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Abstract

To train good supervised and semi-supervised object
classifiers, it is critical that we not waste the time of the
human experts who are providing the training labels. Ex-
isting active learning strategies can have uneven perfor-
mance, being efficient on some datasets but wasteful on oth-
ers, or inconsistent just between runs on the same dataset.
We propose perplexity based graph construction and a new
hierarchical subquery evaluation algorithm to combat this
variability, and to release the potential of Expected Error
Reduction.

Under some specific circumstances, Expected Error Re-
duction has been one of the strongest-performing informa-
tiveness criteria for active learning. Until now, it has also
been prohibitively costly to compute for sizeable datasets.
We demonstrate our highly practical algorithm, compar-
ing it to other active learning measures on classification
datasets that vary in sparsity, dimensionality, and size. Our
algorithm is consistent over multiple runs and achieves high
accuracy, while querying the human expert for labels at a
frequency that matches their desired time budget.

1. Introduction
Bespoke object recognizers are almost mature enough to

be useful to people in practice. A major hurdle is how to
procure enough training labels to tune a semi-supervised
model for a specified classification task. While unskilled
Mechanical Turkers are willing to label images of food
at $1.40 per image [25], the costs are massive for re-
cruiting and paying specialists like doctors or scientists.
Whether they are experts or part of an online crowd, peo-
ple need practical and reliable Active Learning (AL) to sug-
gest which unlabeled image they, as the oracle, should label
next. Choosing the query images in the right order gives
better classification after fewer interrogations of the oracle.

During a training session, the classifier model starts with
only unlabeled examples, picks one, queries the human for
its label, and then quickly re-trains the classifier so the pro-
cess can repeat with queries selected among the remaining

unlabeled examples. We therefore work within the popu-
lar graph based semi-supervised learning (SSL) framework,
where each image is represented as a vertex in a weighted
graph, weights encode similarity between image feature
vectors, and vertices that have already been queried have
labels. Whether the human is done providing class labels
or not, classification of all datapoints is performed directly
in feature space by propagating available label information
over the graph.

Designing a graph based AL framework requires three
steps: 1) building a graph of the unlabeled datapoints in
feature-space, 2) selection of an AL criterion for measur-
ing the informativeness of possible queries, and 3) select-
ing an inference method for evaluating the criterion on the
graph. There are many benefits to this framework, but form-
ing the right combination of these three is an acknowledged
challenge. The other steps are especially influenced by the
AL criterion, chosen to decide which unlabeled image will
be the next query. In particular, Expected Error Reduction
(EER) is very attractive (see § 3.1), but naive incarnations
of it are prohibitively costly. Each query put to the oracle
is preceded by computing “subqueries” to each unlabeled
example; a subquery simulates how the updated predictions
would change if that individual datapoint received this or
that label from the oracle.

We therefore propose a method for graph construction
that is good in its own right, but crucially, organizes the
data so that the EER criterion can be exploited effectively.
Building on our graph construction, our main contribution
is the proposed hierarchical subquery evaluation, which al-
lows us to ask the oracle for a label that maximizes EER,
without having to compute EER exhaustively for all unla-
beled images, and without heuristics that hurt the overall
learning curve. Our many experiments show that the sig-
nificant benefits of computing EER by traversing our hier-
archical representation of the data are 1) that we can cope
with datasets having a broad variety of sparsity, dimension-
ality, and size, 2) that we balance exploration vs. exploita-
tion to get good accuracy quickly and refine decision bound-
aries as needed within the time budget specified by the user,
and 3) that empirically, we have highly consistent accuracy
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when labeling a given dataset. Our experiments benchmark
our approach against alternative AL criteria and alternative
graph constructions, and establish the repeatability of our
approach across different datasets.

