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Abstract. A new method for dimensionality reduction and feature ex-
traction based on Support Vector Machines and minimization of the
within-class data dispersion is proposed. An iterative procedure is pro-
posed that successively applies Support Vector Machines on perpendic-
ular subspaces using the deflation transformation in such a way that the
within-class variance is minimized. The proposed approach is proved to
be a successive SVM using deflation kernels. The normal vectors of the
successive hyperplanes contain discriminant information and they can
be used as projection vectors for feature extraction and dimensionality
reduction of the data. Experiments on various datasets are conducted in
order to highlight the superior performance of the proposed algorithm.

1 Introduction

In pattern recognition and machine learning problems with high-dimensional
data have always been difficult to cope with. That is, the so-called “curse of
dimensionality”, which constitutes motivation for the development of dimen-
sionality reduction methods. Simple classification algorithms which are very
commonly used in a variety of disciplines, like k-Nearest Neighbor (KNN) [1]
or Nearest Centroid (NC) [2], favor greatly when they have to treat the same
problem in a lower-dimensional space, especially when it is redundant.

The benefits lie in reducing computational complexity, since the size of the
problem is reduced, and improving classification accuracy. The first gives the
possibility to deal with more complex problems that cannot be treated in their
original form. In order for the latter to be succeeded, the dimensionality reduc-
tion has to take place in such a way that will augment discriminant information
and remove information that does not contribute discriminability, e.g noise.

A closely related term to dimensionality reduction is feature extraction, which
entails the transformation of the data from the high-dimensional space to the
lower-dimensional one. This transformation can be either linear or non-linear and
although linear transformations have a more solid mathematical background,
non-linear transformations, which are usually extensions of previously proposed
linear ones, are usually more powerful. These non-linear generalizations are usu-
ally achieved using the kernel trick [3], which gives us the opportunity to compute
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only the dot products of the inpute patterns, rather to explicitly compute the
mapping, i.e. their projection onto a very high-dimensional space.

Feature extraction can also be used for visualization tasks so as to get better
understanding and an overview of a problem. In the framework of this paper we
are interested both in visualization and classification tasks. In the following we
shortly describe the most commonly used dimensionality reduction techniques
that are related to our proposed method.

1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [4], also known as Karhunen-Loeve trans-
formation, was fisrt developed by Pearson [5] (1901) and Hotelling [6] (1933). It
is one of the most widely used dimensionality reduction technique in problems
as data compression and clustering, pattern recognition and visualization. The
main idea is to reduce the dimensionality of a data population trying to keep
its spatial characteristics. This is achieved with a linear transformation to the
space of principal components, which are ordered in such a way that the first
few retain most of the data variation. The principal components are obtained
by performing eigenanalysis of the data covariance matrix.

More specifically, if Ak is the matrix of the k eigenvectors that correspond
to the k largest eigenvalues of the covariance matrix and X is the initial data
matrix, then the transformed data of dimensionality k is given by Z = AkX.
PCA has been generalized into kernel-PCA [7] using the kernel trick. Since PCA
is an unsupervised learning method, i.e. class label information is not taken into
account, it is not always suitable for classification tasks.

1.2 Linear Discriminant Analysis (LDA)

On the contrary to PCA, Linear Discriminant Analysis (LDA), [8], also known
as Fisher’s Discriminant Analysis (FDA or FLDA), is a supervised learning
technique, which exploits the class label information in order to maximize the
classes discriminality in the extracted space. This is achieved by maximizing
Fisher’s discriminant ratio, that is, the ratio of between-class variance to within-
class variance. For a training set of d-dimensional samples xi, i = 1, . . . , N that
belong to two classes these notions are expressed by the following quantities

Si =
∑

x∈ωi

(x− μi)(x− μi)
T ,

SW = S1 + S2 and (1)

SB = (μ1 − μ2)(μ1 − μ2)
T .

