
Entity oriented Task Extraction from Query Logs

Manisha Verma
University College London
m.verma@cs.ucl.ac.uk

Emine Yilmaz
University College London

emine.yilmaz@ucl.ac.uk

ABSTRACT
Identifying user tasks from query logs has garnered consid-
erable interest from the research community lately. Several
approaches have been proposed to extract tasks from search
sessions. Current approaches segment a user session into
disjoint tasks using features extracted from query, session
or clicked document text. However, user tasks most often
than not are entity centric and text based features will not
exploit entities directly for task extraction. In this work,
we explore entity specific task extraction from search logs.
We evaluate the quality of extracted tasks with Session track
data. Empirical evaluation shows that terms associated with
entity oriented tasks can not only be used to predict terms in
user sessions but also improve retrieval when used for query
expansion.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

Keywords
search tasks, query log analysis, task discovery

1. INTRODUCTION
Users constantly interact with search engines to accom-

plish some tasks such as ‘buy a car ’, ‘plan a wedding ’ etc.
Such broad requirements prompts the use of multiple queries,
sometimes spanning multiple sessions. Approximately 75%
of user search sessions involve multi-tasking [5], which makes,
task identification an important step towards understanding
user goals. Recent approaches [3, 4, 5, 6] use either search
query or clicked documents to identify tasks. Most of these
approaches cluster queries from current or neighboring ses-
sions into tasks based on lexical or semantic similarity.

Often, tasks are associated with some entity. Extracting
and mining entity information from queries across users can
provide insight into different tasks that can be accomplished

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662076.

with a search engine. However, current approaches do not
directly leverage entities for task extraction. They use en-
tity or entity type information as features. They semanti-
cally represent a query using features extracted, either from
Wikipedia [5] or from some knowledge base [3]. These rep-
resentations do not concretely capture entity specific intents
in user queries. For instance, two queries that share same or
similar type of entities, may still have diverse concept rep-
resentation. Such queries will not be classified as part of the
same task. For example, above approaches may not consider
‘buy wedding flowers’ and ‘book wedding destinations’ to be
part of the same task due to the topic drift that ‘destina-
tion’ and ‘flower ’ induce in concept vectors, even though
both queries represent the same task - ‘wedding planning ’.
Whereas the entities in these two queries - ‘flower ’, ‘destina-
tion’ and ‘wedding ’ shall have high co-occurrence in search
logs. Queries, such as these, can be easily mapped to the
same task by leveraging their entities. By considering the
entities and their associations one can extract better seman-
tics from user queries. Existing work extracts tasks from in-
dependent sessions, thus providing information only about a
single user. Such tasks have limited applications as they do
not give a complete picture about tasks that exist globally.
However, entity oriented tasks can be extracted from search
sessions accross several users. Such a global set of tasks can
benefit related search applications too. For instance, it can
be used to find similar users by mining their task histories
or for query suggestions.

With this motivation, in this work we explore entity based
task extraction from search logs. Our system finds entity
oriented tasks for each category by populating words that
co-occur with entities from that category. We evaluate the
quality of extracted tasks in two ways: 1) Query term pre-
diction and 2) Query expansion. Given a session, we use
task terms related to entities in the first query to predict
terms of subsequent queries in the session. We further show
that the proposed method can improve retrieval performance
when used for query expansion. Experiments on Session
track1 data indicate that terms associated with entity ori-
ented tasks can not only predict query terms in a session but
can also improve retrieval when used for query expansion.

2. RELATED WORK
Recent work mainly explores task extraction from search

sessions. The objective in [3, 4, 5] is to segment a search
session into disjoint sets of queries where each set represents

1http://ir.cis.udel.edu/sessions/

1975

Figure 1: Task dictionary construction example

a different task. These approaches do not aggregate tasks
across users, thus cannot combine or differentiate between
tasks extracted from different sessions. Although, Lucchese
et al. [6] attempt to cluster tasks across users to create a
global representation, their approach uses only category in-
formation in Wikipedia to calculate semantic features. How-
ever, their approach cannot distinguish between tasks associ-
ated with different types of entities. Entity recognition with
a knowledge base is used in [3], again, only to enrich concept
vectors. Ji et al. [4] find global task representations using a
similar approach, but they manually tag phrases with tasks.
Our work differs from previous work as we identify tasks
not by calculating semantic similarity, but by aggregating
queries with its entities and their category information.

To find entities in text one can use entity linking tech-
niques such as [2, 7]. These systems can link short texts
such as queries to a knowledge base such as DBPedia2. An-
other work [8], closely related to ours, finds query reformu-
lations using entity linking and Wikipedia. They extract
expansion terms from Wikipedia and score them using an-
chor text information. However, we extract expansion terms
from search logs and use only category information of an en-
tity to score terms.

