
thod
irec-
, a
data
tant
here
ered
can
uffer,
lor
and

rom
tion
oints
h as a
e the
n con-

this
ic sol-
dron,
phere,
oints
ular
gles,
h new
he
ry

that
soci-

hich
pro-
ata
oints
stant
ngle is
in the
Constant Time Queries on Uniformly Distributed Points on a

Hemisphere

Mel Slater
Department of Computer Science
University College London, UK

Abstract
A set of uniformly distributed points on a hemisphere is generated using a popular me

based on triangle subdivision. In applications, each data point (for example, representing a d
tion from a point on a surface) is typically associated with additional information (for example
radiance value). Given an arbitrary query point on the hemisphere we require the nearest
point from the given distribution. An algorithm is presented that finds the data point in cons
time, independently of the number of original points in the distribution. A portion of the hemisp
is rendered such that each point in the distribution has an associated set of quadrilaterals rend
with a unique color index for that point. The frame-buffer for the rendered hemisphere portion
be stored in off-screen memory. Any query point can be ‘rendered’ into this off-screen frame b
projected to a ‘pixel’ location, and the color index stored at this pixel location found. This co
index is a lookup into an array of the original data points. This algorithm is presented in detail,
an illustrative implementation in OpenGL is described.

Keywords
Uniform distribution, sphere, hemisphere, queries, query-point

1. INTRODUCTION

A ‘uniform’ distribution of points on a sphere may be used to represent a set of directions f
a point on a surface. This type of representation is important, for example, in global illumina
methods such as radiosity, and also light field rendering, for example [1][2]. In general data p
are generated on a hemisphere, but associated with each point is additional information - suc
radiance value. Now given some arbitrary query point on the hemisphere we need to retriev
nearest data point and its associated information. Ideally such queries should be executed i
stant time independent of the original number of data points.

There is no standard definition of what constitutes a ‘uniform’ distribution on a sphere, and
paper is not concerned with that issue. Methods are typically based on subdivisions of Platon
ids as discussed for example in [3] where a unit sphere is initially approximated by an icosahe
and each constituent equilateral triangle is subdivided and projected to the surface of the s
recursively to a given depth. We adopt the method described [1] which is concerned with p
distributed on a hemisphere. We approximate the hemisphere by the ‘top’ () half of a reg
octahedron, and again subdivide each constituent equilateral triangle, into four smaller trian
project the vertices to the surface of the sphere, and repeat the operation recursively for eac
triangle. At each level of recursion the triangle vertices will be ‘uniformly’ distributed over t
hemisphere. We call these vertices thedata pointson the hemisphere. Now given an arbitrary que
point on the hemisphere we require the nearest data point, in fact a pointer to information
includes the data point, since it is not usually the point itself that is of interest, but other data as
ated with it.

Although the points are uniformly distributed over the sphere there is no obvious way in w
to quickly find the nearest to the query point. The points are not uniformly distributed when
jected to the plane, so that partitioning into a regular grid and storing the d
points in a 2-dimensional array corresponding to this grid would not be suitable. The data p
either in 3D or in projected 2D could be stored in a K-D tree, but then of course there is no con
time search. In [3] a quad-tree type of data structure was used for searching, since each tria
subdivided into 4 and therefore may be considered as the parent of its 4 sub-triangles. Aga

z 0≥

z 0= 1 x y 1≤,≤–
1

as an
tions
lume.
sphere
ation

Sec-
on 4.

,
on-
b-
n in
em).

ay
this,

tri-
ints

than
edge
search time is dependent on the number of data points. [1] used the hemisphere subdivision
alternative to a hemicube in a proposed radiosity solution. However, in order to find the direc
corresponding to a patch, all relevant directions had to be compared with a patch bounding vo
Using the constant-time method described in this paper, a patch could be projected to a hemi
in approximately the same time as projecting it to a hemicube - i.e., making use of a rasteris
operation with constant time lookup for the hemisphere elements.

In the next Section we describe the method for generating the data points in more detail. In
tion 3 we describe a constant-time query method, and provide implementation details in Secti

2. Uniform Points on a Sphere

The vertices of the initial half octahedron in space are the apex and
, and . All points are on the unit sphere centered at the origin. We c

sider the first quadrant only for the moment, with vertices , and . Su
divide this triangle by bisecting each of the three sides, to form a set of 4 triangles, as show
Figure 1, and project the mid-points to the surface of the sphere (in other words normalize th
Now treat each new triangle in the same way recursively.