By μi we denote the mean value of class ωi. We call SW within-class scatter
matrix and SB between-class scatter matrix. The quantity that LDA seeks to
maximize is defined as

J(w) =
wTSBw

wTSWw
, (2)
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wherew is the projection vector that transforms the data to the one-dimensional
subspace. If the number of classes is more than two, then the reduced dimension-
ality can be at most equal to the number of classes minus one. The performance
of LDA is optimal provided that the data distributions are normal for all classes
with the same covariance matrix. LDA was also extended for the non-linear case
in Kernel-FDA [9], similarly to PCA, using the kernel trick.

1.3 Margin Maximizing Discriminant Analysis (MMDA)

Margin Maximizing Discriminant Analysis (MMDA) [10] investigated the possi-
bility of projecting the input data onto the normal of a hyperplane that separates
two classes in a binary problem. This hyperplane should provide good generaliza-
tion for future data and make no assumptions regarding the distribution of the
input patterns. The authors proposed a deflation approach to be able to perform
this process in subsequent orthogonal subspaces, by projecting onto the space
spanned by the normal of such a margin maximizing hyperplane. The first hy-
perplane is obtained solving the Maximum Margin Separation (MMS) problem,
which is expressed as a quadratic programming problem:

minimize
1

2
||w||22 + C

n∑

i=1

ξi (3)

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The resulting weighting vector of the hyperplane is normalized and used for
projecting the data by x′

i = xi − (wTxi)w. Then, problem 3 is solved again for
the projected data.

1.4 Proposed Approach

In this paper we propose a novel supervised learning technique that seeks to
exploit Support Vector Machines (SVMs) in a dimensionality reduction scheme.
More specifically we intend to use the discriminant information contained in the
resulting hyperplane of SVMs to perform feature extraction and the correspond-
ing normal vector of the hyperplane can be used as projection vector. Thus,
the first step of the proposed method is the standard SVM optimization that
generates the first dimension/feature. In order to be able to extract additional
discriminant information we adopt a deflation procedure similar to MMDA. On
the same time, inspired by the maximization of Fisher’s discriminant ratio, we
desire to minimize the within-class variance similarly to [11] and [12]. This re-
sults to the definition of a new optimization problem incorporating both the
deflation procedure and the within-class variance minimization. This approach
can be regarded as a modification of the standard SVMs optimization, employing
a deflation kernel.

The novelty of our work lies in three different aspects. The first is the idea
of combining SVMs for maximizing the between-class margin and Fisher’s dis-
criminant ratio for minimizing the within class variance in one dimensionality
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reduction technique. The second is the iterative generation of successive or-
thonormal projections onto deflated subspaces, according to this criterion, for
feature extraction. And the third is the incorporation of the within-class vari-
ance minimization and the deflation procedure in the SVMs optimization, using
the kernel trick.

The manuscript is organized as follows: The proposed approach is described
in Sec. 2. In Sec. 2.1, we discuss in detail the deflation procedure that we adopt
and in Sec. 2.2 we show how the deflation of the within-class scatter matrix
can be included in the same procedure. The modified optimization problem is
presented in Sec. 2.3 and in Sec. 2.4 we show how this problem can be efficiently
solved using the kernel trick. The way we perform the feature extraction and
the final form of the algorithm are presented in Sec.2.5. In Sec. 3.1 we demon-
strate the visualization capability of our method and in Sec. 3.2 we present the
experimental results for classification tasks. Finally, conclusions are drawn in
Sec. 4.

2 Definition and Derivation of the Problem

In the proposed approach, our goal is to use the information regarding the dis-
tribution of the data in space, which is contained in the resulting hyperplane
of a classification task with SVMs minimizing in parallel the within-class vari-
ance. Moreover, we want to do that in an iterative way so as each iteration
of the procedure will provide us with a new feature, which will contain addi-
tional discriminant information for our data with respect to the preceding steps.
In order to achieve that we need to apply the SVMs in successive subspaces,
which are pairwise perpendicular. The proposed method is calledWithin Support
Vector Discriminant Analysis (WSVDA) and the algorithm can be overseen in
Table 2.

