we look for statistically significant enrichment in CVD

genes among the neighbours of each CVD gene in the network.

There are 134 CVD genes that interact with sets of genes

statistically significantly enriched in CVD genes. Therefore one

may expect that these 134 CVD genes may be ‘‘key’’ for disease

onset and therapy. Unfortunately this is not a case: this set of 134

genes is not statistically significantly enriched in the driver genes.

Furthermore, it has no statistically significant overlap with the

Core Diseasome and kmax-core of the PPI network. Hence, guilt-

by-association can not be used to define Key CVD genes.

To verify that our methodology did not produce statistically

significantly enriched clusters purely by chance, we randomized

the topology of the PPI network respecting the degree distribution

and performed the above described analysis on randomized

networks (step 3 in Fig. 1). We repeated the randomization 30

times both for KM and HIE clustering. This did not yield any

clusters statistically significantly enriched in CVD genes, which

shows that specific topology around genes in the PPI network is a

major contributor to identifying Key CVD genes and making

predictions.

Note that analysis of all CVD genes and prediction of new ones

has not previously been done using solely network topology. That

is, our study is the first to use only topology to examine importance

of CVD genes and predict new ones.

Conclusion
This paper addresses an important, but difficult problem, and

presents an approach that combines multiple methods in a novel

way. We extract the Key CVD Genes that are enriched in drug

targets and driver genes and that have a large overlap with the

Core Diseasome.

We use our method to predict new CVD genes and validate a

substantial portion of our predictions in the literature. Hence, it is

likely that the remaining genes for which we did not find validation

in the literature could be new genes involved in CVDs. Moreover,

we find that the function of known CVD drug targets coincides

with the function of many of our predicted CVD genes. This

indicates that our method produces predictions that may be

therapeutically exploited. Given the importance of CVDs to

human health, even a small step in this direction may have

substantial healthcare benefits. Biological validation and medical

exploitation of our predictions, as well as characterization of key

mechanisms responsible for disease formation and progression, are

a subject of future research.
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