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Network wiring of pleiotropic kinases yields
insight into protective role of diabetes
on aneurysm

Anida Sarajlić,a Vladimir Gligorijević,a Djordje Radakb and Nataša Pržulj*a

Recent studies suggest a protective role of diabetes in the development of aneurysm, but the biological

mechanisms behind this are still unknown. This type of association is not present in the case of diabetes and

atherosclerosis despite similar risk factors for aneurysm and atherosclerosis. We postulate the existence of

genes that disrupt the pathways needed for the onset of aneurysm in the presence of diabetes. Motivated by

the significance of genetic interactions in understanding disease–disease associations, we tackle this problem

by integrating protein–protein interaction and genetic interaction data, i.e., we examine the biological path-

ways related to the three diseases that contain genes involved in the following genetic interactions: one gene

in a genetic interaction is part of a diabetes pathway, the other gene is part of an aneurysm, or an athero-

sclerosis pathway. We create a protein–protein interaction sub-network that contains disease pathways

described above. We then use a ‘‘brokerage’’ measure – a topological measure that identifies proteins in this

sub-network whose removal severely affects the interconnectedness of their neighbourhood, enabling such

proteins to disrupt the pathway they are in. We identify a set of proteins with high brokerage values and find

this set to be enriched in biological functions, including cell-matrix adhesion, which facilitates mechanisms

that have already been suggested as possible causes of diabetes–aneurysm association. We further narrow

down our set to 16 proteins that are involved in an aneurysm or an atherosclerosis pathway and are encoded

by genes participating in genetic interactions with a gene in a diabetes pathway. This set is enriched in kinases

and phosphorylation processes, with two pleiotropic kinases that are involved in both aneurysm and athero-

sclerosis pathways. Kinases can turn on or off proteins, explaining how functional changes of such proteins

could result in the disruption of pathways. So if in an aneurysm-related pathway a gene is turned off, the

onset of the disease could be prevented. However, mutations of pleiotropic genes could have effects

only on one of the traits, which explains why pleiotropic kinases that are involved in both aneurysm and

atherosclerosis pathways could disrupt aneurysm pathways explaining the reduced risk of aneurysm in

diabetes patients, but not affect the atherosclerosis pathways.

Insight, innovation, integration
The main contribution of this paper is identification of 16 genes that uncover biological mechanisms behind the relationship between aneurysm,
atherosclerosis and diabetes. We address this problem using a computational approach and topology analysis of molecular interaction networks. We use
high-throughput molecular network data to create a disease sub-network (consisting of pathways related to the three diseases) by integrating protein–protein
interaction and genetic interaction data. Then, we use computational methods to analyse the topology of the disease sub-network, resulting in finding genes
responsible for the relationship between the three diseases. In particular, we use the Simmelian brokerage measure to identify genes with such local topology
that can explain how these genes can disrupt the disease pathways.

1 Introduction

Abdominal aortic aneurysm (AAA) is a permanent dilatation of
the abdominal aorta and a leading cause of death amongst the

population of older men.1 Several studies suggest the protective
role of diabetes in the development of aneurysm.2,3 De Rango
et al. showed that progression of small AAA is 60% lower in
patients who suffer from diabetes.3 Prakash et al. also confirmed
that diabetes is associated with a decreased rate of hospitaliza-
tion due to thoracic aortic aneurysms (TAAD).2 This seems
paradoxical, as diabetes is known to predispose cardiovascular
diseases: peripheral, coronary, and cerebrovascular diseases.3,4
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Also, vascular diseases are the principal cause of death and
disability in people with diabetes and a common macro-vascular
manifestation for this is atherosclerosis.5 Note that atherosclerosis
shares similar risk factors with aneurysm, such as male gender,
increasing age, hyperlipidemia, and hypertension, and as such was
considered as an underlying pathogenesis in AAA.1,6 However, a
decreased prevalence of AAA in patients with diabetes may suggest
that atherosclerosis is an associated feature and not a cause of
aneurysm.1 Hence, we explore possible mechanisms behind
the protective role of diabetes in the development of aneurysm
and why there is no similar diabetes–atherosclerosis associa-
tion, as published work in this area is still inconclusive.3

Therefore, to tackle this problem we use high-throughput
molecular network data.