Table 1. The main steps of the iterative procedure of WSVDA

1: compute the within scatter matrix SW for the data
2: solve SVMs for the data minimizing SW

3: compute weighting vector w
4: compute projection matrix P using the normalized weighting vector of previous step
5: deflate the data along the direction of w
6: iterate from step 1 to step 5 for as many times as the desired reduced dimensionality
7: use the normalized weighting vectors w for feature extraction

2.1 Deflation Procedure

Let us present this idea with a simple example. If we think of a three-dimensional
example of a binary problem, the resulting hyperplane (actually a plane) of lin-
ear SVMs would be as depicted in Fig. 1. The projection of the data onto the
hyperplane is additionally a transformation to a space perpendicular to the ini-
tial one. Consequently if we apply SVMs to these transformed data, projected
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onto the hyperplane, the resulting hyperplane (actually a line) will be perpen-
dicular to the initial one. That means that the two hyperplanes contain exclusive
information regarding the data distribution. The orthogonality property stands
for the corresponding normal vectors of the hyperplanes, which can be used for
the feature extraction.

Fig. 1. The resulting hyperplanes of linear SVMs for a three-dimensional example of
a binary problem. The three-dimensional data are projected onto the plane, which is
the decision surface when the three-dimensional data are the input to the SVMs. The
deflated two-dimensional data are the input to the SVMs in the second iteration of the
method, resulting to a separating line. Best viewed in color.

Suppose the training set with finite number of elements xi, i = 1, . . . , N , of
dimensionality d, which can be separated into two different classes ω1 and ω2.
The corresponding labels for these training samples are denoted by yi with a
value equal to 1, if xi ∈ ω1 or -1 if xi ∈ ω2. We also use the notation X
for the data matrix, which contains the vectors xi in its columns, i.e. X =
(x1,x2, . . . ,xN ).

In order to project the data onto the successive hyperplanes we use a deflation
transformation algorithm similar to the one in [13], which is used for deflating the
data in the space of principal components. Similarly, if wk is the normal vector
of the hyperplane in iteration k of the procedure, then Pwk = Id×d −wkwkT ,
where Pwk is the projection matrix along the direction of vector wk and Id×d

is the identity matrix of dimension d. It is important to mention here, that
the weighting vector wk, which is the result of SVMs in our algorithm, has
to be normalized before used for the deflation process. Consequently, the data
matrix X can be deflated along the direction of wk, that is, projected onto the
hyperplane of iteration k, by multiplying it with the corresponding projection
matrix Pwk , Xk = PwkX.
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Since in each iteration we transform the data to a subspace having removed
a dimension, the deflation should be done on all the directions of the normal
vectors of the previously computed hyperplanes. This multiple deflation can be
done in a successive way: X1 = Pw1X,X2 = Pw2X1, . . . ,Xk = PwkXk−1,
but it can also be applied on the initial data matrix using the product of all the
projection matrices of the previous steps: P k = Pw1Pw2 . . .Pwk . In this way,
the matrix Xk = P kX has been simultaneously deflated along the multiple
directions of the normal vectors.

If we express the product of the successive projection matrices using the
weighting normal vectors we have

P k = (Id×d −w1w1T )(Id×d −w2w2T ) . . . (Id×d −wkwkT ), (4)

it is shown that the order of multiplication has no effect to the final result and
because of the orthogonality property we conclude to

P k = Id×d −
k∑

i=1

wkwkT . (5)

However, for the implementation task, the first form proves to be numerically
more stable. Finally, as a result of the symmetry of all the projection matrices,

they are equivalent to their respective transposed matrices, e.g. P k = P kT

.