2. Related Work
Here we cover only the most relevant related works, and

recommend [27] for a thorough overview of active learn-
ing. Active learning has been successfully applied to many
different computer vision problems including tracking [32],
image categorization [17], object detection [31], seman-
tic segmentation [30], and image [1] and video segmenta-
tion [8], with both human and automatic oracles [18]. Com-
pared to the body of work on active learning in general,
there are relatively few active learning methods for image
classification which facilitate interactive annotation. The
challenge with creating interactive algorithms is that the
time to retrain the model, once a labeled example is pro-
vided, can be long if not performed incrementally. This
delay can also be further exacerbated by the type of ac-
tive learning criterion used. Yao et al. [37] propose object
detection based on efficient incremental training of Hough
voting forests. Operating in real-time, their system is able to
predict an annotation cost for an image and provides feed-
back to the user. However, they do not exploit the unlabeled
data in the pool when updating their model. Batra et al.
[1] present a system for interactive image co-segmentation
which asks the user to annotate the region deemed to be
most informative by the current model. Wang et al. [34] per-
form cell image annotation using a semi-supervised graph
labeling approach and exploit fast updating of the graph for
interactive annotations. Unlike our work, they do not ex-
plore the merits of different active learning criteria.

2.1. Semi-Supervised Active Learning

In pool based active learning we have access to the unla-
beled data up front, before querying the oracle. In contrast
to standard supervised learning, semi-supervised learning
(SSL) exploits structure in the unlabeled data. In this pa-
per we are concerned with graph based SSL, however our
proposed subquery evaluation scheme can be applied to any
pool based active learning task where the unlabeled data is
available during training. In graph based SSL, datapoints
are represented as nodes in a graph and edges between the
nodes encode similarity in feature space. The premise is
that datapoints near each other in feature space share the
same label. Graph based transductive algorithms can be
efficient to evaluate in closed form, typically only requir-
ing simple matrix operations to propagate label information
around the graph.
Graph Based SSL: Zhu et al. [40] propose an approach
to SSL based on defining harmonic functions on Gaussian
random fields. The advantage of their method is that, unlike

graph cut based formulations [2], it produces a probabil-
ity distribution over the possible class labels for each data-
point. Having real probabilities opens the door to a broader
range of active learning strategies. The LGC method of
Zhou et al. [38], adds additional regularization by balancing
the information a node receives from the labeled set and its
neighbors, but at the expense of allowing a labeled node to
change class. For both methods it is also possible to include
a label regularization term to address class imbalance in the
data [34].

As the number of datapoints increases, it can quickly be-
come infeasible to perform the large matrix inversions that
are required by many graph based SSL algorithms. Iter-
ative algorithms do not require a matrix inversion but can
take many iterations to converge [39, 38]. Options to over-
come this scalability issue include reducing the effective
graph size using mixture models in feature space [41], non-
parametric regression of the labels through a subset of an-
chor nodes [22], or assuming the data to be dimensionally
separable in order to approximate the eigenvectors of the
normalized graph Laplacian [10].
Graph Construction: It is well known that graph based
methods are highly sensitive to the choice of edge
weights [16]. A standard approach for graph construction is
to first sparsify the fully-connected graph and then reweight
the remaining edges. Sparsification is important, because in
higher dimensions, the distances between far away points
become less meaningful. K-nearest neighbor and distance
thresholding are common choices for sparsification. How-
ever, they suffer from the problem that the resulting graph
can be uneven as there is no guarantee on the number of
edges at each node. Approaches exist to guarantee regular
graphs (the same number of edges at each node) but can be
computationally costly [16]. However, for a small decrease
in graph quality, it is possible to build approximately regular
graphs at reduced cost [36]. In the reweighting step, a sim-
ilarity measure between datapoints must be defined. One
standard choice of similarity is the RBF kernel, and several
methods have been proposed to define a suitable bandwidth
parameter. If there are labeled datapoints it can be learned
[40], alternatively it can be defined per dimension, based on
the average distance between all neighbors [4], local dis-
tance [12], or by direct optimization [33]. Wang et al. [35]
jointly learn the graph structure and label prediction by min-
imizing a cost function over the graph and its labeling. In
this paper we propose a method for graph reweighting in-
spired by ideas from dimensionality reduction [13].
Active Learning on Graphs: Many different active learn-
ing criteria exist in the literature. Methods range from
random querying, uncertainty sampling, margin reduction,
density sampling, expected model change, and expected er-
ror reduction [27]. An optimal strategy would trade off be-
tween exploration and exploitation; initially exploring the