FIGURE 1. Triangle Subdivision

triangle(Point3D p,Point3D q,Point3D r,int depth)
{

Point3D pq,pr,qr,s,t,u;

if(depth < MaxDepth){
pq = (p+q)/2;
s = normalize(pq);
pr = (p+r)/2;
u = normalize(pr);
qr = (q+r)/2;
t = normalize(qr);
triangle(p,s,u,depth+1);
triangle(s,q,t,depth+1);
triangle(u,t,r,depth+1);
triangle(s,t,u,depth+1);

}
else{

report(p);
report(q);
report(r);

}
}

A call of triangle(p,q,r,0) will produce the required points. Note that some points m
be reported multiple times. The algorithm can be organized into a non-recursive one to avoid
but this is not relevant to the problem of queries.

It is easy to calculate the number of distinct points that will be generated. Call the initial
angle level 0. Then this has two rows, the first with one point and the second with two po

. Level 1 is shown in Figure 1 - this has three rows, each row with one more vertex
the next. Each time we go to another level we double the number of intervals on a triangle

z 0≥ 0 0 1, ,() 1 0 0, ,()
0 1 0, ,() 1 0 0, ,–() 0 1 0,–,()

p 0 0 1, ,() q 1 0 0, ,() r 0 1 0, ,()

p

q r

s

t

u

pqr
p()

q andr()
2

ere
here
that

d by
ota-

n 2.
3 and

rep-
1 and

ts to
nd
onto

s the
1 are
2 in

e tri-
ened
(such aspq), and the number of points is one plus the number of intervals. Hence if at level th
are points then at level there will be points on each edge. Since at level 0 t
are 2 points on each edge, at level there will be points. Another way to think of this is
the overall triangle consists of rows of points, where theith row consists ofi points. Hence
the total number of points at levell is:

(1)

Now this formulation will generate points on that ‘one quarter’ of the hemisphere bounde
the originalpqr triangle. It is easy to cover all of the hemisphere (in fact the whole sphere) by r
tions. We can partition thexy plane into five regions:

(2)

The algorithm above only generates points in Regions 0,1 and the first column of Regio
However, given a generated data point in Region 1 we can find equivalent points in regions 2,
4 by rotating it by multiples of 90 degrees around thez-axis.

Next consider storing each unique point in an array for later lookup or other processing. We
resent the generated points as if in a triangular array. For example, the points in Regions 0,
the first column of Region 2 would be represented as follows:

(3)

where and is the number of levels (or depth of recursion). If we were to generate poin
depth then the initial three points would be: . Now suppose that a

are two points on an edge that is to be bisected, then the mid-point of the edge projected
the sphere would be:

(4)

where ‘normalize’ projects the point to the surface of the unit sphere.
According to (2) the data points are assigned to the regions are as follows:

(5)

These triangular array coordinates are flattened into a linear array which store
data points generated for all 5 regions. We assign , and then the points in Region
assigned to the next contiguous block of array positions, followed by all the points of Region
the next block, and so on. An example for a level 2 subdivision is shown in Figure 2, where th
angular array indices are shown in the lighter font, and the corresponding position in the flatt

l
d l 1+ 2 d 1–() 1+

l 2l 1+
2l 1+

1 2 3 … 2l 1+()+ + + + 2l 1+() 2l 2+()
2

-------------------------------------=

Region 0:x 0 andy 0= =

Region 1:x 0 and y 0≥>
Region 2:x 0 and y 0>≤
Region 3:x 0 and y 0≤<
Region 4:x 0 and y 0<≥

p00

p10 p11,

p20 p21 p22, ,

…
pm0 pm1 … pmm, , ,

m 2l= l
l p p00= q, pm0= r, pmm= pij

pkl

pi k+
2

---------- j l+
2

---------,
normalize

pij pkl+

2

 =

Region 0:p00

Region 1:pij i 1 0 j≤ i<,≥,

Region 2:pij i 1 i j≤ 2i<,≥,

Region 3:pij i 1 2i j≤ 3i<,≥,

Region 4:pij i 1 3i j≤ 4i<,≥,

Dk k, 0 1 …, ,=
D0 p00=
3

r ,

ow

the

cor-
array in bold. In this scheme, the number of data points assigned to Region 1 is therefore 1 fo
two for the next row , three for the next row , and overall:

(6)

The point in Regions 0 or 1 will have:

(7)

elements in the rows ‘above’ it, the first is for , then for , and so on for each row up to r
. Hence for any point in Region 1, we have

(8)

For example, as shown in Figure 2. Given the array position of a point in Region 1,
equivalent points in Regions 2, 3 and 4 would, using (6), be allocated to array positions
for . For example, in Figure 2, , and the equivalent (rotated) points to
are respectively for Regions 2,3 and 4. However, in order to compute the position
responding to points with , we must use:

(9)

since is equivalent to in Region 1.