2.2 Within-Class Variance Deflation

We have already discussed in the previous section what is the input data, i.e. the
deflated data to the successive SVMs, but we also need to provide them with the
within scatter matrix of the deflated data. In order to avoid the computation of
this matrix for the deflated data in each iteration we investigate the possibility
of ‘projecting’ the within scatter matrix onto the subspace of each iteration.
Indeed,

Sk
W = Sk

1 + Sk
2

=
∑

xk
i ∈ω1

(xk
i − μk

1)(x
k
i − μk

1)
T +

∑

xk
j∈ω2

(xk
j − μk

2)(x
k
j − μk

2)
T

=
∑

xi∈ω1

P k(xi − μ1)(xi − μ1)
TP kT +

∑

xj∈ω2

P k(xj − μ2)(xj − μ2)
TP kT

= P k
∑

xi∈ω1

(xi − μ1)(xi − μ1)
TP k + P k

∑

xj∈ω2

(xj − μ2)(xj − μ2)
TP k

= P k(S1 + S2)P
k

Sk
W = P kSWP k, (6)

where S1 and S2 are the within-class scatter matrices for class ω1 and ω2 re-
spectively. Similarly, μ1 and μ2 are the corresponding mean values.
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2.3 Deflated Within-Class Support Vector Machines

According to the aforementioned we can modify the standard SVMs [15] opti-
mization problem and define a new one, which simultaneously will maximize the
margin and minimize the within-class variance in deflated subspaces. For the
separable case [14] would be expressed as

minimize wTPSWPw, wTPSWPw > 0 (7)

subject to the separability constraints

yi(w
TPxi + b) ≥ 1, i = 1, . . . , N. (8)

The solution to this problem is given by the saddle point of the Lagrangian

L(w, b,α) = wTPSWPw −
N∑

i=1

αi[yi(w
TPxi − b)− 1], (9)

where α = [α1, . . . αN ]T is the vector of Lagrange multipliers. The Karush-Kuhn-
Tucker (KKT) conditions [16] imply that for the saddle point

∇wL(wo, bo,αo) = 0 ⇔ PSWPwo =
1

2

N∑

i=1

αi,oyiPxi

∂

∂b
L(wo, bo,αo) = 0 ⇔

N∑

i=1

αi,oyi = 0

yi(w
T
o Pxi − bo)− 1 ≥ 0, i = 1, . . . , N (10)

αi,o ≥ 0, i = 1, . . . , N

αi,o[yi(w
T
o Pxi − bo)− 1] ≥ 0, i = 1, . . . , N,

where subscript o denotes the optimal solution.
The KKT conditions show that the weighting vector is a linear combination of

the support vectors in the training set multiplied by the inverse of the ‘projection’
of matrix SW , that is PSWP . More specifically the optimal weighting vector
normal to the separating hyperplane is given by

PSWPwo =
1

2

N∑

i=1

αi,oyiPxi ⇔ wo =
1

2
(PSWP )−1

N∑

i=1

αi,oyiPxi. (11)

By replacing (11) into (9) and using the KKT conditions, we obtain the Wolfe-
dual problem

W (α) =
N∑

i=1

αi − 1

4

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i P (PSWP )−1Pxj , (12)
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which is equivalent to the optimization problem

minimize
1

2
αTHα− 1Tα (13)

subject to αi ≥ 0, i = 1, . . . , N and

N∑

i=1

αiyi = 0,

where H ij =
1
2yiyjx

T
i P (PSWP )−1Pxj is the ijth element of the Hessian ma-

trix.
The corresponding separating hyperplane is defined by

g(x) = sgn(wTPx+ b)

= sgn

(
1

2

N∑

i=1

αi,o

(
xT
i P (PSWP )−1Px

)
+ b

)
, (14)

where bo = 1
2w

T
o P (xi +xj) for any pair of support vectors xi and xj such that

yi = 1 and yj = −1.
In the non-separable case [15], we relax the separability constraints (8) by

introducing non-negative slack variables ξi, i = 1, . . . , N . The new optimization
problem is expressed as

minimize wTPSWPw + C
N∑

i=1

ξi, wTPSWPw > 0 (15)

subject to the separability constraints

yi(w
TPxi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N, (16)

where by C we denote the cost of violating the constraints, i.e. the cost of
misclassification.