3. ENTITY BASED TASK EXTRACTION
Our goal is to use search queries to create a comprehen-

sive list of tasks associated with an entity. Several factors
have to be considered before building such a list. First con-
sideration is the representation of task itself. What shall
be used to represent a task? In earlier works, it was a se-
quence of queries. For simplicity, we use a dictionary of
terms to represent a list of tasks. Alternatively, one can use
a list of phrases, queries or more complicated representa-
tions. We chose terms as they can succinctly capture the
task (e.g. buy, sell, design) associated with an entity (e.g.
ticket) while providing the flexibility to build more complex
representations (vectors, networks etc.) of tasks.

The second factor is the granularity of tasks associated
with an entity. How specific or general will this list be? It
depends on the source of entities. For instance, Freebase
has more entities and entity types than DBPedia. Thus,

2http://www.dbpedia.org

Table 2: Summary of Category Task Dictionaries
No of Categories 15510
Avg #entities per cat 20
Max #entities per cat 9356 (living people)
Avg #terms per cat 118
Max #terms per cat 11538 (states of US)

tasks for more categories will be extracted from Freebase
than DBPedia. However, since DBPedia is extracted from
Wikipedia it is less prone to noise. In this work, we use
DBPedia entities and categories to extract tasks.

Final consideration is the method of creating this task list.
One can use several approaches like K-Means clustering or
algorithms like Random Walk to build task list for an entity.
We choose to group terms based on the entities and queries
they appear with to build a list of task terms.

3.1 Entity Linking
Naturally, a system relying on entities needs a method

to link query text with entities. We use Dexter [1] to link
queries with entities. Dexter, in turn relies on DBPedia for
entities and their type information. An entity may belong
to different categories. For each query, Dexter returns the
phrases that map to an entity (entity mentions), the entity
and its categories.

3.2 Task Dictionary Construction
We represent tasks as a collection of diverse but concep-

tually related terms. We refer to these lists as task dictio-
naries. Constructing a dictionary for every entity will yield
too many entities with only handful of words. The Zip-
fian distribution of queries will yield a skewed list of terms,
since popular entities will contain more words than rare en-
tities. However, aggregating these terms under entity cat-
egory will yield a comprehensive list as terms from similar
entities (popular or rare) will get grouped together. The
process of creating these task dictionaries is as follows.

• We begin by tagging entities in a query. As men-
tioned before, we shall aggregate query terms on cat-
egory level. For each entity in the query, we associate
non entity terms with its categories. Non-entity terms
are query terms other than the entity mentions. For
example, in query ‘flights between paris and London’,
‘London’ is an entity, ‘City’ its category and ‘flights’
and ‘paris’ are non-entity terms.

• The previous step results in each category (or entity
type) containing several terms. This list, even though
exhaustive, will contain some noise. Filtering and scor-
ing this list is important since we want a clean (even
if small) task terms list. We rank these terms on the
basis of category tf-Idf given by

tf -Idf(ti, cj) = tf(ti, cj)× log(Nc/Nti) (1)

where tf(ti, cj) is the frequency of term ti in category
cj , Nc is the total number of categories and Nti is the
number of categories that contain the term ti. We re-
tain those words in the dictionary whose tf-Idf exceeds
a certain threshold.

An example of aggregating and filtering query terms for
the task dictionary of category ‘wood work ’ is depicted in

1976

Table 1: Comparison of Term Prediction Results 3

2011 Session Track 2012 Session Track
50 Tasks 100 Tasks 50 Tasks 100 Tasks

Prec Ent HTC QCC HTC QCC Ent HTC QCC HTC QCC
1 0.014 0.012 0.004 0.005 0 0.001 0.012 0.012 0.004 0.019
5 0.04 0.021 0.019 0.02 0.046 0.022 0.019 0.031 0.034 0.026
10 0.046 0.035 0.037 0.038 0.050 0.041 0.045 0.049 0.051 0.049

15 0.051 0.052 0.059 0.061* 0.064* 0.034 0.045 0.055 0.059 0.062
20 0.072 0.057 0.062 0.064 0.067 0.073 0.049 0.055 0.066 0.072

40 0.086* 0.062* 0.083* 0.084* 0.089* 0.096* 0.062 0.069 0.090* 0.092*

50 0.093* 0.066* 0.096* 0.089* 0.106* 0.113* 0.070 0.075 0.102* 0.092*

Figure 1. During Step 1, the system aggregates terms on a
category node and in Step 2 it cleans this term set.