FIGURE 2. Assignment of Triangular Array Elements to a Flattened Array

p10

p20 p21, p30 p31 p32, ,

M 1 2 … m+ + + m m 1+()
2

-----------------------= =

pij

1 1 2 … i 1–()+ + + + 1 i i 1–()
2

-----------------+=

p00 p11

i 1–() pij

D
1 i i 1–()

2
----------------- j+ +

pij=

p32 D6= k
k R M⋅+

R 1 2 3, ,= M 10= p42 D9=
D19 D29 D39, ,

i j=

D
1 i i 1–()

2
----------------- M+ +

pii=

pii pi 0

00 10

11

20

21

22

30

31

32

33

40

41

42

44

43

12

13

23

24

25

26

27

34

35

36

37

38

39

3,10

3,11

45

46

47

48

49

4,10

4,11

4,12

4,13

4,14

4,15

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

26

27

28

29

30

25 31

32

33

34

35

36

37

38

39

40
4

-
func-

rary
data
the
as an

t. Each
f the

x at
f the

rian-
tex is
rtex.
The new version oftriangle will be as follows:

triangle(Point3D p, Address ap, Point3D q,Address aq,
Point3D r, Address ar, int depth)

{
Point3D pq,pr,qr,s,t,u;
Address as,au,at;

if(depth < MaxDepth){
pq = (p+q)/2; as = (ap+aq)/2;
s = normalize(pq);
pr = (p+r)/2; au = (ap+ar)/2;
u = normalize(pr);
qr = (q+r)/2; at = (ap+ar)/2;
t = normalize(qr);
triangle(p,ap,s,as,u,au,depth+1);
triangle(s,as,q,aq,t,at,depth+1);
triangle(u,au,t,at,r,ar,depth+1);
triangle(s,as,t,at,u,au,depth+1);

}
else{

putDirection(p,ap);
putDirection(q,aq);
putDirection(r,ar);

}
}

void putDirection(Point3D p, Address ap)
{

int j = getIndex(ap);

/*shown only for p in Region 1*/
D[j] = p;
D[j+M] = rotate90(p);
D[j+2*M] = rotate180(p);
D[j+3*M] = rotate270(p);

}

HereAddress is a tuple consisting of thei ,j indices of the conceptual triangular array. The func
tion getIndex takes an address and returns the position in the array using (8) and (9). The
tion putDirection is responsible for allocating points to the arrayD. What is shown is simplified
since it does not take into account boundary conditions such asi=j=0 , points with i=j and so on.
The full implementation is shown in the code accompanying the paper1.

3. Querying the Points on the Hemisphere

Now given the distribution of points, how would we execute a query? - i.e., given an arbit
point q on the hemisphere, find the array index of the nearest point amongst the distribution of
points. Restrictq to be in Region 0 or 1 for the moment. The fundamental idea is to render
hemisphere ‘quarter’ of Region 1 into the frame buffer, such that each generated data point h
associated set of polygons representing all the points on the hemisphere closest to that poin
such polygon is rendered with a ‘color index’ which corresponds exactly to the array index o
data point. The frame buffer is read back into a 2-dimensional array. Now given any pointq we
compute the pixel position to which it would be projected. We use that to look up the color inde
that position in the buffer, which gives us the closest corresponding generated point by way o
array look-up.

Figure 3 shows an example of how a triangle would be rendered. is the mid-point of the t
gle, and are the array indices of the vertices . Hence associated with each ver
a quadrilateral, and this is rendered with color index corresponding to the array index of that ve
After rendering, the frame buffer is read back into an array called, say,Pixel , wherePixel[Win-

dowSize*y+x] is the color index for pixel position (x ,y), and assuming a square window of width

1. http://www.cs.ucl.ac.uk/staff/m.slater/Papers/Sphere

c
ip i q i r, , p q andr,
5

frame-

for
-

ociated
rigin
ad-

ded.
mme-
iven
rdi-

en
itive
WindowSize . Now any query point is projected to the display in the sense that its (x ,y) pixel posi-
tion is computed (of course using the same viewing parameters as those used to create the
buffer), and then its color index can be looked up in thePixel array.

If the point is not in Region 0 or 1, then it may be rotated back to Region 1, the color index
Region 1 found, and then the appropriate multiple ofM (6) used to find the array position appropri
ate to its region.