A number of large-scale biological data sets exist as a result
of recent advances in high-throughput techniques. Large-scale
molecular data include information on interactions among
biological macromolecules and metabolites, such as protein–
protein interactions (PPI), genetic interactions, enzyme–substrate
relationships and pathway maps. Network representations of such
interaction data enable graph theoretic approaches to be applied
to help identify topological properties which are different from
that expected at random, revealing the connection between a
specific topological characteristic and a related biological function
or phenotype, such as disease. PPI networks, where nodes corre-
spond to proteins and edges are placed between two proteins if
they physically interact, are networks with commonly explored
topology. It was shown that proteins that are closer in the PPI
network are more likely to perform the same function,7 which was
later used for inferring functions of unannotated proteins: the
direct neighbourhoods of proteins,8 n-neighbourhoods of pro-
teins,9 and shared neighbours of proteins10 were examined look-
ing for the most common functions among annotated direct
neighbours. The local topology around a protein in a PPI network
was summarized into a topological ‘‘signature’’ of a protein –
graphlet degree vector (GDV),11 and the similarity of these protein
‘‘signatures,’’ or GDV similarity, is a good indicator of proteins
belonging to the same protein complex, performing the same
biological function, that are coexpressed, that are involved in the
same diseases, and that are part of the same sub-cellular compo-
nents.11 This topological measurement of similarity was used for
predicting new melanogenesis related genes that were pheno-
typically validated.12 There is a growing trend in studying the
topology of molecular networks that yield insights into human
disease. For example, networks in cardiovascular disease have
recently been used as a platform for better understanding of the
complexity behind the disease.13–15

We use both the human PPI network and the genetic
interaction network to find an explanation for the protective
role of diabetes in aneurysm and why a similar relationship is
not present in the case of diabetes and atherosclerosis. We
hypothesize that a functional change of a protein on a pathway
that is important for aneurysm could disrupt this pathway
preventing the onset of the disease. We suspect that a mutation
of a gene in a pathway involved in diabetes is related to a
functional change of a protein in an aneurysm-related pathway,

explaining the protective role of diabetes in the development of
aneurysm. This is why we integrate PPI data with information
from the human genetic interaction network. In a genetic
interaction network nodes correspond to genes in the network
and edges represent functional associations between them:
an interaction between two genes occurs when the result of
simultaneous mutations in the genes is not just a combination
of phenotypes of single mutations.16 It has been shown that
genetic interactions are critical for understanding disease
evolution17 and a key to capturing disease–disease associations
from molecular interaction data.18 Although by definition a
genetic interaction between two genes does not indicate a
direct interaction, it can indicate how strongly the function of
one gene depends on the presence of the other, i.e., it can
indicate how much is the phenotype of one mutation modified
by the presence of the second mutation.19 Even the order in
which mutations occur is in some cases likely defined by the
genetic interactions.17 One such example in cancer progression
is when P53 dysfunction usually precedes BRCA loss of function
generating synthetic viability.17 In the case of genetic inter-
action between genes whose protein products directly interact,
a mutation in one protein that affects a physical interaction can
be compensated by a mutation of its interacting partner, for
example, proteins S12 and L19 in Salmonella typhimurium.20

The methodology of our study is presented in Fig. 1.
We first identify pathways that play a role in the formation

of the three diseases, as described in Section 4.1. Then, we use
information from the human genetic interaction network to
single out pathways that contain genes (henceforth, we use
terms protein and gene interchangeably), which take part in
genetic interactions such that one interacting gene is part of a
diabetes-related pathway while the other is part of an aneurysm-
or an atherosclerosis-related pathway. We use selected pathways
to create a disease-related sub-network of the human PPI net-
work, as described in Section 4.2.

In search of genes whose change in functionality could
disrupt a pathway, we rely on the network topology and look
for genes in this disease PPI sub-network with a local topology
that could explain a gene’s high ‘‘destructiveness’’ for the
related pathway. The Simmelian brokerage measure21 captures
the cohesion of a neighbourhood of a node and measures the
importance of the node for maintaining interconnectedness of
its neighbourhood. Using this measure, as described in the
Methods, we identify a set of ‘‘broker’’ genes and find this set to
be statistically significantly enriched in biological functions
that facilitate mechanisms that have already been suggested as
possible causes of diabetes–aneurysm association. We narrow
down this set to 16 genes that are on aneurysm- or atherosclerosis-
related pathways and participate in genetic interactions with
genes from diabetes-related pathways. We find this set to be
enriched in kinases and in the biological function of phos-
phorylation. This confirms our hypothesis that identified pro-
teins could disrupt the pathways, in particular, kinases can
switch on and off proteins on an aneurysm-related pathway,
which can lead to prevention of aneurysm formation. Impor-
tantly, two kinases from the set that are on both aneurysm- and
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atherosclerosis-related pathways are pleiotropic, explaining why a
mutation of such genes could disrupt an aneurysm-related path-
way but not affect the atherosclerosis-related pathway.

