Motivation

1. Log based evaluation
 - Relevance determined implicitly or by clicks
 - Large scale collection of user data
 - Suffers from several (click, presentation etc) biases.

2. Batch evaluation
 - Relevance labels assigned by trained judges
 - Smaller test collections
 - Simple assumptions about real information needs

These two forms of evaluation often do not completely agree with each other ([1] and [2]). They agree with each other only when there is a significant gap in quality of the systems compared ([3] and [4]).

User Model

1. When users first access the page, they quickly scan it to determine portions relevant to the query.
 FINDABILITY

2. This is followed by reading these paragraphs/snippets.
 READABILITY

3. Finally, users focus on understanding these nuggets of information.
 UNDERSTANDABILITY

Contributions

1. Identify factors that characterize user effort.
2. Conduct experiments to obtain explicit judgments for these factors.
3. Finally, analyze the effect of incorporating effort into retrieval evaluation.

Methodology

- Collect effort based (explicit) judgments for each document for above parameters.
- Study user preferences
- **Control for relevance**: Collect user preferences with side-by-side comparison for documents of same relevance grade.

Judging Interfaces

- **Trained Judges**
- **End Users**

- At present, relevance is primary factor for judging documents. It does not consider "User effort" (Yilmaz et al. [5])

- A judge can spend a lot of time evaluating correctness of document for a given query. An impatient user may not spend as much time studying the document!

Results

Factors important for User Satisfaction

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findability*</td>
<td>0.003</td>
</tr>
<tr>
<td>Readability</td>
<td>0.364</td>
</tr>
<tr>
<td>Understandability*</td>
<td>0.054</td>
</tr>
<tr>
<td>Relevance</td>
<td>0</td>
</tr>
</tbody>
</table>

Effort and Preference Agreement

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findability</td>
<td>0.60*</td>
</tr>
<tr>
<td>Readability</td>
<td>0.51</td>
</tr>
<tr>
<td>Understandability</td>
<td>0.51</td>
</tr>
<tr>
<td>Relevance</td>
<td>0.72*</td>
</tr>
</tbody>
</table>

Features

Test Features

- `avgSumChar` Avg #chars in summary
- `docCLI` CLI Index of document
- `docWords` #words in document
- `qTermsInTitle` #query terms in title
- `sumWords` #words in summary
- `tRatio` Fraction of #words and #tags in html

Structure Oriented Features

- `fTable` Fraction of Tables
- `maxWinPos` Max window pos with all query terms
- `qWinO` Fraction of outlinks with query terms
- `fBoldItalics` Fraction of bold, italics and strong
- `sumWords` Fraction of images
- `meanPosOut` Median window pos with all query terms
- `countH` #Headings with query terms

Findability Prediction

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tTable</code></td>
<td>0.00</td>
</tr>
<tr>
<td><code>avgSumChar</code></td>
<td>0.01</td>
</tr>
<tr>
<td><code>docCLI</code></td>
<td>0.02</td>
</tr>
<tr>
<td><code>maxWinPos</code></td>
<td>0.04</td>
</tr>
</tbody>
</table>

Relevance Prediction

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tRatio</code></td>
<td>0.01</td>
</tr>
<tr>
<td><code>qWinO</code></td>
<td>0.01</td>
</tr>
<tr>
<td><code>maxWinPos</code></td>
<td>0.04</td>
</tr>
<tr>
<td><code>docWords</code></td>
<td>0.04</td>
</tr>
</tbody>
</table>

Relevant vs Low effort Relevant Documents (p@10)

References

3. J. Allan, B. Carterette, and J. Lewis. When will information retrieval be "good enough"? In Proc. SIGIR, Salvador, Brazil, 2006.