space when there are few labels and uncertainty is high
and then, when more annotations have been acquired, ex-
ploit this information to perform boundary refinement be-
tween the classes. Algorithms that switch between density
based and uncertainty sampling typically require hyperpa-
rameters that are dataset specific [3], however more com-
plex approaches strive to do this automatically [20, 7]. Ex-
pected error reduction (EER) [26] performs this trade off
naturally. Instead of measuring a surrogate, it seeks out dat-
apoints that will make the overall class distributions on the
unlabeled data more discriminative by attempting to reduce
the model’s future generalization error.

However, full EER requires O
(
N2
)

operations to deter-
mine which example minimizes the expected error under the
current model, whereN is the size of the dataset. This com-
plexity stems from needing to retrain the model for each of
the N subqueries in the unlabeled pool to evaluate their ex-
pected error. Efficient update methods for some commonly
known algorithms exist, e.g. in graph based SSL making
full EER only feasible on small graphs. Zhu et al. [42]
demonstrated the superior performance of EER over other
active learning criteria when combining it with their Gaus-
sian fields formulation [40], and this serves as one of our
baselines.
Clustering Approaches: To cope with larger datasets, dif-
ferent approaches have been proposed to reduce the num-
ber of subqueries that must be evaluated. Strategies include
only considering a subsample of the full data [26], or us-
ing the inherent structure of the data to limit influence and
selection of subqueries [23]. Using the same manifold as-
sumption as SSL, these methods cluster the data in its orig-
inal feature space. Macskassy [23] explores graph based
metrics, commonly used in community detection, to iden-
tify cluster centers (each assumed to contain the same class)
that are then evaluated using EER. This is related to the hi-
erarchical clustering method for category discovery of Vat-
turi [29]. However, by limiting subqueries to cluster cen-
ters, these clustering based approaches are unable to per-
form boundary refinement.

The hierarchical clustering, in [6], is used to define
bounds on sampling statistics. Every one of their samples (a
full query to the oracle) is randomly selected from a strict
partition of a prespecified clustering (similar to a breadth
first search) and only shares label information within its
cluster. Our proposed method also uses a hierarchical rep-
resentation, but differs as it uses the hierarchy for efficient
sampling using EER, with the added advantages of graph
based SSL, without sacrificing the ability to refine class
boundaries.

3. Graph Based Semi-Supervised Framework
Here we review graph based SSL, and detail our inno-

vations in § 4. In pool based learning, one has a dataset

D = {(x1, y1), ..., (xN , yN )} where each xi is a Q dimen-
sional feature vector and yi ∈ 1, ..., C is its corresponding
class label. We splitD into two disjoint setsDu andDl, cor-
responding to the sets of unlabeled and labeled examples.
For active learning, the set of labeled examples is initially
empty as only the oracle knows the values of each yi. One
can define a graph G with a set of vertices V , correspond-
ing to the pool of N examples in D, and the set of edges is
represented by a connectivity weight matrix W ∈ RN×N .
Each entry wij in W represents the similarity in some fea-
ture space between datapoints xi and xj . Our goal is to
estimate the distribution over the class labels for each of the
nodes in the graph, fic = P (yi=c |xi). In matrix notation,
these distributions, F , are represented as an N × C matrix,
where each row is a different datapoint.

Zhu et al. [40] propose a method for semi-supervised
learning based on Gaussian random fields and harmonic
energy minimization (GRF). Their harmonic energy mini-
mization can be computed in closed form using matrix op-
erations on the graph Laplacian,

Fu = (Duu −Wuu)
−1WulYl, (1)

where D is a diagonal matrix with entries dii =
∑

j wij .
The matrices are split into labeled and unlabeled parts

W =

[
Wll Wlu

Wul Wuu

]
, and Y =

[
Yl
Yu

]
. (2)

Again using matrix notation, Y is the same size as F where
all entries are set to 0 except where the oracle labels data-
point xi with class c making yic = 1.