2 Results and discussion

In addition to known diabetes pathways recovered from KEGG,
we identify pathways significant for each of the two diseases,
aneurysm and atherosclerosis, by examining which KEGG path-
ways are statistically significantly enriched in genes related to
the diseases. Note that the same pathways can be involved in

several diseases. For example, the cytokine–cytokine receptor
interaction pathway hsa04060 is enriched both in aneurysm
and atherosclerosis genes (see Table 1). This is not specific to
diseases that we study here as it is well known that some
pathways are involved in many diseases, e.g. the MAPK signaling
pathway has been involved in many human diseases including
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis and various types of cancer.22 Out of the pathways
related to the three diseases, we examine the 24 pathways that
contain at least one gene involved in genetic interactions with
one interacting gene on a diabetes pathway and the other on an
aneurysm or atherosclerosis pathway. The 24 pathways, together
with their KEGG IDs, are listed in Table 1.

Using these pathways we create the disease PPI sub-network
as described in the section Disease PPI sub-network. In search
of genes that can compromise pathways, we rely on the disease
PPI sub-network topology to find broker genes that can disrupt
their neighbourhood’s interconnectedness. We describe such a
gene property using the Simmelian brokerage measure21

(detailed in Section 4.3). To our knowledge, this measure is
the only topological measure that quantifies the importance of
a node for maintaining the connectivity between its neighbouring
nodes. High brokerage of a node implies high topological
importance for the connectivity between nodes in its neighbour-
hood. In other words, if the functionality of a protein that has a
high brokerage score would be altered, this would influence the
interconnectedness of the protein’s neighbourhood, which in our
disease PPI sub-network is a part of the pathway in which this
protein plays a role.

We find brokers in the disease PPI sub-network by identify-
ing statistically significant brokerages of nodes in the disease
PPI sub-network, as described in Section 4.4. Bins with statis-
tically significant p-values (o0.01) are presented in Fig. 2.

We suspect that identified broker genes, due to their impor-
tance for the interconnectedness of their neighbourhoods in
the disease PPI sub-network, can lead to disabling signal
transduction, or completion of chain reactions in the pathways.

In the disease PPI sub-network we find 313 proteins with
statistically significant brokerage. Using the DAVID23,24 data-
base we examine their functional enrichment and find this set
to be enriched in a number of GO biological processes includ-
ing phosphorylation (p-value = 5.3 � 10�31), as well as vascular
development (p-value = 5.1 � 10�10) and regulation of cell-
matrix adhesion (p-value = 3.9 � 10�10). Cell-matrix adhesion,
i.e., binding of a cell to the extracellular matrix (ECM), plays an
important role in regulation of many processes, such as cell
adhesion, tissue homeostasis, and wound healing.25 Matrix metallo-
proteinases (MMPs), proteolytic enzymes, exhibit increased activity
in the human aneurysmal tissue.1 MMP-2, which is among the
313 genes, takes part in the breakdown of the matrix proteins,
including elastin, and therefore influences degradation of the
vessel wall in aneurysm. However, in diabetes, there is a reduced
degradation of the matrix that results in an increased matrix
volume.26 Concentrations of MMP-2 and MMP-9 are reduced in
coronary arteries of diabetic patients and it has been postulated
that the reduction of MMPs activity can slow down the matrix

Fig. 1 Work-flow of the study.
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loss, which is necessary for the pathogenesis of aneurysm.1

This validates that the presented methodology identifies genes
enriched in biological processes that have already been proposed
as causes of diabetes-aneurysm association.

Out of the 313 genes we identify 16 genes that, in addition to
taking part in aneurysm or atherosclerosis pathways, also take
part in genetic interactions with genes from diabetes pathways.
We postulate that among the 313 broker genes in the disease PPI
sub-network, these 16 genes are the most likely to be responsible
for the observed relationships between the diseases. Namely, as
discussed in the Introduction, genetic interactions can point to
pairs of genes such that mutation of one interacting partner can

be indicative of a functional change of the other interacting
partner. In that sense, if there is a genetic interaction between a
gene on a diabetes pathway and a broker gene on an aneurysm
or an atherosclerosis pathway, then a mutation of a gene involved
in a diabetes pathway can be related to a functional change of
a broker gene on aneurysm or an atherosclerosis pathway. The
16 genes, their brokerage values, and KEGG IDs of the related
pathways are presented in Table 2.