The quarter hemisphere must, of course, be rendered such that each data point and its ass
quadrilateral is visible. This can be achieved for example, with a view direction through the o
and the centre of the initial triangle , looking at the inside of the hemisphere qu
rant. This is shown in Figure 4 for the case .

FIGURE 3. A Triangle is Partitioned into Quadrilaterals

FIGURE 4. The Quadrant of the Hemisphere

4. Implementation Issues

This algorithm can be implemented in OpenGL, and an illustrative implementation is provi
When the quadrant of the sphere is first rendered the modelview and projection matrices are i
diately recorded and multiplied together and the result stored for later use with query points. G
a query point, this matrix is used to multiply the point delivering a point in homogeneous coo
nates, which is divided by itsw coordinate to perform the projection. The projected point is th
transformed to window coordinates. Color index 0 should be reserved for black, and all pos

1 3⁄ 1 3⁄ 1 3⁄, ,()
l 5=

p

q r

c

ip

iq i r
6

array

ead-
olor
alues
data

re-
ated
color
color
d blue

ly on
to the
vided
nor-
ourse.
roject

prob-
data

levels
er of
, and
d that
the
een

te the

to
ona,
lag,

ing

al of

f the
a, and
color indices may be used to index points, hence the actual color index should be 1 plus the
index.

When the quadrant is rendered the framebuffer is immediately read into memory using glR
Pixels. This is then the two-dimensional array of color index values. Using the OpenGL c
index, however, may not always be appropriate since the supported number of color index v
may be less than what is required for a given level of recursion. The total number generated
points is (using (6)). However, the maximum color index required is that cor
sponding to the point which is . For 6 levels of recursion the number of points gener
on the sphere is 8321. On the SGI O2 on which the algorithm was implemented the maximum
index was 4096. On other systems it might be considerably less than this. Instead of using the
index as such, the array indices can be stored in RGB values, packed into the red, green an
fields.

The algorithm may not report correct results in two circumstances. First, a point not actual
the hemisphere may nevertheless return an index value - simply because it is projected in
framebuffer at a point where there is a non-zero color index. This should not be a problem pro
that the calling program always provides points known to be on the hemisphere, which would
mally be the case. Second, the rendered quadrilaterals are not exactly on the sphere of c
Hence it might be the case that a point on the hemisphere near the edges of Region 1 might p
to just outside the rendered region and pick up a zero color index. In order to overcome this
lem, if it occurs, the neighboring pixel positions are examined, and the one containing the
point which has the highest correlation with the query point is returned.

The implementation tested 1,000,000 pseudo-randomly generated query points at various
of recursion. The results are shown in Table 1. The ‘non results’ column refers to the numb
times out of 1,000,000 that the query point was projected to a black region of the framebuffer
all its surrounding pixels were also black. As can be seen, this event is rare, but it is expecte
this would occur more often for the lowest levels of recursion, since the approximation of
sphere by the quadrilaterals is at its worst. The correlation is the minimum correlation betw
query point and returned data point amongst all the valid results. Of course the time to execu
queries was the same for all levels of recursion.

References

[1] Gatenby, Neil; Hewitt, Terry. Radiosity in Computer Graphics: A Proposed Alternative
the Hemi-Cube Algorithm. In Second Eurographics Workshop on Rendering, Barcel
1991. Also reprinted in "Photorealistic Rendering in Computer Graphics", Springer-Ver
pp104-111.

[2] Camahort, E., Lerios, A., Fussell, D. (1998) Uniformly Sampled Light Fields, Render
Techniques'98, 117-130.

[3] Giraldo, F.X. (1997) Lagrange-Galerkin Methods on Spherical Geodesic Grids, Journ
Computational Physics, 136, 107-213.

Acknowledgements
This research is part of work funded by the UK EPSRC Senior Research Fellowship o

author. Thanks to Franco Tecchia, Yiorgos Chrysanthou, Jesper Mortensen, Pankaj Khann
Insu Yu for helpful comments and suggestions.

Table 1: Results for 1,000,000 Randomly Selected Query Points at Various Levels of Recursion

level
No. of Data

Points
No. of Non-

Results
Minimum

Correlation
3 145 48 0.9841
4 545 0 0.9958
5 2113 0 0.9988
6 8321 0 0.9996
7 33025 0 0.9999

1 2m m 1+()+
pmm 1 m2+
7

	Constant Time Queries on Uniformly Distributed Points on a Hemisphere
	Keywords
	1. INTRODUCTION
	2. Uniform Points on a Sphere
	3. Querying the Points on the Hemisphere
	4. Implementation Issues