3.1. Expected Error Reduction

Let P (y|x) be the unknown conditional distribution of
output y over input x, and P (x) be the marginal input dis-
tribution. Taking the labeled data Dl, we can produce a
learner that estimates the class output distribution P̂Dl

(y|x)
for a given input x. The expected error of such a learner is

EP̂Dl
=

∫
x

L
(
P (y|x), P̂Dl

(y|x)
)
, (3)

where we define L(·, ·) as a loss function that quantifies any
error between the predicted output and the true value. In
our learning problem, we consider multi-class classification
tasks and use a 0/1 loss function

L
(
P (y|x), P̂Dl

(y|x)
)
=

C∑
y=1

P (y|x) I [y 6= ŷ] , (4)

where ŷ = argmaxy P̂Dl
(y|x) is the learner’s MAP esti-

mate of the class of x, and I[·] is a binary indicator function.
In the case of graph based SSL, we represent the

marginal input distribution by the set of input samples {xi}



and evaluate the integral of (3) as a summation over this set
to produce

EP̂Dl
=

N∑
i=1

C∑
yi=1

P (yi|xi) I [yi 6= ŷi] (5)

as the expected error. In practice, the true conditional distri-
bution P (y|x) is unknown, so we approximate it using the
current estimate of the learner P̂Dl

(y|x).
In the context of active learning, we would like to select

the oracle’s next query (x̂q, ŷq) from the unlabeled dataDu,
such that adding it to the labeled data Dl would result in a
new learner with a lower expected error. This leads to a
greedy selection strategy. First, we determine the expected
error (or risk) for combinations of each unlabeled example
xq ∈ Du taking each possible label yq ∈ {1..C}

E+(xq,yq)

P̂Dl

=

N∑
i=1

C∑
yi=1

P̂
+(xq,yq)
Dl

(yi|xi) I
[
yi 6= ŷi

+(xq,yq)
]
,

(6)
where P̂+(xq,yq)

Dl
is the learner with (xq, yq) added to the

labeled data. We then calculate the expectation of this risk
across the possible label values for yq . We use the learner’s
current posterior P̂Dl

(yq|xq) to approximate the unknown
true distribution across yq to provide

E

[
E+(xq,yq)

P̂Dl

]
=

C∑
y′=1

P̂Dl
(yq=y

′ |xq) E
+(xq,yq=y′)

P̂Dl

(7)

as the expected risk. Finally, we select the query x̂q with
the smallest expected risk. For the remainder of the paper,
we refer to this expected risk as the expected error that the
EER criterion seeks to minimize.

Zhu et al. [42] integrated active learning into their GRF
framework by exhaustively calculating the expected error
over all possible unlabeled nodes. Even with the proposed
matrix update efficiencies of Zhu et al., calculating the ex-
pected error for a datapoint is a linear operation and evalu-
ating it over all unlabeled examples results in a time com-
plexity of O

(
|Du|2

)
. This quadratic cost is prohibitively

expensive as the dataset increases in size. We address this
limitation using our proposed hierarchical subquery sam-
pling approach presented in § 4.2.

4. Hierarchical Subquery Evaluation
Our method uses the EER active learning criterion while

overcoming the expense of exhaustive sampling. It does this
without sacrificing the desirable exploration/exploitation
properties of EER, an issue with previous subsampling ap-
proaches. Before we discuss our hierarchical subquery
search method, we first describe our graph construction
technique that we have found to work well with the EER
criterion and to be robust across a wide variety of datasets.

4.1. Perplexity Based Graph Construction

As noted previously, graph based SSL algorithms are
very sensitive to the choice of similarity matrix W . If two
datapoints xi and xj have the same label, we want their
corresponding affinity wij to be high, and if they are differ-
ent we want it to be low. One popular choice of similarity
kernel is the radial basis function (RBF),

wij = exp(−γi‖xi − xj‖22). (8)

Here we use the L2 distance, but other distances may be
more appropriate depending on the data representation (e.g.
histograms). We have now introduced a set of parameters
γi that control the bandwidth of the kernel. A single choice
of γ is unlikely to be optimal across the whole dataset. We
want each γi to model the density of local space. Intuitively,
we want a larger value of γi in dense regions of the fea-
ture space and a smaller value in more sparse regions. We
now define our similarity based on a successful unsuper-
vised technique from dimensionality reduction.