Recall that the number of pathways related to atherosclerosis
is much higher than the number of pathways related to aneurysm
(as listed in Tables 3 and 4). This is a consequence of a higher
number of genes that are known to be related to atherosclerosis
in comparison to the number of genes that are known to be
related to aneurysm, as detailed in Section 4.1.2. Therefore, the
ratio of the number of identified broker genes on aneurysm
pathways and the number of identified broker genes on athero-
sclerosis pathways might be influenced by this difference in the
size of available input data for the two diseases. With this in
mind, note that the 16 genes that we further analyse are
accurately identified. With additional data available in the future,
possibly including biologically validated networks of pathways
responsible for the two diseases, our methodology would be
useful for identifying additional broker genes.

Using the DAVID database, we check functional enrichment
of the 16 genes from Table 2. There are 8 kinases among the
16 genes: PIK3CG, MAP2K4, CDK2, GSK3A, RPS6KA5, BRAF,
MAPK7, and MAP2K7. We use the hyper-geometric cumulative
distribution to calculate the p-value that corresponds to the
probability of finding 8 or more kinases among the 16 genes
purely by chance. Since there are 151 kinases among 958 genes
in the disease PPI sub-network, 8 out of 16 genes being kinases

Table 1 The 24 pathways containing genes that participate in specific genetic interactions

Pathway name KEGG ID Disease

Colorectal cancer hsa05210 An
MAPK signaling pathway hsa04010 An
Viral myocarditis hsa05416 An
Type I diabetes mellitus hsa04940 D, At
Pathways in cancer hsa05200 An, At
Vascular smooth muscle contraction hsa04270 An
Type II diabetes mellitus hsa04930 D
Maturity onset diabetes of the young hsa04950 D
Cytokine–cytokine receptor interaction hsa04060 An, At
Dilated cardiomyopathy hsa05414 At
Graft-versus-host disease hsa05332 At
Systemic lupus erythematosus hsa05322 At
Arrhythmogenic right ventricular cardiomyopathy (ARVC) hsa05412 At
Focal adhesion hsa04510 At
Jak-STAT signaling pathway hsa04630 At
Asthma hsa05310 At
Hypertrophic cardiomyopathy (HCM) hsa05410 At
Hematopoietic cell lineage hsa04640 At
Toll-like receptor signaling pathway hsa04620 At
PPAR signaling pathway hsa03320 At
NOD-like receptor signaling pathway hsa04621 At
Prion diseases hsa05020 At
Allograft rejection hsa05330 At
Chemokine signaling pathway hsa04062 At

The first column: the 24 pathways that contain genes that are part of genetic interactions with one gene in a diabetes pathway and the other in an
aneurysm or an atherosclerosis pathway. The second column: KEGG ID of the pathway. The third column: disease to which the pathway is related
to (An denotes aneurysm, At denotes atherosclerosis, D denotes diabetes).

Fig. 2 Statistically significant brokerage values. X-axis: brokerage values
in bins of 0.01. Y-axis: p-value that corresponds to the probability of
obtaining the same or higher numbers of proteins (as counted in the
disease PPI sub-network) in the bin by chance. Inset in the bottom left: red
dots under the blue dotted line correspond to the statistically significant
bins (p-values o 0.01). The shaded blue line highlights the natural barrier
reflecting the difference between the statistical significance of low broker-
age values and statistical significance of high brokerage values.
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is statistically significant, p-value = 0.0013. To make sure that
finding kinases is not just the consequence of a possibly high
number of kinases among the 313 broker genes, we also calcu-
late the statistical significance of finding 8 or more kinases
among the 16 genes when taking only 313 broker genes as the
background set. There are 66 kinases among the 313 genes, so
finding 8 or more kinases among the 16 genes is again statisti-
cally significant, p-value = 0.008. Out of the 16 genes, 9 are
involved in phosphorylation: PIK3CG, BRAF, MAP2K4, CDK2,
RPS6KA5, CCND1, GSK3A, MAPK7, MAP2K7 (p-value = 1� 10�4).
Clearly, all of the above listed 8 kinases are among them, as
kinases can be turned on or off by phosphorylation (adding
phosphate groups). Phosphorylation usually results in a func-
tional change of the target protein, cellular location, or associa-
tion with other proteins. That can lead to rewiring of pathways
that these kinases participate in, which in the case of an
aneurysm pathway could disrupt the onset of aneurysm.