The solution to this problem is given by the saddle point of the Lagrangian

L(w, b,α,β, ξ) = wTPSWPw+C
N∑

i=1

ξi −
N∑

i=1

αi[yi(w
TPxi − b)− 1+ ξi]−

N∑

i=1

βiξi,

(17)

where α = [α1, . . . αN ]T and β = [β1, . . . βN ]T are the vectors of Lagrange
multipliers. The modified Karush-Kuhn-Tucker (KKT) conditions [16] for the
non-separable case imply that for the saddle point
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∇wL(wo, bo,αo, βo, ξo) = 0 ⇔ PSWPwo =
1

2

N∑

i=1

αi,oyiPxi

∂

∂b
L(wo, bo,αo,βo, ξo) = 0 ⇔

N∑

i=1

αi,oyi = 0

∂

∂ξi
L(wo, bo,αo,βo, ξo) = 0 ⇔ βi,o = C − αi,o (18)

yi(w
T
o Pxi − bo)− 1 + ξi,o ≥0, i = 1, . . . , N

βi,o ≥ 0, 0 ≤ αi,o ≤ C, ξi,o ≥ 0,βi,oξi,o = 0 i = 1, . . . , N

αi,o[yi(w
T
o Pxi − bo)− 1 + ξi,o] ≥ 0, i = 1, . . . , N,

The Wolfe-dual problem as well as the hyperplane are the same as in the sepa-
rable case, i.e equations (12), (13) and (14), since the slack variables and their
Lagrange multipliers do not appear in it.

2.4 Deflation Kernel

Instead of solving the optimization problem of the previous section for the de-
flated data in every iteration as our algorithm required in order to extract the
desired knowledge, the formulation of the optimization problem in the previous
section allows us to incorporate the deflation transformation of each iteration in
the existing optimization problem. This is possible if we consider the deflation
as a kernel function, which we define as

K(xi,xj) = xT
i P (PSWP )−1Pxj (19)

and the feature map as

Φ(x) = (PSWP )−1/2Px. (20)

So

K(xi,xj) = 〈Φ(xi)Φ(xj)〉
=

(
(PSWP )−1/2Pxi

)T (
(PSWP )−1/2Pxj

)

= xT
i P (PSWP )−1/2(PSWP )−1/2Pxj

K(xi,xj) = xT
i P (PSWP )−1Pxj (21)

This notation gives us the advantage that the explicit computation of all the
training samples is no longer needed, but we only need to compute the dot
product of the vectors in the feature space, i.e. the Hessian matrix of (13), using
the kernel trick. If we use matrix notation for the data instead of vectors, as de-
fined in Sec.2.1, the above functions are expressed as Φ(X) = (PSWP )−1/2PX
and K(X) = XTP (PSWP )−1PX.
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2.5 Feature Extraction

The method described in the previous sections consists a dimensionality reduc-
tion technique. In each iteration of the procedure we obtain a new weighting
vector, orthogonal to all the previously obtained ones, which is used as a pro-
jection vector in the feature extraction schemes. The number of iterations and
subsequently the number of obtained weighting vectors defines the number of
the resulting dimensionality. The fact that the weighting vectors are pairwise or-
thogonal implies that in each iteration we acquire new discriminant information
regarding our data. The extracted data consist of samples of which each feature
is the projection of the initial vector onto the corresponding weighting vector,
fwk(x) = wkTx.

If we denote by W k the augmented projection matrix which contains in its
columns the weighting vector of each iteration, i.e. W k = (w1,w2, . . . ,wk) we
can express the feature extraction of the whole procedure in a compact way
using the expression Xk

D = W kTX, where by Xk
D we denote the final matrix

of the extracted data after k iterations and with a reduced dimensionality of k
as well. The final form of the algorithm of WSVDA, which is implemented for
the experiments in this paper is shown in Table 2.