In Stochastic Neighbor Embedding (SNE) [13] the non-
symmetric similarity between points is represented as a con-
ditional probability. wji can be interpreted as the prob-
ability that xi would pick xj as its neighbor assuming
there is a Gaussian with variance σ2

i centered at xi, where
γi = 1/(2σ2

i ). We perform the same binary search as SNE
to find the values of γi that best match a given level of per-
plexity (a measure of the effective number of local neigh-
bors). The perplexity for a given choice of γi is defined as

Perp(γi) = 2−
∑

j wji log2 wji . (9)

We enforce a valid similarity matrix W by symmetrizing
the conditional probabilities, so wji =

1
2 (wij + wji).

4.2. Hierarchical EER

The EER criterion dictates that we pick the datapoint
giving the lowest expected error to be labeled next. We refer
to calculating the expected error of a single unlabeled dat-
apoint as a subquery; the complexity of a single subquery
is linear in the number of unlabeled datapoints. Together,
the subqueries are internal calculations used to determine
the next query that is sent to the oracle for labeling. We
want to find the next query within a specified query budget.
This means we do not have sufficient time to perform sub-
queries on all possible unlabeled nodes since this results in a
quadratic cost (§ 3.1). Instead, we must identify an adaptive
number of the best subqueries to sample within an allotted
time, ideally sub-linear in the number of unlabeled nodes.

The smooth nature of the harmonic solutions, with re-
spect to proximity of nodes on the graph, creates a redun-
dancy in densely sampling all nodes; neighboring nodes
will likely produce a very similar reduction in error when
labeled. A hierarchical clustering of the graph, for example
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Figure 1. Hierarchical clustering and subquery sampling strategy. (a) A hierarchical clustering is built using [5], shown here as a tree. At
each level, every node in the tree is represented by a unique allocation (denoted by color) to a specific datapoint (the authority point in
bold). (b) We use a hierarchical algorithm to determine the subqueries to perform; a subquery evaluates the expected error (EER criterion)
shown as a number inside the node. (left) An active set, shown in orange, is constructed containing the children of labeled nodes; these
are evaluated as the first subqueries, prioritizing from top to bottom. The active set is then expanded in a greedy fashion by including the
children of the subquery with the lowest expected error, shown in pink. (right) We repeat this process until we have exhausted our subquery
budget. The query for the oracle to label is chosen as the subquery with the lowest expected error (greatest EER).

Figure 1(a), exploits these local correlations between neigh-
boring nodes. Previous approaches to reducing the num-
ber of subqueries have included random sub-sampling [26]
and using community detection to propose candidates [23].
The latter method is equivalent to performing a breadth first
(coarse to fine) search of a cluster hierarchy where graph
communities are represented as high level clusters. Similar
breadth first searches of hierarchies have been used in active
learning, albeit without the EER criterion [6, 29].

The main advantage of the EER criterion is that it will
trade-off the reduction in error achieved by either labeling
an unknown region (exploration) or refining the decision
boundaries under its current model (exploitation). Typi-
cally, the exploration mode will label nodes high up in the
hierarchy whereas the detailed boundary refinement will oc-
cur in the leaves of the tree. While a breadth first approach
can achieve good initial results, the active learner is stuck
in an exploratory mode since it is effectively sampling on a
graph density measure.

In our proposed approach, we allow the EER measure
to perform the exploration/exploitation trade-off while still
sub-sampling the unknown nodes to dramatically reduce the
number of subqueries and therefore the cost. We achieve
this by performing an adaptive search of the hierarchy.