4. TASK DICTIONARY EVALUATION
Manual evaluation of dictionaries constructed above is in-

feasible. Since there is no labeled dataset for tasks evalua-
tion, in this work, we evaluate them indirectly with query
term prediction and query expansion. Query reformulations
in a session are users’ indication of possible terms that can
be added or removed from the query to accomplish a cer-
tain task. The tasks associated with entities in current query
can be used to predict terms of future queries. Similarly, the
terms from these tasks can be used to enrich this query to
improve retrieval. This is the underlying intuition of using
both query term prediction and query expansion to evaluate
the quality of generated task dictionaries.

Since a limited number of quality terms are required for
evaluation, we need to score task dictionary terms with re-
spect to the query. For instance, the query ‘lake murray
resort ’ has one entity ‘lake murray ’ whose category is ‘Reser-
voirs in South Carolina’. Task dictionary of this category
contains over 50 terms, and since all its terms may not be
equally relevant (either for query term prediction or query
expansion), its necessary to rank them with respect to the
query. Thus, we propose the following scoring mechanism
to find most suitable terms for a query given its entities and
their types respectively.

• We begin by finding entities in the query. An entity
may belong to several categories, for instance, entity
‘apple’ may belong to two categories- ‘company ’ and
‘fruit ’. Since all categories of an entity are not equally
important, we need to find the one that aligns best
with input query. For a given query qk with entity
mention ei that maps to category cj , we score cate-
gories with Eq 2.

mci = argmax
cj

cos(Qk, Cj) + jac(Qk, Cj)

2
(2)

where cos(Qk, Cj) is Cosine similarity between query
vector Qk, built from terms in the query and cate-
gory vector Cj , built from its task dictionary terms.
jac(Qk, Cj) is the Jaccard similarity between Cj and
Qk. For this work, we only consider query terms for
calculating the best category for an entity. Since, Jac-
card and Cosine are computationally quick to com-
pute, we use the average of both metrics to find most
likely category for an entity.

• For queries with multiple entities, we shall get terms
from different categories. We aggregate terms from
the best category of each entity in a single set. We
represent this set as T , where T = ∪mciSi, and Si is
the term dictionary of category mci. Since we need
only a few terms, we score terms tm ∈ T with respect
to the query using Eq 3.

score(tm, qk) = tf(tm,mci)

∑
wk∈Qk

PMI(tm, wk)

|Qk|
(3)

where PMI(tm, wk) represents the Pointwise Mutual
Information between query word wk, and task term
tm. tf(tm,mci) is the term frequency of term tm in
category mci. The objective of Eq 3 is to capture
both the importance of a term given a certain cate-
gory (tf(tm,mci)) and the average likelihood (PMI)
of that term occurring with the query terms. That is,
a term should not only be important in the category
but should also frequently co-occur with query terms.

We use the above method to rank terms both for term
prediction and query expansion. To summarize, we adopt
the following mechanism for evaluation:

Query Term Prediction: For each session, we use the
first query to predict terms in subsequent queries of the ses-
sion. We remove the overlapping terms between the base
query and subsequent queries in the session to avoid scor-
ing query terms twice during prediction. We also remove
stop words from this list. We ignore those sessions where
subsequent queries do not contain additional terms.

Query Expansion: For this work, we use the category
task dictionaries to expand a user query. An input query
is first tagged using Dexter, each entity is then mapped to
a single category. The system ranks terms from these cat-
egories and uses the top scored terms for expansion. We
choose top K terms to expand the query. Terms are ranked
using the approach above.

We refer to our approach as ENT in the tables. To con-
struct a dictionary of task phrases we use publicly available
2006 AOL query logs which consists of 20 mil search queries
issued by over 657000 users within 3 months. We empirically
determined the frequency thresholds to filter terms for tasks
in each category. For each category, we retain terms with
tf-Idf greater than 9. This was selected by manually sam-
pling and inspecting term quality of some categories. Table
2 summarizes the resulting task phrase dictionaries. In the

3statistically significant values are marked with * and high-
est values are in bold

1977

Table 3: Comparison of Retrieval results 3

2011 Session Track 2012 Session Track
METHOD MAP P@5 NDCG NDCG@10 MAP P@5 NDCG NDCG@10
No Exp 0.1004 0.1759 0.3021 0.1662 0.1618 0.3247 0.3465 0.2402
HTC 50 0.103 0.1828 0.3071 0.1655 0.1624 0.3294 0.349 0.2453
HTC 100 0.1025 0.1862 0.3067 0.1674 0.163 0.3318 0.3507 0.2486

QCC 50 0.1048 0.1828 0.3068 0.1686 0.1634 0.3341* 0.3483 0.2502*

QCC 100 0.1036 0.1897* 0.3069 0.1676 0.1631 0.3294 0.3495 0.2452

Ent 0.1086* 0.1828 0.3105* 0.1709 0.1609 0.3153 0.3464 0.2258

following section, we briefly explain the task extraction base-
lines used to compare our approach.