Table 2. The implemented algorithm of WSVDA

input: training set data matrix X with N samples and corresponding labels yi
output: extracted data matrix Xk

D

1: compute the within scatter matrix SW for the initial data
2: initial projection matrix P = Id×d

3: for k=1 to reduced dimensionality
4: check the condition number of (PSWP ), regularize by adding a small quantity

to the diagonal elements if needed in order to achieve numerical stability
5: compute (PSWP )−1

6: train SVMs using H = XTP (PSWP )−1PX

7: compute weighting vector wk from (11)

8: normalize weighting vector wk

9: concatenate normalized wk into W T

10: update projection matrix P using the normalized weighting vector of previous

step, according to P = P (I −wkwkT )
11: end

12: use the normalized weighting vectors w for feature extraction, according to Xk
D = W kTX

3 Experimental Results

In this section we present the results of the experiments performed to assess
the performance of WSVDA and compare it with the most commonly used
techniques as PCA and LDA as well as state of the art methods as MMDA. After
the dimensionality reduction of the datasets with the aforementioned techniques,
classification is performed using KNN and NC algorithms. It was also considered
valuable to compare these results with SVMs classification applied on the initial
data.
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In order to achieve higher credibility for our results we perform various in-
stances of k-fold cross validation, with 1 fold being used as a training set and the
rest (k−1) folds being used as the test set. This approach offers the opportunity
to use a small number of samples for the training phase, which is comparable
or sometimes smaller than the number of features. That is, the dimensional-
ity of the training set is higher than its cardinality, which is often the case for
small sample size (SSS) problems. In such occasions we expect and we show that
WSVDA has better performance. It is also important to mention that all the
datasets were scaled uniformly to [−1, 1].
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Fig. 2. Projection of pairs of features of Connectionist Bench (Sonar) dataset onto
two-dimensional subspaces. In the first row three pairs of features of the initial data
are shown. In the following three rows we can see the first three pairs of extracted
features for WSVDA, MMDA and PCA. Best viewed in color.
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3.1 Use of WSVDA for Visualization Purposes

One important attribute ofWSVDA is the visualization capability, which is partic-
ularly useful for high-dimensional datasets. To demonstrate this attribute we use
the Connectionist Bench dataset from the UCI Machine Learning Repository. In
Fig. 2 the first three pairs of features are shown for the initial training data andafter
reducing their dimensionality withWSVDA,MMDA and PCA. Since the problem
is binary LDA could not be used for two-dimensional visualization purposes.

We can observe that all three methods are capable of extracting discriminant
information from the data and make the classification task easier compared to the
initial data. However, it is important to note that only in the case of WSVDA
the two classes are linearly separable for all the extracted features depicted on
the figure. This means that except for the first extracted feature, the succeeding
features provide additional and new discriminant information.

3.2 Dimensionality Reduction and Classification Results

In this section we present the experimental results for classification purposes
using four different datasets. The experimental scenario includes a dimensionality
reduction step using one of the following four techniques WSVDA, MMDA,
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Fig. 3. Classification accuracy rates for Sonar and Heart datasets. WSVDA outper-
forms the other methods in all occasions in terms of classification accuracy rate and it is
observable that it gains discriminant information from the successive subspaces where
the optimization problem is solved. The number of neighbors for the KNN algorithm
is 5 for this set of experiments, whereas the number of folds for the cross validation is
10 and 5 for Sonar and Heart datasets, respectively. Best viewed in color.
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PCA, and LDA, and a classification step using either KNN or NC classification
algorithms. Classification with Linear SVMs and KNN applied on the initial data
is also performed, using the following datasets: 1. Connectionist Bench (Sonar)
dataset contains 208 samples of 60 attributes that correspond to measurements
of a sonar device for signals that are reflected on two different surfaces. 2. Statlog
(Heart) dataset consists of 270 samples with 13 attributes that correspond to
medical data related to heart. 3. Wine Recognition Data dataset contains 178
samples of 13 features which correspond to the chemical analysis of three varieties
of wine. 4. Splice-junction Gene Sequences dataset consists of 3190 samples with
61 attributes that correspond to DNA sequences.