4.3. Hierarchical Subquery Sampling

Authority-Shift Hierarchy Creation: We provide an illus-
trative example of the hierarchical clustering in Figure 1(a).
We make use of the Authority-Shift algorithm of Cho and
Lee [5]. It does not require a feature space but operates on
the perplexity graph directly. This technique produces a hi-
erarchical clustering on a graph by authority seeking: the
process of allocating each node to a local ‘authority’ node
(that represents the cluster). The calculation explores the

steady state of a set of random walks on the graph at an
appropriate scale. By increasing the scale parameter itera-
tively, a hierarchy of clusters can be built up to form a tree.
This approach has two advantages. First, each cluster in the
tree is represented by a specific datapoint that can be used
to perform a subquery. Second, the clusters themselves en-
code walks on the graph under the same transition matrix
used to evaluate the harmonic function, and therefore pro-
duce a summary of the results of calculating the expected
error for all the datapoints in the cluster.
Subquery Sampling: An overview of our hierarchical sam-
pling algorithm is provided in Figure 1(b). We differ from
previous breadth first searching strategies by allowing an
adaptive search on the tree to greedily seek for the minimum
reduction in expected error. Referring to the diagram, con-
sider a set of data with the cluster hierarchy of Figure 1(a),
where two nodes have already been queried and labeled; see
the left side of Figure 1(b). First, we build an active set of
unlabeled nodes containing the children of labeled nodes,
starting at the root. We proceed to perform a batch of sub-
queries of this active set (shown in orange) to obtain the
expected error (the numbers inside the nodes). We then ex-
pand the active set by adding the children of the subquery
in the current active set with the minimum expected error
(shown in pink). As the children are added to the active set,
they are evaluated as subqueries; see the right side of Fig-
ure 1(b). This process repeats until we have exhausted our
budget of subqueries (a limit on the size of the active set).
We now select the member of this active set with the min-
imal expected error as the next query to be labeled by the
oracle. We prioritize the subquery evaluation by the level in
the hierarchy (top-to-bottom) and then by ranking the nodes
based on the total number of their descendants.

The boxes in Figure 1(b) provide a toy illustration of the



Dataset N D C Feat rand margin entropy RALF [7] Zhu [42] randS [26] bFirst [23] HSE (ours)
Glass [11] 214 10 6 - 0.732 0.605 0.599 0.763 0.818 0.810 0.782 0.804

Ecoli [11] 336 7 8 - 0.759 0.781 0.788 0.812 0.832 0.829 0.782 0.833
Segment [11] 635 18 7 - 0.811 0.717 0.680 0.832 0.903 0.896 0.840 0.896

FlickrMat [28] 1000 50 10 PCA BoW 0.172 0.131 0.125 0.242 0.261 0.244 0.249 0.259

Coil20 [24] 1440 20 20 PCA 0.558 0.392 0.456 0.713 0.729 0.757 0.756 0.760
LFW10 [15] 1456 50 10 PCA BoW 0.310 0.261 0.247 0.352 0.421 0.419 0.410 0.422
UIUCSport [21] 1579 50 8 PCA BoW 0.425 0.405 0.300 0.604 0.650 0.669 0.624 0.671
Gait [14] 2353 25 9 PCA 0.506 0.434 0.313 0.650 0.668 0.665 0.669 0.696
Oil [11] 3000 12 3 - 0.927 0.800 0.798 0.916 0.943 0.948 0.979 0.986
Caltech4 [9] 3188 20 4 PCA BoW 0.953 0.922 0.936 0.966 0.986 0.988 0.993 0.990

Eth80 [7] 3280 576 8 HoG 0.531 0.359 0.370 0.660 0.649 0.603 0.665 0.675
CpPascal08 [7] 4450 576 20 HoG 0.091 0.075 0.079 0.277 0.074 0.073 0.167 0.184

15Scenes [19] 4485 50 15 PCA BoW 0.255 0.236 0.144 0.548 0.535 0.505 0.469 0.573
Mean 0.541 0.471 0.449 0.641 0.651 0.647 0.645 0.673
Wins 0 0 0 1 3 0 1 8

Table 1. Datasets used for our evaluation where N, D, C, and Feat refer to the number of datapoints, dimensionality, number of classes, and
representation. Results are presented as areas under the learning curve (1.0 is ideal). The learning curves for a subset of these datasets are
depicted in Figure 2. Our method outperforms the other baselines, including full EER [42] despite requiring far fewer subquery evaluations.