4.1 Task Extraction Baselines
As baselines, we use task identification approaches pro-

posed in [5] to find tasks in a session. They refer to a set
of (consecutive or otherwise) queries with same intent in a
session as a single task. Lucchese et al. [5] explore several
clustering methods to identify these tasks. We use QCC-
wcc (QCC), query clustering based on weighted connected
components, a graph based algorithm to identify tasks. It
builds a graph G = (V,E), whose nodes V are queries in
a session and edges E are weighted by the similarity of the
corresponding nodes. The aim is to drop edges with low sim-
ilarity, and to build clusters on the basis of the strong edges
which identify the related query pairs. We also compare
our approach with QCC-htc (HTC), which clusters queries
based on head-tail components, a variation of the connected
components based algorithm, which does not need to com-
pute the full similarity graph. We use the same similarity
functions proposed in the paper for both the algorithms. We
use similar parameter settings from [5] for both methods.

We use the following setup to compare our tasks with [5].
We begin by building a task index using tasks extracted by
QCC and HTC on a large query log. This is done to improve
real time task identification for a query. For an input query,
we retrieve top K tasks. The system then extracts and ranks
terms from these tasks based on their frequency in this set.

5. RESULTS AND DISCUSSION
The results of both query term prediction and query ex-

pansion are shown in Table 1 and Table 3 respectively.
Query Term Prediction: We use Session track 2011

and 2012 dataset with 145 sessions, with total of 456 terms,
i.e. an average of 3 terms per session. The table shows
precision values for term prediction at various cutoffs. For
a given query, we retrieve top 50 and 100 tasks using QCC
and HTC to extract terms. We follow the method in Section
4 to score terms from entity task dictionaries. Entity based
task dictionaries (ENT) perform significantly better for 2012
sessions but do not outperform the baselines QCC and HTC
for 2011 sessions.

Query expansion: We compare the both QCC and HTC
with 50 and 100 tasks each to retrieve top terms. We also
report results with no expansion- No Exp. We varied the
value of K and found K=25 to be ideal as addition of more
terms did not affect the retrieval performance. The re-
sults indicate that task based query expansion is effective
in improving performance. The results, however, indicate a
mixed performance of our approach on 2011 and 2012 ses-

Table 4: Evaluation on 2012 Exploratory Queries3

MAP Ndcg@10 Ndcg
No Exp 0.2108 0.3427 0.3873
HTC100 0.2171 0.3689* 0.3973*
QCC100 0.2153 0.3593* 0.3949*
ENT 0.2207* 0.3535* 0.4025*

sion dataset. While, we outperform the baselines on 2011
queries, for 2012, retrieval performance does not improve
with expansion.

On manually inspecting expansion terms, we observed
that task based query expansion is effective for queries ex-
ploratory in nature. Exploratory queries are more ambigu-
ous in nature, thus adding terms from different tasks re-
lated to the query would improve performance. On the other
hand, for specific queries, adding terms from different tasks
will only harm retrieval. Hence, task specific expansion does
not do well on specific queries. In 2012 dataset, there are
19 exploratory queries, for which our method outperform
the baseline. The results are shown in Table 4. We shall
perform further experiments to confirm this hypothesis.

6. CONCLUSION
In this work, we explored entity specific task extraction

from search logs. We evaluated the quality of extracted
tasks with Session track data. Empirical evaluation indi-
cates that terms associated with entity oriented tasks can
improve query expansion, especially for queries that are ex-
ploratory in nature. It can also predict subsequent query
terms in a session.

7. REFERENCES
[1] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani.

Dexter: An open source framework for entity linking. In ESAIR,
2013.

[2] P. Ferragina and U. Scaiella. Tagme: On-the-fly annotation of
short text fragments (by wikipedia entities). In CIKM, 2010.

[3] W. Hua, Y. Song, H. Wang, and X. Zhou. Identifying users’
topical tasks in web search. In WSDM, 2013.

[4] M. Ji, J. Yan, S. Gu, J. Han, X. He, W. V. Zhang, and Z. Chen.
Learning search tasks in queries and web pages via graph
regularization. In SIGIR, 2011.

[5] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Identifying task-based sessions in search engine query logs. In
WSDM, 2011.

[6] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Discovering tasks from search engine query logs. ACM Trans.
Inf. Syst., 2013.

[7] D. Milne and I. H. Witten. Learning to link with wikipedia. In
CIKM, 2008.

[8] Y. Xu, G. J. Jones, and B. Wang. Query dependent
pseudo-relevance feedback based on wikipedia. In SIGIR, 2009.

1978