The question remains why broker genes from our set that
are kinases on an atherosclerosis pathway would not disrupt
the onset of atherosclerosis. To answer this we check if any of
the 16 genes have pleiotropic traits. Pleiotropy occurs when a
gene influences multiple traits, for example, because the gene
encodes a protein that is used for two or more functions, or
has different functions in different tissues.27 We find that
PIK3CG phosphorylates phosphatidylinositol 4,5-bisphosphate
to generate PIP3, which plays a pleiotropic role in regulating
membrane signaling.† Pleiotropic activities of GSK3 have made
it a therapeutical target for treatment of various human diseases,
including type 2 diabetes.28 It is also known that mutations that

result from the pleiotropic effects of BRAF can lead to different
transcriptional changes.29 Also, MAPK7 has pleiotropic functions.30

A mutation in a pleiotropic gene can have an effect on just one of
its traits, or on all of them.27 Two of these genes, BRAF and
PIK3CG, are present both in aneurysm and atherosclerosis
pathways (see Table 2), and since they genetically interact with
diabetes-related genes this may explain why a mutation on such
genes would influence the development of aneurysm and not
atherosclerosis in diabetic patients.

The identified set of the 16 genes should further be explored
in the search for exact mechanisms behind the protective role
of diabetes in the development of aneurysm. The most likely
candidate genes are MAPK7 and PPP3CA, as their brokerage
values equal 1 (see Table 2), suggesting the high destructive
potential on the pathways that they take part in. In fact,
brokerage value 1 means that inactivity of MAPK7 or PPP3CA
would completely destroy connectivity in their neighbourhoods.
Note that MAPK7 and PPP3CA are involved in the MAPK signaling
pathway, which is related to aneurysm, therefore their functional
change can disable the signaling process that plays a role in
formation of this disease. Although both genes have been already
linked to aneurysm,31,32 we here uncover that they may also play
an important role in the diabetes–aneurysm relationship.

3 Conclusions

We address an important issue of why patients with diabetes do
not develop aneurysm, but do develop atherosclerosis when the
two diseases have similar risk factors. We integrate PPI and
genetic interaction data.

Table 2 The 16 broker genes participating in specific genetic interactions

Gene name Brok. Degree Pathways (KEGG ID)

MAPK7 1.0 7 hsa04010 (AN)
PPP3CA 1.0 4 hsa04010 (AN)
RPS6KA5 0.83 6 hsa04010 (AN)
MAPK8IP2 0.58 13 hsa04010 (AN)

GSK3A 0.83 4 hsa04062 (AT)
HSPA5 0.7 5 hsa05020 (AT)

PIK3CG 0.95 7 hsa05200 (AN,AT), hsa05210 (AN), hsa04630 (AT), hsa04062 (AT),
hsa04620 (AT), hsa04510 (AT)

RAC1 0.84 29 hsa05200 (AN,AT), hsa04010 (AN), hsa05416 (AN), hsa05210 (AN),
hsa04510 (AT), hsa04620 (AT), hsa04062 (AT)

CDK2 0.60 36 hsa05200 (AN,AT)
ACTG1 0.58 4 hsa05416 (AN), hsa04510 (AT), hsa05410 (AT), hsa05412 (AT), hsa05414 (AT)
HDAC1 0.48 49 hsa05200 (AN,AT)
CCND1 0.48 16 hsa05200 (AN,AT), hsa05416 (AN), hsa05210 (AN), hsa04630 (AT), hsa04510 (AT)
MAP2K7 0.48 19 hsa04010 (AN), hsa04620 (AT)
MAP2K4 0.46 22 hsa04010 (AN), hsa04620 (AT)
BRAF 0.46 16 hsa04270 (AN), hsa05200 (AN,AT), hsa04010 (AN), hsa05210 (AN),

hsa04062 (AT), hsa04510 (AT)
CREBBP 0.46 49 hsa05200 (AN,AT), hsa04630 (AT)

The first column: the 16 genes that have statistically significant brokerage, that are on aneurysm or atherosclerosis pathways and that participate in
genetic interactions such that one gene in the interaction is part of a diabetes pathway, while the other is part of an aneurysm or an atherosclerosis
pathway. The second column: brokerage of the corresponding gene. The third column: the degree of the corresponding gene in the disease PPI
subnetwork. The fourth column: KEGG IDs of pathways in which the gene takes part. We additionally denote pathways with: (AN) for aneurysm-
related pathway, and (AT) for atherosclerosis-related pathway.

