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Figure 1: Geodesic interpolation and extrapolation. The blue input poses of the elephant are geodesically interpolated in an as-isometric-
as-possible fashion (shown in green), and the resulting path is geodesically continued (shown in purple) to naturally extend the sequence. No
semantic information, segmentation, or knowledge of articulated components is used.

Abstract

We present a novel framework to treat shapes in the setting of Rie-
mannian geometry. Shapes – triangular meshes or more generally
straight line graphs in Euclidean space – are treated as points in
a shape space. We introduce useful Riemannian metrics in this
space to aid the user in design and modeling tasks, especially to
explore the space of (approximately) isometric deformations of a
given shape. Much of the work relies on an efficient algorithm to
compute geodesics in shape spaces; to this end, we present a multi-
resolution framework to solve the interpolation problem – which
amounts to solving a boundary value problem – as well as the ex-
trapolation problem – an initial value problem – in shape space.
Based on these two operations, several classical concepts like paral-
lel transport and the exponential map can be used in shape space to
solve various geometric modeling and geometry processing tasks.
Applications include shape morphing, shape deformation, deforma-
tion transfer, and intuitive shape exploration.

Keywords: Riemannian geometry, shape space, geodesic, isomet-
ric deformation, parallel transport, shape exploration.

1 Introduction

c©ACM, 2007. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use, and not for redis-
tribution. The definitive version will appear at SIGGRAPH 2007.

Computing with geometric shapes lies at the core of geometric
modeling and processing. Typically a shape is viewed as a set of
points and represented according to the available data, and the in-
tended application. Geometry does not necessarily take this per-
spective: Projective geometry views hyperplanes as points in a dual

space, line geometry interprets straight lines as points on a quadratic
surface [Berger 1987], and the various types of sphere geometries
model spheres as points in higher dimensional space [Cecil 1992].
Other examples concern kinematic spaces and Lie groups which
are convenient for handling congruent shapes and motion design.
These examples show that it is often beneficial and insightful to
endow the set of objects under consideration with additional struc-
ture and to work in more abstract spaces. We will show that many
geometry processing tasks can be solved by endowing the set of
closed orientable surfaces – called shapes henceforth – with a Rie-
mannian structure. Originally pioneered by [Kendall 1984], shape
spaces are an active topic of interest in the mathematical research
community. We focus our attention on the computational aspects
of shape spaces and point to recent work of Michor and Mumford
[2006], which provides a theoretical background for our research.

Our modeling and design paradigm is based on geodesic curves
– locally shortest curves with respect to some metric. During in-
terpolation, extrapolation (see Figure 1), and more general shape
deformations (see Figure 10) shapes move along geodesics. Our
approach is entirely geometric. Therefore the same method can be
applied to a large class of problems with different underlying phys-
ical models, without knowing these models. Our algorithm does
not need any segmentation of the model or external advise about
the mesh structure. Working in a Riemannian manifold gives nice
properties. For example geodesics from a shape M to each of a
set of other shapes form a tree, thus generating globally consistent
morphs. Such properties are harder to enforce with methods that do
not consider a global space of deformations.

Related Work

To the best of our knowledge, there are only a few contributions
treating shape spaces and related topics from a computational per-
spective. Cheng at al. [1998] realized the intimate connection be-
tween shape spaces and deformations, but neither discussed the crit-
ical choice of a metric, nor investigated essential geometric con-
cepts such as geodesics. A computational approach to spaces of
curves was presented in [Klassen et al. 2004] but has no natural
extension to surfaces.

The gradient of a function on shape space depends on the met-



ric. Hence the choice of metric is crucial for any shape evolution
driven by a gradient descent algorithm of a geometric energy. This
is the driving motivation behind recent efforts in the computer vi-
sion community [Charpiat et al. 2005a; Charpiat et al. 2005b; Yezzi
and Mennucci 2005] which discuss metrics for variational problems
involving active contours.

The geometry of shape spaces is characterized by curves. Viewed
from the original object space, a curve in shape space describes a
shape deformation. Recently a number of different methods have
been proposed to compute shape deformations. Such methods in-
clude maximum local rigidity criteria based on mesh representa-
tions [Alexa et al. 2000; Igarashi et al. 2005; Botsch et al. 2006],
Laplacian coordinates [Sorkine et al. 2004], coordinates with re-
spect to superposed control structures [Ju et al. 2005], the Poisson
equation [Xu et al. 2005], divergence free vector fields [Funck et al.
2006], gradient domain techniques [Huang et al. 2006], and mov-
ing frame manipulation [Lipman et al. 2007]. In contrast to our ap-
proach all of the previously mentioned methods work directly on an
object. For example [Lipman et al. 2007] directly aim at preserving
first and second fundamental form, whereas we achieve this indi-
rectly by computing in the space of all admissible shapes. Our work
complements the above methods in the following sense: While al-
most all direct methods compute a diffeomorphism between a ref-
erence object and some target object given by certain constraints,
we compute a smooth family of diffeomorphisms joining these two
objects, i.e., all the missing in-between steps that direct methods
cannot provide. This additional information can help to improve
robustness and consistency of direct methods.