advantage of this approach. To refine the boundary between
the two classes, we need to ask the oracle to label nodes at
the edges of clusters; these are usually found low down in
the hierarchy. Because the EER improves as one moves to-
ward a decision boundary, the active set can move down into
the tree when the EER criterion favors exploitation over the
improvement of exploration; exploration occurs by labeling
clusters at the top of the tree. Under breadth first search, a
large number of queries would have to be performed before
reaching nodes at the exploitation depth. As the learning
curve evolves, the boundary refinement nodes will become
increasingly localized, making it more unlikely that they
will be found by random subqueries alone. We always take
the root node of the tree as our first query (an open question
for many algorithms) which we observe empirically to con-
fer good performance and makes our algorithm determin-
istic. The tree construction means that the entire hierarchy
has the potential to be navigated in O

(
Nlog(N)

)
.

5. Experiments
Table 1 describes the 13 vision and standard machine

learning datasets used for our experiments. These were cho-
sen because they vary in size, density in their respective fea-
ture spaces, and have different numbers of classes. For all
experiments, we start out with 3 random queries, construct
graphs with 10 nearest neighbors based on the L2 distance,
use a perplexity value of 30, and query the oracle 50 times.
For our method (HSE), we set the number of subqueries to
be 25 log(N), where N is the number of datapoints for a
given dataset, and the initial queries are set as the first 3
nodes in the hierarchy. Data and code are available on our
project webpage.

Graph Construction: Graph based SSL algorithms can
produce inferior performance with poor graphs. Using the
method of Zhu et al. [42] to evaluate graphs, Table 2 com-
pares our perplexity based graph construction method to
four other baseline algorithms, testing this contribution in
isolation. For mean, the bandwidth of the RBF kernel is set
using the average distance between neighbors. For binary,
we set a constant value for any two nodes that are connected
and zero elsewhere. For knn, the bandwidth is set per data-
point proportional to its K-nearest neighbors. Finally, lle is
the local linear embedding approach of [33]. Our perplexity
based graph performs best overall.
Active Learning Criteria: We compare our algorithm to
seven different baselines, including GRF [40] with random,
entropy, and margin based criteria [27], full EER [42], and
the recent time varying combination approach RALF [7].
We also compare to two different subquery evaluation
strategies, random [26] and breadth first [23]. Both compet-
ing subquery strategies are evaluated using the same num-
ber of subqueries as our method. All methods use our per-
plexity based graph with the exception of RALF which uses
a binary based graph representation. Empirically, we found
RALF to perform worse using other graphs. Table 1 sum-
marizes our overall results as area under the learning curve
on the unlabelled set.

Interestingly, our method outperforms full EER which
requires O

(
N2
)

computations. We note that the full EER is
still a greedy algorithm at each iteration and therefore, not
necessarily globally optimal. Our approach will encourage
exploration at the start, when only a few queries have been
performed and the active set is at the top of the hierarchy,
which is observed to offer improved performance.
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Figure 2. Learning curves illustrating the performance of our approach versus three other baselines from Table 1. The shaded regions
around each learning curve represents one standard deviation. Our method gives superior results compared to that of Zhu et al. [42] and as
it is deterministic, results do not vary over different runs. In the last plot we illustrate the effect of increasing the number of subqueries for
our method. As the number increases, so does the area under the curve.

Dataset mean binary knn [12] lle [33] per (ours)
Glass 0.775 0.743 0.758 0.787 0.818
Ecoli 0.795 0.768 0.777 0.791 0.832
Segment 0.837 0.860 0.853 0.892 0.903
FlickrMat 0.196 0.159 0.198 0.222 0.261
Coil20 0.641 0.597 0.616 0.729 0.729
LFW10 0.362 0.356 0.365 0.381 0.421
UIUCSport 0.528 0.452 0.527 0.529 0.650
Gait 0.686 0.646 0.672 0.579 0.668

Oil 0.941 0.937 0.924 0.962 0.943

Caltech4 0.981 0.973 0.977 0.971 0.986
Eth80 0.572 0.596 0.562 0.604 0.649
CpPascal08 0.146 0.102 0.159 0.141 0.074

15Scenes 0.344 0.304 0.353 0.378 0.535
Mean 0.600 0.576 0.595 0.613 0.651
Wins 1 0 1 2 10

Table 2. Comparison of different graph construction methods. The
results represent area under learning curves for the GRF method
of Zhu et al. [42]. Our perplexity based method outperforms the
other baselines.