In Fig. 3 the average classification accuracy rates for the four dimensional-
ity reduction techniques followed by k-Nearest Neighbor or Nearest Centroid
classification are shown for Sonar and Heart datasets, first and second row re-
spectively. On the horizontal axis we have the number of reduced dimensions.
Since the problems are binary, LDA results to one-dimensional extracted data,
so only one accuracy rate is available.
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Fig. 4. Classification accuracy rates for Wine dataset. The top left subfigure corre-
sponds to the binary problem between classes 1v2 for 5-NN classification and 5-fold
cross-validation, whereas the top right subfigure corresponds to the binary problem
between classes 1v3 for NC classification and 7-fold cross-validation. The second row
corresponds to the binary problem between classes 2v3, which are more difficult to
discriminate and due to 10-fold cross-validation, which results to very small training
sample, we observe very low classification rates. WSVDA outperforms the other meth-
ods in all occasions in terms of classification accuracy rate showing that is a suitable
technique for small sample size problems. Best viewed in color.
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The comparison between the different methods highlights the superior perfor-
mance of WSVDA in comparison to MMDA, PCA, LDA and classification with
Linear SVMs and KNN or NC, applied on the initial data. In the left column
we see the results for KNN and in the right one we see the results for NC. The
results for the Wine Dataset are shown in Fig. 4.

Table 3 offers a detailed view over the classification results for all the datasets
examined and all the approaches followed. The accuracy rates correspond to
the highest value over the average accuracy rates of the cross validation and
for every possible reduced dimensionality. They are instances from experiments
with different parameters such as the number of folds, the number of nearest
neighbors and the regularization, but same for each line of the table. This is the
reason for big differences observed in classification rates. For the Wine dataset
for example, the low classification rates for class 2 against 3 are due to the biggest
overlapping between these classes in comparison to the other combination and
due to the larger number of folds which has as a result a very small training set.
This fact results to a more difficult classification task, for which WSVDA proves
to be quite robust.

Table 3. Classification Results

Data KNN NC SVM PCA LDA MMDA WSVDA PCA LDA MMDA WSVDA
sets +KNN +KNN +KNN +KNN +NC +NC +NC +NC

Sonar 51.18 53.37 55.88 53.10 57.54 55.88 58.66 53.48 57.54 56.36 58.29
Heart 80.37 81.67 81.85 80.93 79.44 81.48 82.41 81.76 80.65 81.94 82.41
Wine
1vs2 91.84 90.68 91.07 91.84 90.68 91.84 96.50 90.68 90.29 90.68 96.12
1vs3 89.32 89.17 87.13 89.32 90.42 89.32 100 89.17 90.58 89.17 99.84
2vs3 58.77 61.51 48.11 59.53 71.23 59.43 81.51 61.51 71.23 62.08 81.98
Splice 68.17 80.74 76.81 68.42 77.44 78.88 79.16 72.02 78.36 81.40 81.43

4 Conclusions

A novel dimensionality reduction method has been proposed that combines the
minimization of the within class scatter matrix with the maximization of the
margin between the classes in each projection. The proposed approach uses
an iterative feature extraction with deflation kernels that transform the orig-
inal data to perpendicular subspaces where a quadratic optimization problem
is solved. Thus, the discriminant information that lie in the subspace which is
perpendicular to the only dimension that standard SVM extract is exploited for
better discriminality and classification. Experimental results on several datasets
illustrate the superiority of the proposed approach against other popular dimen-
sionality reduction methods.
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