One approach to preserve surface characteristics is to choose a
shape representation such that certain characteristics are invariant
under a basic set of operations defined on this representation [Lip-
man et al. 2005; Kraevoy and Sheffer 2007]. In the shape space
framework we can easily encode shape deformations. Desirable
properties of such deformations can be automatically enforced by
choosing a suitable metric in the space. We present one such metric
based on isometric deformations. The importance of isometry for
a number of applications is well known [Mémoli and Sapiro 2004;
Bronstein et al. 2005].

A crucial component of our work deals with the computation of
geodesics in shape spaces. Several efficient algorithms for com-
puting geodesics in manifolds exist ([Kimmel and Sethian 1998;
Mémoli and Sapiro 2004]). However, most of them rely on dis-
tance fields, making them unsuitable for high-dimensional mani-
folds such as shape spaces. We demonstrate how the special ge-
ometry of shape spaces simplifies this task allowing us to compute
geodesics efficiently.

Contributions and Overview

• We provide a general computational framework for shape spaces
designed for geometric modeling and geometry processing. In Sec-
tion 2, we discuss the choice of proper metrics and how to deal with
fibers consisting of shapes with vanishing distance.
• Section 3 presents a multi-resolution algorithm for computing
geodesics in shape space. We address both the shape interpolation
problem and the extrapolation problem for geodesics. The latter
usually amounts to the solution of a second order ODE. In shape
space we can reduce it to a first order ODE by integrating once.
• In our shape space framework many concepts from classical dif-
ferential geometry can be applied to a wide variety of geometry pro-
cessing tasks: As examples, Section 4 applies geodesics in shape
spaces to shape morphing, parallel transport to deformation trans-
fer, and the exponential map to shape exploration. We also demon-
strate the efficient handling of isometric deformations by applying

our algorithms to shape deformations that satisfy user given con-
straints.

2 Computing in Shape Space

In the following, we present the essentials for computing in spaces
of shapes. By shapes we refer to triangular meshes in Euclidean
3-space. A mesh can be separated into its connectivity, i.e., the
mesh structure, and its geometry which encodes the assignment of
vertices to points in 3D. For the time being we require all meshes to
be 2-dimensional manifolds – boundaries are allowed. That means
that any two triangles share a common edge, or share a common
vertex, or have no points in common. Furthermore the star of any
non-boundary vertex is a topological disk, and is a half disk for a
boundary vertex. In what follows, we keep the connectivity fixed,
and change only the vertex positions.

Shape Space. Given a fixed simplicial complex, we consider
the space S of all immersions of this connectivity in Euclidean 3-
space. Such an immersion is seen as a point in shape space, and
represented by one large vector P ∈ R3m concatenating the m ver-
tices of the complex. The tangent space TMS of S at the shape M is
given by all discrete vector fields on M. That means a tangent vec-
tor X ∈ TMS assigns a vector Xp ∈R3 to each vertex p of the mesh
M. A smooth deformation of M is a mapping ϕ : [0,1]×M→ R3,
such that each vertex path p(t) := ϕ(t, p) is smooth; equivalently
the mapping P : [0,1]→R3m is smooth. Given a deformation of M,

X(t) :=
(

d
dt

p(t)
)

p∈M

is called the deformation field at time t. A deformation of M may
have special properties. For example, we can express an affine de-
formation as p(t) = A(t) · p + a(t) with smoothly varying matrix
A(t) and translation vector a(t). Further, if the matrix A(t) is or-
thogonal at every instant of time, the deformation is a smooth rigid
body motion. Such a deformation preserves inter-point Euclidean
distances. We can classify the type of deformation by studying the
vector fields X(t).

Lemma 1 (Rigid Deformations) A deformation of a shape M is
rigid, if and only if each component of the deformation field X(t)
can be expressed as

Xp(t) = c̄(t)+ c(t)× p(t) (1)

with smoothly varying vectors c̄,c ∈ R3.