One noticeable exception is the Cropped Pascal dataset
from [7]. Due to the high variability in each class, it is
likely that this dataset does not conform to the clustering
assumption of semi-supervised learning. Using an iterative
label propagation algorithm with few propagation steps pre-
vents RALF [7] from overfitting the dataset at the expense
of worse marginals. Figure 2 illustrates learning curves for
a subset of the datasets.

Table 3 depicts the average time required to present the
next query to the user for the different active learning meth-
ods. RALF [7] scales linearly while full EER [42] soon be-
comes impractical as the the number of examples increases.
On average, our method computes queries in under a second
and performs better than both methods in terms of accuracy.

Dataset RALF [7] Zhu [42] HSE (ours)
Glass 0.003 0.008 0.291

Ecoli 0.004 0.016 0.302

Segment 0.005 0.056 0.276

FlickrMat 0.007 0.231 0.136

Coil20 0.011 0.950 0.369

LFW10 0.009 0.535 0.172

UIUCSport 0.009 0.507 0.172

Gait 0.012 1.610 0.257

Oil 0.010 1.008 0.339

Caltech4 0.011 1.435 0.351

Eth80 0.014 2.793 0.378

CpPascal08 0.041 12.189 0.753

15Scenes 0.033 9.405 0.710

Table 3. Average time (in seconds) per query for active learn-
ing methods with different area-under-learning curve and across
datasets of varying complexity. Both RALF and HSE pick the
next query in under a second. In our method, we allow 25 log(N)
subqueries per query rather than the full N2 required for the Zhu
method.

6. Discussion

Accurate AL is the key to saving human effort, but
speed is also a factor when a human oracle’s patience
is finite. Generalizing slightly, our Active Learning ap-
proach performs as accurately or better than Zhu et al.
[42], but does so with an effective computational complex-
ity on par with Ebert et al. [7]. Their computational com-
plexities are O

(
N2
)

and O
(
N
)

respectively, while ours is
O
(
N log(N)

)
with a low log(N). In practice, with our

Matlab implementation and default settings (used through-
out), the combined subqueries needed to pick the oracle’s
next query finished in under a second, even for the largest
datasets tested. For bigger datasets, users may opt to use
our algorithm with fewer subqueries to keep the labeling
interactive. Both those main competitors are very good, ex-



celling on specific datasets. Therefore it is important that
validation of our AL approach has considered accuracy, ef-
ficiency, and generalizability to a variety of situations. The
online supplementary material further illustrates that across
these datasets, our hierarchical subquery evaluation leads to
accurate results in the form of steep learning curves with
large areas under the curve, and that these results are con-
sistent across multiple runs, as plotted with±1 standard de-
viation from each curve’s mean.

To tease apart the impact of our hierarchical subquery
evaluation vs. our perplexity-based graph construction, we
gave our graphs to the compatible AL baseline algorithms.
Zhu et al. is among them, and without our graphs, per-
forms worse than RALF. Within the flexible graph based
SSL framework, other choices can also have an impact, so
as part of the supplemental files, we also show that LGC,
used by RALF, is not as effective for our label propagation
as Zhu et al.’s GRF.

There are several exciting avenues for future work. Our
approach is transductive, so it would be attractive to either
embed new datapoints into our existing graph online, or to
transfer learned parameters to an inductive model. It would
also be interesting to budget subqueries to account for some
labels taking more of the oracle’s time or effort than oth-
ers. Finally, our similarity graph is computed once offline
and never updated. In future, we may wish to use the label
information from the user to learn a feature representation
online.
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