† http://www.phosphosite.org/proteinAction.do?id=3655&showAllSites=true
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Aiming to identify a set of genes responsible for the protec-
tive role of diabetes in the development of aneurysm, we focus
on topological properties of genes in the PPI sub-network of
pathways of the three diseases, identified by integrating infor-
mation from genetic interactions. We apply the topological
measure of Simmelian brokerage to find genes that have high
potential for disrupting their neighbourhoods’ connectivities,
meaning that functional changes on such genes would result in
disabling the pathways that they are part of. To the best of our
knowledge, this topological measure has not previously been
used for exploring disease relationships, or biological processes
related to pathway functioning. Using this approach, we iden-
tify a set of 313 genes enriched in GO biological processes that
facilitate mechanisms behind these particular disease relation-
ships. Since genetic interactions involve pairs of genes such
that a mutation on one gene is related to a functional change of
the other,19 out of the 313 genes we identify 16 genes on
aneurysm and atherosclerosis pathways that take part in
genetic interactions with genes from diabetes pathways. We
suggest these genes hold the answer for the relationships
between the three diseases and we encourage further research
in this direction. We are encouraged by finding out that 8 out of
the identified 16 genes are kinases (a statistically significant
enrichment) that may act as switches in the related pathways.
Also, two of the kinases that are both on aneurysm and
atherosclerosis pathways are pleiotropic, explaining why these
genes could disable onset, formation and progression of aneur-
ysm, but enable atherosclerosis.

4 Materials and methods
4.1 Datasets

4.1.1 Biological networks. We obtain the human PPI
network from BioGRID,33 release 3.2.106, September 2013.
We analyze the largest connected component of the network.
To reduce noise we remove ubiquitin as the most connected
protein in the network, since proteins with a large number of
non-specific interaction partners might seriously bias the net-
work topology leading to biased results. The resulting PPI
network has 13 410 proteins (nodes) and 116 552 interactions
(edges).

We downloaded the human genetic interaction (GI) network
from BioGRID in September 2013 (release 3.2.106). The net-
work contains 986 genes and 1295 genetic interactions. To
increase coverage we also constructed a predicted human GI
network using new GI data on direct positive and negative
genetic interactions in S. cerevisiae from Boone Lab,‡ which
they gave to us in September 2013.34. The yeast GI network
contains 4365 genes and 266 750 interactions. Then, we use
information on homologous genes between H. sapiens and
S. cereviseiae from Homologene database,§ version build67,
downloaded in January 2014. There are 1568 human genes that
are yeast homologs. We create a predicted human GI network as

follows: for each genetic interaction between yeast genes, we
create a genetic interaction between their corresponding
human homologs. This network of predicted human genetic
interactions contains 1088 genes and 34 160 genetic inter-
actions between them. We merge the human GI network from
BioGRID with the predicted human GI network, resulting in the
final network of human genetic interactions containing 1983
genes and 35 454 interactions. In this manuscript we refer to
this network as the human genetic interaction (GI) network.

4.1.2 Disease genes. We obtain a list of genes involved in
aneurysm using several sources to increase coverage: KEGG
DISEASE database,35 OMIM database36 and Disease Ontology
Lite.¶ We find in total 53 genes related to aneurysm, out of
which 37 are present in the human PPI network.

We find genes involved in atherosclerosis in the OMIM
database and Disease Ontology (DO) Lite. We find in total
205 atherosclerosis related genes, out of which 184 are present
in the human PPI network.

We obtain genes involved in diabetes from KEGG DISEASE
database, OMIM database and Disease Ontology Lite. To increase
coverage, we also include genes from the following pathways in
the KEGG PATHWAY database: type I diabetes mellitus, type II
diabetes mellitus, and Maturity onset diabetes of the young.
We find in total 503 diabetes genes, out of which 423 are present
in the human PPI network. All data on disease genes are down-
loaded in November 2013.

4.1.3 Pathways. We downloaded all pathways relevant for
diabetes mellitus from KEGG PATHWAY database in November
2013: type I diabetes mellitus (hsa04940), type II diabetes
mellitus (hsa04930), and maturity onset diabetes of the young
(hsa04950). These pathways have 47, 48, and 25 genes in the
human PPI network, respectively. The KEGG Pathway database
does not list a set of pathways directly related to aneurysm, so
we identify pathways that may play a role in formation of this
disease by checking the enrichment of all available KEGG
pathways in genes known to be involved in this disease. Among
all 282 pathways from KEGG, we find 8 pathways that are
statistically significantly enriched in aneurysm genes ( p-value
threshold of 0.05). The obtained pathways and their KEGG IDs
are listed in Table 3.

Henceforth, we refer to these pathways as ‘‘aneurysm path-
ways’’. Similarly, we identify 23 ‘‘atherosclerosis pathways,’’
listed in Table 4.