See e.g. [Bottema and Roth 1990] for a proof. Note that c̄ and c are
constant for each shape position M(t), but vary over time.

Recall that a mesh is deformed isometrically if distances measured
on the mesh are preserved during deformation. Equivalently the
length of each edge in the triangulation has to be preserved. Dif-
ferentiating the squared length ‖p(t)− q(t)‖2 of each edge yields:

Lemma 2 (Isometric Deformations) A deformation of a shape
M is isometric if and only if〈

Xp(t)−Xq(t), p(t)−q(t)
〉

= 0 (2)

holds for each edge (p(t),q(t)) of the mesh M(t), where 〈 , 〉 de-
notes the canonical inner product in R3.

Vector fields corresponding to isometric deformations are called
Killing vector fields [do Carmo 1992]. The set of Killing fields
on M is a linear subspace of TMS. Vector fields of rigid motions as
described in Lemma 1 are a special case of Killing fields.



Designing Metrics. We use the following design paradigm
when it comes to defining a metric, i.e., an inner product: Given
a property of a shape to be preserved during deformation, we trans-
late this property to an equivalent condition on deformation fields.
The norm of a deformation field is derived from this condition.

If we want to preserve pairwise Euclidean distances between ver-
tices of a shape M, the only allowable deformations are rigid body
motions. Deformation fields of rigid deformations are characterized
by Lemma 1. In a first step, we extract the rigid component of a de-
formation field. This means we project a given deformation field
onto the subspace of instantaneous motions: Given X , the residue
of this projection is computed in terms of c̄,c ∈ R3 as

πX (c, c̄) = ∑
p∈M

〈
Xp− c̄− c× p,Xp− c̄− c× p

〉
.

This yields a quadratic function in the variables c and c̄ which can
be minimized easily for any given X . If c∗ and c̄∗ are minimiz-
ers of πX , the projection X ′ is given by X ′p = c̄∗+ c∗× p. Given
deformation fields X and Y , we define,

〈〈X ,Y 〉〉RM := ∑
p∈M

〈
Xp−X ′p,Yp−Y ′p

〉
. (3)

This expression is linear and symmetric in both of its arguments.
Moreover, it depends on the shape M, i.e., the point of S at which
it is evaluated. Therefore, (3) defines a (semi-) Riemannian metric
on the space S.

To devise a metric in the case of isometric deformations, we could
proceed along the same lines as for rigid deformations, i.e., sub-
tracting the part that preserves isometry. Unfortunately Killing
fields are harder to express explicitly. In addition, the given mesh
might not be flexible at all. In such cases, there are no Killing fields
except instantaneous motions as characterized by Lemma 1. To
overcome this we do not try to be isometric in the strict sense, but
deform a shape as isometrically as possible. To achieve this we take

〈〈X ,Y 〉〉IM := ∑
(p,q)∈M

〈
Xp−Xq, p−q

〉〈
Yp−Yq, p−q

〉
(4)

as the inner product of two deformation fields. This expression
is symmetric and bilinear and hence defines a (semi-) Riemannian
metric. The corresponding quadratic form reduces to the square
of (2) and effectively penalizes non-isometric deformations.

We now consider geodesics in shape space with the above metrics
(3) and (4). Recall that a geodesic is a locally shortest curve, i.e.,
given two points on a geodesic the part between those points is a
local minimum of the length functional with respect to small per-
turbations of the curve. For the metric (3) this means that the length
of a deformation decreases as the deformation becomes more rigid.
Analogously for metric (4), the length of the deformation decreases
as the deformation becomes more isometric. See Figure 2 for a
comparison of metrics.

Deformation Fields of Vanishing Length. The introduced
metrics are only semi-Riemannian since there are non-vanishing
deformation fields X with 〈〈X ,X〉〉M = 0. This means that any ve-
locity vector field (1) of a rigid body motion has vanishing norm in
the metric (3). All shapes which are congruent to a given shape M
form points of a fiber in S. Any smooth curve in a fiber has length
zero and corresponds to a smooth rigid body motion of M. Like-
wise any Killing field has vanishing norm with respect to (4), and
the fibers of S are formed by the isometric shapes to a given one.
This observation also shows that shortest paths (geodesics) in the
described metrics are only unique up to changes within the fibers.

Figure 2: Comparing the as-rigid-as-possible shape metric (left)
with the as-isometric-as-possible shape metric (right).

To overcome this problem, we add a small regularization term to
the length which is minimized by geodesics. The obvious choice
for this term is the L2 shape metric: Given vector fields X , Y on a
shape M, let

〈〈X ,Y 〉〉L
2

M := ∑
p∈M
〈Xp,Yp〉Ap, (5)

where Ap is one-third of the area of all triangles adjacent to the
vertex p. Blending the L2 inner product with the metrics (3) or (4)
yields Riemannian metrics

〈〈X ,Y 〉〉M,λ := 〈〈X ,Y 〉〉M +λ 〈〈X ,Y 〉〉L
2

M

that have the same visual behavior as their semi-Riemannian coun-
terparts if λ is chosen appropriately. We set λ to be 0.001.

Remark. The proposed metrics work in the general setting of
straight line graphs embedded in Euclidean 3-space. Further, by
adding additional edges, we can selectively stiffen parts of objects
which we want to deform rigidly. For example, adding the second
diagonal of a quad as stiffener allows us to apply all metrics to quad
meshes.

3 Algorithms for Geodesics in Shape Space

We now describe how to solve the following problems: (a) Bound-
ary Value Problem: Given two isomorphic shapes, how to compute
a geodesic path joining them; (b) Initial Value Problem: Given a
shape and a deformation field, how to compute a geodesic that orig-
inates at this point, and moves in the direction of the deformation
field. We solve both problems using a multi-resolution framework.
Propagating the solution from coarser to finer resolutions not only
leads to faster convergence, but also makes the approach more ro-
bust.

The Boundary Value Problem. The input to the boundary
value problem are two compatible meshes M and N, i.e., the un-
derlying simplicial complexes are isomorphic. Such meshes can
be obtained using techniques from [Kraevoy and Sheffer 2004],
[Schreiner et al. 2004] or [Sumner and Popovič 2004]. In all the
examples shown, the isomorphism was either explicitly available
(given by vertex enumeration), or computed (as in example 11)
using a marker assisted correspondence algorithm as proposed in
[Sumner and Popovič 2004]. Combining methods from [Hoppe
1996] and [Garland and Heckbert 1997], the input meshes are con-
currently decimated to preserve correspondences across all resolu-
tions of the resulting progressive meshes. Edges in the two meshes
are paired according to the underlying isomorphism. In each iter-
ation, the edge pair with minimal combined cost is collapsed. The
output of this stage are two mesh hierarchies (M0,M1, . . . ,Ml = M)
and (N0,N1, . . . ,Nl = N). To get an initial estimate of a geodesic



path we linearly blend the meshes M0 and N0. We call the resulting
polyline in shape space a path.

In Euclidean space one estimates the length of a curve by inscribing
a polyline, and accumulating the length of its individual segments.
It is guaranteed that this converges to the length of the curve as the
polyline is refined. We take a similar approach in shape space but
in a Riemannian fashion, i.e., the metric that measures the length of
a segment may change along the path. Assume the vertices of the
polyline are given by shapes P0,P1, . . . ,Pn+1 (we drop the super-
scripts indicating mesh resolution), and the segments are given as
X0,X1, . . . ,Xn. For a given metric, we define the symmetric energy
of the polyline P as

E(P) :=
n

∑
i=0

(
〈〈Xi,Xi〉〉Pi + 〈〈Xi,Xi〉〉Pi+1

)
. (6)

This approximates the sum of squared lengths of the polygon edges
Xi, and is a discretization of the energy

∫
〈〈X ,X〉〉P(t)dt of a curve

P(t) in shape space. It is well known that the local minimizers of
this energy are geodesics in a scaled arc length parametrization [do
Carmo 1992]. We allow the vertices of the intermediate shapes Pi,
i = 1, . . . ,n, to vary in order to minimize the energy of the polyline.
A quasi-Newton method is used to minimize (6). After attaining
a local minimum of the energy at a given resolution we perform
refinement which comes in two flavors: (a) Space Refinement: in-
crease the resolution of the meshes and, (b) Time Refinement: refine
the path by inserting more vertices in the polyline. These steps are
mutually independent, and can be applied in any order. After re-
finement, we repeat the optimization on the new path, see Figure 3
for an illustration.