4.2 Disease PPI sub-network

We postulate that a mutation of a gene on a diabetes pathway is
related to a functional change of a protein on an aneurysm
pathway, such that it would disable the aneurysm pathway from
causing the disease. A question remains why diabetes does not
have a similar effect on atherosclerosis. As discussed in the
Introduction, genetic interactions can point us to gene pairs
such that a gene mutation on one gene can be indicative of a
change in another gene’s function. Hence, we identify pairs of
genes involved in genetic interactions such that at least one

‡ http://www.utoronto.ca/boonelab/
§ http://www.ncbi.nlm.nih.gov/homologene ¶ http://django.nubic.northwestern.edu/fundo
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gene is from a diabetes pathway while the other is from an
atherosclerosis or an aneurysm pathway. We find 31 genes that
take part in such genetic interactions. We find that 24 pathways
involved in one or more of the 3 diseases contain these 31 genes.
We create a sub-network of the human PPI network on all
proteins from these 24 pathways: the set of edges in the sub-
network consists of all the edges in the PPI network that connect
the proteins from the 24 pathways. Such a sub-network that
contains all edges from the original big network is called an
induced sub-network and we say that we induce a sub-network
when we create a sub-network in this way. This sub-network
contains 958 proteins and 3370 interactions. Henceforth, we
refer to it as the ‘‘disease PPI sub-network.’’

4.3 Brokerage measure

Simmelian brokerage21 is a measure that describes the signifi-
cance of a node for the interconnectedness of its local neigh-
bourhood in the network. For a node i, it is calculated as

follows: Bi = ki � (ki � 1)Ei, where ki is the degree of node i,
and Ei is the ‘‘local efficiency’’ of node i in the network,
calculated as:

Ei ¼
1

ki ki � 1ð Þ
X

l2Ni

X

m2Ni ;mal

1

dlm
; (1)

where Ni denotes the neighbourhood of node i (the sub-network
induced on the first neighbours of node i), and dlm denotes the
distance between nodes l and m. The local efficiency is normal-
ised to 0 r Ei r 1, so that the ‘‘local brokerage’’ of a node, Bi,
takes values: 1 r Bi r ki. By definition, brokerage values for the
nodes with degree 1 are equal to zero.

To be able to compare proteins based on their brokerage in
the disease PPI sub-network, we normalize the described
brokerage measure by scaling to the range [0,1], as follows:

Bi;n ¼
Bi � 1

ki � 1
; where Bi,n is the normalized brokerage of node i.

Note that a high node degree does not implicate high
brokerage (see first two rows of Table 2).

4.4 Finding statistically significant brokerage values

We calculate the brokerage values for all nodes of degree higher
than 2 in the disease PPI sub-network. We assign nodes into
bins in increments of 0.01 of brokerage values. We only take
into account genes with degree higher than 2 for the following
reasons. We are not interested in nodes with degree 1, as such
local topology cannot confirm or refuse our hypothesis (we are
looking for nodes whose removal will affect the interconnect-
edness of its first neighbours, and node with degree one has
just one first neighbour). Also, there are 100 genes in the
disease PPI sub-network with degree 2 whose neighbours are
not directly connected. This means that their normalized

Table 3 Pathways related to aneurysm

Pathway KEGG ID p-value

Pathways in cancer hsa05200 2.1 � 10�3

Cytokine–cytokine receptor interaction hsa04060 4.5 � 10�3

Vascular smooth muscle contraction hsa04270 1.2 � 10�2

Intestinal immune network for IgA production hsa04672 1.9 � 10�2

MAPK signaling pathway hsa04010 2.6 � 10�2

Viral myocarditis hsa05416 3.7 � 10�2

ECM–receptor interaction hsa04512 5.0 � 10�2

Colorectal cancer hsa05210 5.0 � 10�2

The first column: pathways that are statistically significantly enriched
in genes related to aneurysm. The second column: KEGG ID of the
pathway. The third column: p-value of statistical significance of the
enrichment.