We describe the refinement step in more detail. Refinement with
respect to time – inserting shapes on the path – is easy. We lin-
early blend neighboring meshes to refine the path. Space refine-
ment – increasing mesh resolution – is more subtle. The boundary
meshes Pk

0 and Pk
n+1 are the easy ones. We simply increase the res-

olution of the progressive meshes to get refined boundary meshes
Pk+1

0 and Pk+1
n+1 . Then we propagate the added detail to the inter-

mediate meshes Pk
1 , . . . ,Pk

n on the path. We construct these refined
meshes in the following way. The process is described for detail
transfer from Pk+1

0 to the intermediate meshes. Each new vertex p
that was added during mesh refinement is projected onto Pk

0 . We
store the index of the face f that carries the projection p′, and com-
pute barycentric coordinates of the projected vertex with respect to
the face f . If N f is the normal of the face f , we store an additional
coordinate given by 〈p− p′,N f 〉. This set of local coordinates al-
lows us to compute the spatial coordinates of each added vertex p
relative to any of the intermediate meshes. Depending on the lo-
cation of Pk

i inside the polyline the transferred details are blended:
Assume that Pk+1

i, j is the mesh with detail transferred from Pk+1
j ,

j = 0,n+1. The refined mesh at position i of the path is given by

Pk+1
i =

n+1− i
n+1

Pk+1
i,0 +

i
n+1

Pk+1
i,n+1.

This equation also holds for the boundary meshes.

The Initial Value Problem. We solved the boundary value
problem via the variational property of geodesics, i.e., minimiza-
tion of the energy (6). Alternately, geodesics can be described by
the Euler Lagrange equation of the energy. This so called geodesic
equation expresses vanishing geodesic curvature. We need this
equation to formulate and solve the initial value problem. Let us
fix a mesh M and assume that all its vertices move along smooth

Multiresolution
Decomposition
(M0,M1, . . . ,Ml = M)
(N0,N1, . . . ,N l = N)

// Initial Path
P0 = (M0,M0N0,N0)

��
Detail Propagation

Pk+1
i ← Pk

i , i = 1, . . . ,n
// Optimization
(Pk

1 , . . .Pk
n ) = argminE(Pk)

��
Refinement

Time: Pk = (Pk
0 ,Pk

0 Pk
1 ,Pk

1 , . . . ,Pk
n+1)

Space: Pk+1
0 = Mk+1

Pk+1
n+1 = Nk+1
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Figure 3: Processing pipeline to solve the boundary value problem
for geodesics in shape space. A path on resolution k is a polyline
in shape space whose vertices are compatible meshes. The initial
path consists of the meshes M0, N0, and their linear blend M0N0.

curves. Concatenate all vertices of the mesh to one big vector
P ∈ R3m, where m denotes the number of vertices of M. Let

F
(
t,P, Ṗ

)
:= 〈〈Ṗ(t), Ṗ(t)〉〉M(t),

where 〈〈 , 〉〉M refers to our choice of metric as explained before. We
have to minimize

∫
Fdt. Since F does not explicitly depend on t,

the Euler-Lagrange equation of the problem
∫

Fdt→min can be in-
tegrated once [Gelfand and Fomin 1963]. Thus, similar to the well-
known relations of Clairaut and Sauer for geodesics on rotational
or helical surfaces (see e.g. [Pottmann and Wallner 2001]), the
geodesic equation in shape space is a system of first order ODEs,

F− ṗk
i

∂F
∂ ṗk

i
= Ci,k, i = 1, . . . ,m, k = 1,2,3, (7)

where pi = (p1
i , p2

i , p3
i ) denotes the i-th vertex of the mesh M.

Given a shape M0 and an initial vector X0, we can determine the
constants Ci,k using (7). These values are preserved along the
geodesic path starting from M0 in direction X0. Starting with this
data, we build a polyline in shape space by explicit Euler steps. We
choose a step size ∆t and set

Mi+1 := Mi +∆tXi, i≥ 0.

Now we have to solve the non-linear system (7) to determine the
vector Xi+1. We do this by minimizing the function

f (p) =
m

∑
i=1

3

∑
k=1

(
F− ṗk

i
∂F
∂ ṗk

i
−Ci,k

)2
.

We use Xi as an initial guess for Xi+1. This scheme easily integrates
into our multiresolution approach. On the coarsest level we use the
scheme just described. After increasing the resolution of M0 we
can transfer the detail to the previously computed path, and take the
difference vectors of this path as initial guesses for the optimization.
Figure 4 shows a schematic illustration of the steps.

Robustness, Accuracy, and Complexity. To conclude this
section, we examine the numerical properties of the proposed al-
gorithms. Since we are using techniques from optimization theory,
the resulting geodesic will depend on the initial choice of the path.
This dependence is roughly proportional to the number of vertices
of the reduced meshes with which we start. Starting with coarse



Multiresolution
Decomposition

(M0
0 ,M1

0 , . . . ,Ml
0 = M0)

// Initialization
Compute Ci,k , i = 1, . . . ,m,k = 1,2,3

���� ��
�� ��Improve Guess
Xk+1

i = ∆Mk+1
i , i = 0, . . . ,n

//
Optimization & Euler Step

Xk
i = argmin f (Xk

i )
Mk

i+1 = Mk
i +∆tXk

i
i = 0, . . . ,n

���� ��
�� ��Error Correction
(Mk

1 , . . .Mk
n+1) = argminE(Pk)

��
Refinement

Space: Mk
i →Mk+1

i , i = 0, . . . ,n+1
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Figure 4: Processing pipeline to solve the initial value problem for
geodesics in shape space. Error correction and guess improvement
are optional steps and may be skipped.

meshes reduces the degrees of freedom, and helps to find a visually
pleasing geodesic almost independent of the initial path

Concerning the error distribution, the following behavior is ex-
pected: If the shapes are isometric the error should be within some
ε bound. If the shapes are not isometric the error should concentrate
at the right spots, i.e., at joints if we consider articulated motions,
see Figure 5. Recall that we do not use any information about artic-
ulated components. The yellow regions show high relative devia-
tion in edge length. These regions can be used to extract individual
finger bones. The maximum error along the geodesic is bounded
by the deviation in edge lengths between the input meshes. This is
a typical behavior exhibited by all examples we considered.

To reduce the error made during extrapolation, we provide an au-
tomatic error correction tool. During extrapolation we want to stay
as close as possible to the fiber of M0. If we did not leave this fiber
during extrapolation the length of the resulting path will vanish.
Otherwise we will have a positive length. We can shorten the poly-
line by not only allowing the intermediate meshes to vary, but also
the final shape Mn+1. It is important to use the semi-Riemannian
metrics (3) or (4) during error correction. Otherwise the fiber of M0
collapses to a point and the geodesic will contract to M0.

0.00 0.74

Figure 5: Error distribution along geodesic that joins non isomet-
ric shapes. The maximum relative deviation in edge length relative
to the reference pose shown at the bottom is 74%. Maximum stretch
occurs at the joints and was introduced during modeling the bent
finger from the pose shown at the bottom. Stretch along the geodesic
is bounded by this a-priori error. Computation time: 2sec.

Typically we reduce the input meshes to about 100 triangles for
shapes of genus zero. For higher genus more triangles may be re-
quired. After every optimization step we alternate between space
and time refinement, doubling the number of triangles or shapes on
the path, respectively. The elephant sequence of Figure 1 with a
final resolution of 85K triangles per shape was created in this man-
ner and took 274 seconds to finish on an AMD64 4000+ with 2 GB
main memory.

Evaluating metric (4) has complexity O(m). The energy (6), and its
gradient can be evaluated in O(mn) time. Hence the algorithm to
solve the boundary value problem has complexity O(mn). Evaluat-
ing each function from (7) is linear in the number of vertices of a
mesh, but since we have one function for each vertex the algorithm
to solve the initial value problem has quadratic complexity. Since
evaluating the energy and its gradient is cheap we use a limited
memory BFGS method for optimization [Liu and Nocedal 1989].

4 Applications

Morphing Using Geodesics. Our method, as currently imple-
mented, applies to meshes of identical connectivity. Different poses
of a model of course have this property. For different shapes, var-
ious researchers have proposed methods for generating compatible
meshes; see e.g. [Schreiner et al. 2004; Kraevoy and Sheffer 2004].
The mesh for the models in Figure 11 was produced using the
method of [Sumner and Popovič 2004]. It would also be possible to
integrate a multiresolution method as proposed by [Schreiner et al.
2004] into our pipeline in Figure 3. To do this, one could replace the
initialization stage with the decimation step from [Schreiner et al.
2004] and add a new stage between Space Refinement and Detail
Propagation to generate correspondences for added details. After
compatible remeshing we can compute a morph which is simply
a geodesic path between M and N in shape space using as-rigid-
as-possible (3) or as-isometric-as-possible (4) metrics. Figure 1
and 6 show interpolation with subsequent extrapolation using the
as-isometric-as-possible shape metric.

The intermediates generated by linear blending may be too degen-
erate to serve as starting configuration for metric (4). In this case
metric (3) can be used beneficially during the first round of opti-
mization since the as-rigid-as-possible metric tries to align shapes
globally.

Shape Exploration. Given a set of compatible meshes, our goal
is to provide an intuitive and interactive metaphor for exploring the
space spanned by the input models. Other approaches for more
specific tasks e.g. for parametrization and animation of human body
poses [Allen et al. 2003; Anguelov et al. 2005] as well as example
based methods [Sloan et al. 2001] can be found in the literature.