Table 4 Pathways related to atherosclerosis

Pathway KEGG ID p-value

Cytokine–cytokine receptor interaction hsa04060 5.9 � 10�10

Type I diabetes mellitus hsa04940 5.9 � 10�7

Toll-like receptor signaling pathway hsa04620 9.2 � 10�7

Hematopoietic cell lineage hsa04640 4.4 � 10�5

Allograft rejection hsa05330 2.2 � 10�4

Complement and coagulation cascades hsa04610 2.7 � 10�4

Graft-versus-host disease hsa05332 3.4 � 10�4

NOD-like receptor signaling pathway hsa04621 7.7 � 10�4

ECM–receptor interaction hsa04512 1.0 � 10�3

Focal adhesion hsa04510 3.9 � 10�3

Hypertrophic cardiomyopathy (HCM) hsa05410 4.8 � 10�3

Chemokine signaling pathway hsa04062 6.3 � 10�3

Intestinal immune network for IgA production hsa04672 6.9 � 10�3

PPAR signaling pathway hsa03320 6.9 � 10�3

Dilated cardiomyopathy hsa05414 7.4 � 10�3

Prion diseases hsa05020 1.0 � 10�2

Systemic lupus erythematosus hsa05322 1.1 � 10�2

Pathways in cancer hsa05200 3.1 � 10�2

Asthma hsa05310 3.4 � 10�2

Autoimmune thyroid disease hsa05320 3.7 � 10�2

Jak-STAT signaling pathway hsa04630 3.8 � 10�2

Arrhythmogenic right ventricular cardiomyopathy (ARVC) hsa05412 3.9 � 10�2

Cell adhesion molecules (CAMs) hsa04514 4.5 � 10�2

The first column: pathways that are statistically significantly enriched in genes related to atherosclerosis. The second column: KEGG ID of the
pathway. The third column: p-value of statistical significance of the enrichment.
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brokerage equals 1. The number of such proteins is higher than
the number of the remaining proteins in the disease PPI sub-
network whose local wiring is non-trivial and yields brokerage
scores of 1, so inclusion of degree 2 nodes would introduce noise
to our analysis. The brokerage distribution is shown in Fig. 3.

In the remainder of this section, we explain how we model
the disease PPI sub-network and identify statistically significant
brokerage values.

4.4.1 Modeling the disease PPI sub-network. We generate
60 random networks with the same number of nodes and edges
as in the disease PPI sub-network for each of the six commonly
used random network models (totaling 60 � 6 = 360 random
networks): Erdos–Renyi random graphs (ER),37 Erdos–Renyi
random graphs with the same degree distribution as the data
(ER-DD),38 Geometric Random Graphs (GEO),39 Geometric Ran-
dom Graphs with Gene Duplications and Mutations (GEO-GD),40

Scale free Barabasi–Albert type networks (SF–BA),41 and stickiness
index based networks (STICKY).42

To find the best fitting network model, we compare the
disease PPI sub-network with these random networks using the
graphlet degree distribution agreement (GDDA) measure:43 GDDA
measures how similar the networks are in terms of distribu-
tions of small induced subgraphs – graphlets.44 The arithmetic
average of scaled and normalized distributions of all 73 graph-
lets results in a GDDA value in the range [0,1]. We use GDDA
since it is a very sensitive measure for comparing the network
structure.43,45 The average GDDA values obtained for the GEO-
GD, GEO, STICKY, SF-BA, ER-DD and ER network models are
0.85, 0.839, 0.825, 0.777, 0.755 and 0.673, with standard devia-
tions of 0.01, 0.007, 0.007, 0.005, 0.006 and 0.008, respectively.
Hence, GEO-GD and GEO models both provide a good fit to the
disease PPI sub-network based on the best average GDDA value.
Hence, we choose the GEO-GD random network model for
modeling the disease PPI sub-network.

4.4.2 Statistically significant brokerage values. We find
statistically significant brokerage values by using GEO-GD as
a well-fitting network model to the disease PPI sub-network.
We generate 1000 GEO-GD networks with the same number of
nodes and edges as the disease PPI sub-network and calculate

their brokerage distributions, again including only nodes with
degree higher than 2. For each bin k and the corresponding
node count, Ck, in the distribution shown in Fig. 3 for the
disease PPI sub-network, we calculate the p-value that corre-
sponds to the probability of obtaining Ck or more nodes in this
bin by chance. We do this by comparing Ck for the disease PPI
sub-network with the corresponding node counts in the 1000
GEO-GD networks. We identify the statistically significant
brokerage bins by using the threshold of 0.01 ( p-value). We
further examine the proteins with the brokerage scores in the
statistically significant bins.

Note that when performing this statistical analysis, we have
used different bin sizes. Comparing the results, the bin size of
0.01 resulted in the most natural barrier between statistical
significance of low brokerage values and high brokerage values
(see Fig. 2). This bin size also resulted in the smallest number
of bins whose statistical significance strongly deviates from the
statistical significance of their neighbouring bins (scattered
dots in Fig. 2). Therefore we report the results obtained using
the bin size of 0.01.
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15 A. Sarajlić and N. Pržulj, BioMed Res. Int., 2014, 2014, 527029,

DOI: 10.1155/2014/527029.
16 R. Mani, R. P. S. Onge, J. L. Hartman, G. Giaever and

F. P. Roth, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 3461–3466.
17 A. Ashworth, C. J. Lord and J. S. Reis-Filho, Cell, 2011, 145,

30–38.
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