Figure 6: Geodesic interpolation and extrapolation using the as-
isometric-as-possible shape metric. The blue shapes serve as input
poses. Green poses are interpolated and purple ones are extrapo-
lated. Each mesh comprises 26K triangles. The final path consists
of 128 shapes and was computed in 20 seconds.



Figure 7: Result of shape exploration. Sampling the curve shown in the design domain of Figure 8 yields the above sequence of poses. The
2D design domain has been subdivided twice to minimize metric distortion. Interaction with the design domain produces results in real-time.

In the preprocessing phase, we build a distance matrix relating
the input shapes, where distance between any pair of meshes
is measured as their geodesic distance. Applying metric multi-
dimensional scaling [Cox and Cox 2001] to the distance matrix,
we map the input shapes to a set of 2D points, and construct a
Delaunay triangulation of this point set. Each edge of this trian-
gulation is assigned two scalar values: One is the geodesic distance
between meshes associated to the endpoints of the edge; the other
is the length of the curve obtained by linear interpolation of those
meshes. If the values are close to one another we can safely use the
linear blend of the endpoint meshes instead of computing a more
expensive geodesic path – the differences between both curves are
negligible if the threshold is small. Using this observation, a trian-
gle is refined if the difference of the geodesic distance between any
pair of its vertices and the length of the corresponding linear blend
is greater than a user defined threshold.

Each triangle selected for refinement is split into 4 triangles by in-
troducing midpoints for each edge. The midpoint of an edge is
assigned the shape which is halfway along the geodesic connecting
the edge’s vertex shapes. Notice that while we use the connectivity
from the 2D triangulation, all distance computations are done in the
original shape space.

To map a point from the 2D design plane to shape space we de-
termine its barycentric coordinates with respect to the triangle con-
taining the point. These coordinates are used to blend the meshes
associated to the triangle’s vertices. In this way we get a piecewise
linear approximation of shape space. In the exploration phase, the
user interactively traverses shape space by drawing curves on the
2D projection. A corresponding path in shape space is computed in
real-time using the above mapping procedure. Figure 8 shows the
planar triangulation resulting from 5 input poses of the Armadillo
model after two refinement steps. We show a curve drawn in the

M0 M1 M2 M3 M4

M4

M1 M0

M2

M3

Figure 8: Shape Exploration. The top row shows the input poses
for shape exploration. The bottom row shows the 2D design plane
with which the user interacts by drawing curves. All nodes of the
planar triangulation shown on the right are computed in an inde-
pendent precomputation step and stored for later use. Figure 7
shows a sampling of the curve displayed on top of the domain on
the right.

exploration phase – a few poses along the curve are shown in Fig-
ure 7. The precomputation step for this example took about an hour
with a final resolution of 100K triangles of the Armadillo.

Constraint Shape Deformation. Our framework allows us to
deform a shape in an intuitive way. The user can select any vertex
or part of the shape, and modify its position and orientation. The
deformation induced on the remaining part of the mesh is guided
by the metric used. In contrast to the shape interpolation problem
where the final location of each vertex is known, now only some of
these locations are known.

Assume we are given a subset {pi}i∈I of vertices of M. Each of
these vertices has some desired location p′i as assigned by the user.
We do not move the vertices pi to the location p′i in one step, but
rather minimize the squared distances ‖pi− p′i‖2 to iteratively move
the vertices. Moving pi induces distortion on the shape M. We mea-
sure these distortions by storing an unmodified copy M0 of M and
a path P that joins M0 with the modified mesh M. Minimizing dis-
tortion while moving the vertices to their desired locations means
minimizing the energy (6) of the path P and the sum of squared
distances simultaneously. It may not be possible to move each ver-
tex pi exactly to its desired location if we want the distortion of the
shape to be minimal. To account for this tradeoff we consider

fλ (P) := λE(P)+(1−λ )∑
i∈I
‖pi− p′i‖2

with λ ∈ [0,1]. Minimizing this function for small values of λ we
will get each vertex pi close to its desired location, but in the pro-
cess may incur large distortions of the mesh. Increasing the value of
λ will reduce distortion while approximating the desired locations
of the pi as good as possible. Integrating this way of measuring
distortion in our algorithms we get a multi-resolution mesh model-
ing and correction tool. This tool can be adapted to the needs of the
application by replacing the metric with an application specific one.
See Figure 9 and 10 for examples. The deformation of Figure 10
(d) was obtained by equally blending metric (4) and a metric whose
geodesics are volume preserving as presented in [Kilian 2007].

Figure 9: Distortion correction. Using constraint freeform defor-
mation we are able to fix errors the designer makes during model-
ing. Compared to the reference model (right) the deformed model
(left) shows a change in volume of 25%, whereas the corrected
model (center) shows only a change of 3.6%.



(a) (b) (c) (d)

Figure 10: Freeform deformation by moving and reorienting the dragon’s head. Distortion is controlled by metric (4). The model comprises
65K faces on the shown resolution. Vertex constraints are specified on the initial resolution of 400 faces (see top left for constraint vertices).
Computation time for each deformation is 120 seconds without user interaction. Volume distortion: (a) 0.4%, (b) 1.4%, (c) 0.4%, (d) 1.8%.

Deformation Transfer Based on Parallel Transport. Defor-
mation transfer refers to the problem of transferring motion or a
deformation sequence from a source model onto a target model
[Sumner and Popovič 2004]. In the shape space setting, deforma-
tion transfer is about how to meaningfully transfer a curve from
one part of shape space to another. To solve this problem, we use
the concept of parallel transport which is a natural way to transport
geometric data along smooth curves in a manifold.

Given a geodesic γ : [0,1]→ S and a vector field X(t) along γ ,
a vector field is called parallel if the angle 〈〈X(t), γ̇(t)〉〉γ(t) = C is
constant with the additional property that X(t) rotates minimally
around γ̇(t). Given the vector X(0) there is a unique parallel vector
field X(t) along γ that extends X(0). Given γ and X(0) we can
compute the constant C. To get a discrete sampling of the parallel
vector field that extends X(0) we sample the geodesic γ at times
ti, starting with t0 = 0. We iteratively minimize ‖Y −X(ti)‖2 with
respect to Y under the constraint 〈〈Y, γ̇(ti+1)〉〉γ(ti+1) = C to get the
vector X(ti+1). This ensures that the computed vector minimally
deviates from X(ti), maintaining the minimal rotation property.

Now we are ready to transfer deformations. Suppose we are given
a deformation ϕ : [0,1]×M→S of some shape M (if we are only
given a reference pose M and an additional pose of M, as in [Sumner
and Popovič 2004], we join them by a geodesic to get a deforma-
tion). This deformation is a curve in shape space. Given another
shape N we want to transfer the deformation of M onto N. From an
abstract point of view that means we want to attach the curve start-
ing in M to the shape N. This is easy in Euclidean space but diffi-
cult in curved spaces. We solve this problem in the following way:
We sample the curve ϕ at n equidistant points Mi, and compute a
geodesic γ0 that joins M = M0 and N. Let Xi = ∆Mi be a segment
(i.e., a discrete tangent vector) of the polyline (M0,M1, . . . ,Mn).
We transport the vector X0 along the geodesic γ0 to get Y0 and let
N1 := N0 +Y0. We repeat the above steps with γ1, M1, X1 and N1
until we reach Mn. Figure 11 shows the result of transferring a de-
formation from a cat to a lion model that was constructed in this
way.

Limitations. The examples show that the deformations obtained
using metric (4) generate very natural deformation sequences.
However, we do not make any specific attempts to ensure that in-
termediate poses are free from self-collisions, or do not penetrate
surrounding objects. In case of widely varying poses, we may get
such penetrations. While user intervention can definitely help to
fix such problems, in the future we plan to extend our algorithm to
automatically compute collision free geodesics.

Figure 11: Deformation transfer. The blue input shapes of the
cat (top row) are joined by a geodesic to get a deformation. This
deformation is transferred to the blue lion model (bottom row). The
middle row shows hybrids generated during deformation transfer.

5 Conclusion and Future Work

We presented a Riemannian geometry based framework for defin-
ing and exploring shape spaces. A key ingredient of such spaces is
the associated metric: We introduced metrics that push geodesics
towards rigid body motions or towards isometric deformations.
We solved the general shape interpolation and extrapolation prob-
lems. For meshes which are flexible, the computed shapes along
a geodesic are isometric (modulo numerical errors) to the original
meshes. For other objects, our results are approximately isomet-
ric. This allows us to traverse and explore shape space, with ap-
plications to shape design. Additionally we illustrate the general-
ity of our approach by solving several geometry processing tasks
in our framework using tools from classical differential geome-
try. Our algorithms are designed for meshes in correspondence.
An interesting future direction is to study geodesics between given
meshes over all possible correspondence assignments – the shortest
geodesic solves the correspondence problem. Since a combinato-
rial explosion prevents us from taking a brute force approach, we
are looking for an efficient and elegant solution.
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