
Regularized Multi–Task Learning

Theodoros Evgeniou
Technology Management

INSEAD
Bd de Constance, 77300 Fontainebleau, France

theodoros.evgeniou@insead.edu

Massimiliano Pontil
Department of Computer Science

University College London
Gower St., London, WC1E 6BT UK

m.pontil@cs.ucl.ac.uk

ABSTRACT

Past empirical work has shown that learning multiple re-
lated tasks from data simultaneously can be advantageous
in terms of predictive performance relative to learning these
tasks independently. In this paper we present an approach
to multi–task learning based on the minimization of regu-
larization functionals similar to existing ones, such as the
one for Support Vector Machines (SVMs), that have been
successfully used in the past for single–task learning. Our
approach allows to model the relation between tasks in terms
of a novel kernel function that uses a task–coupling param-
eter. We implement an instance of the proposed approach
similar to SVMs and test it empirically using simulated as
well as real data. The experimental results show that the pro-
posed method performs better than existing multi–task learn-
ing methods and largely outperforms single–task learning us-
ing SVMs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning.

General Terms
Algorithms, Theory.

Keywords
Multi–Task Learning, Support Vector Machines, Regular-
ization, Kernel Methods.

1. INTRODUCTION

In many practical situations a number of statistical mod-
els need to be estimated from data. For example multi–
modal human computer interface requires the modeling of
both, say, speech and vision; machine vision problems may
themselves require the estimation of multiple models, for
example one for detecting each object, i.e. a face, from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

a pool of similar objects; in finance forecasting models for
predicting the value of many possibly related indicators si-
multaneously is often required; in marketing modeling the
preferences of many individuals simultaneously is common
practice [1, 2].

When there are relations between the tasks to learn, it can
be advantageous to learn all tasks simultaneously instead
of following the more traditional approach of learning each
task independently of the others. There has been a lot of
experimental work showing the benefits of such multi–task
learning relative to individual task learning when tasks are
related, see [4, 11, 15, 22]. There have also been various
attempts to theoretically study multi–task learning, see [4,
5, 6, 7, 8, 15, 23].

In this paper we develop methods for multi–task learning
that are natural extensions of existing kernel based learn-
ing methods for single task learning, such as Support Vec-
tor Machines (SVMs) [25]. To the best of our knowledge,
this is the first generalization of regularization–based meth-
ods from single–task to multi–task learning. We test an in-
stance of the proposed methods experimentally using both
simulated and real data. The experiments show that the
proposed method performs better than existing multi–task
learning methods and largely outperforms single–task learn-
ing.

1.1 Related Work
A statistical learning theory based approach to multi–task

learning has been developed in [5, 6] and [8]. In [6] the prob-
lem of bias learning is considered, where the goal is to choose
an optimal hypothesis space from a family of hypothesis
spaces. In [6] the notion of the “extended VC dimension”
(for a family of hypothesis spaces) is defined and it is used
to derive generalization bounds on the average error of T
tasks learned which is shown to decrease at best as 1

T
. In

[5] the same setup was used to answer the question “how
much information is needed per task in order to learn T
tasks” instead of “how many examples are needed for each
task in order to learn T tasks”, and the theory is developed
using Bayesian and information theory arguments instead of
VC dimension ones. In [8] the extended VC dimension was
used to derive tighter bounds that hold for each task (not
just the average error among tasks as considered in [6]) in
the case that the learning tasks are related in a particular
way defined.

The problem of multi–task learning has been also stud-
ied in the statistics literature. Breiman and Friedman [9]
propose the curds&whey method, where the relations be-

tween the various tasks are modeled in a post–processing
fashion. Brown and Zidek [10] consider the case of regression
and propose an extension of the standard ridge regression
to multivariate ridge regression. Finally, a number of ap-
proaches for learning multiple tasks or for learning to learn
[22] are Bayesian, where a probability model capturing the
relations between the different tasks is estimated simultane-
ously with the models’ parameters for each of the individ-
ual tasks. In [1, 2] a hierarchical Bayes model is estimated.
First, it is assumed that the parameters of the T functions to
be learned are all sampled from an unknown Gaussian distri-
bution. Then, an iterative Gibbs sampling based approach
is used to simultaneously estimate both the individual func-
tions and the parameters of the Gaussian distribution. In
this model relatedness between the tasks is captured by this
Gaussian distribution: the smaller the variance of the Gaus-
sian the more related the tasks are. Finally, [4, 15] suggest a
similar hierarchical model. In [4] a mixture of Gaussians for
the “upper level” distribution instead of a single Gaussian
is used. This leads to clustering the tasks, one cluster for
each Gaussian in the mixture.

1.2 Notation and Setup
We consider the following setup. We have T learning tasks

and we assume that all data for the tasks come from the
same space X × Y . For simplicity we assume that X ⊂ R

d

and Y ⊂ R. For each task we have m data points

{(x1t, y1t), (x2t, y2t) . . . , (xmt, ymt)}
sampled from a distribution Pt on X ×Y . So the total data
available is:

{{(x11, y11), . . . , (xm1, ym1)}, . . . {(x1T , y1T), . . . , (xmT , ymT)}}.

We assume that Pt is different for each task but that the Pt’s
are related – as, for example, considered in [8]. The goal is to
learn T functions f1, f2, . . . , fT such that ft(xit) ≈ yit. The
case T = 1 is the standard (single–task) learning problem.

There are various versions of this setup. A simpler version
is when the same input data xit are used for all the tasks.
That is, for every i ∈ {1, . . . , m} the vector xit is the same
for all t ∈ {1, . . . , T}, but the output values yit differ for
each t. This is for example the standard setup in marketing
applications of preference modeling [1, 2] where the same
choice panel questions (the same “x’s”) are given to many
individual consumers, each individual provides his/her own
preferences (the “y’s”), and we assume that there is some
commonality among the preferences of the individuals (the
“ft’s”). We consider this preference modeling application in
the experiments section below.

Clearly one can consider other scenarios, too. For ex-
ample: a) the case of having the same output (“y’s”) and
different inputs (“x’s”), which corresponds to the problem
of integrating information from heterogeneous databases [7];
or, b) the case of multi–modal learning or learning by com-
ponents, where the (x, y) data for each of the tasks do not
belong to the same space X × Y but data for task t come
from a space Xt×Yt – this is for example the machine vision
case of learning to recognize a face by first learning to rec-
ognize parts of the face, such as eyes, mouth, and nose [14].
Each of these related tasks can be learned using images of
different size (or different representations). The methods we
develop below may be extended to handle such scenarios, for

example through the appropriate choice of a matrix–valued
kernel [20] discussed in section 2.2.

2. METHODS FOR MULTI–TASK
LEARNING

For simplicity we first assume that function ft for the tth

task is a hyperplane, that is ft(x) = wt · x, where “·” de-
notes the standard inner product in R

d. The generalization
to nonlinear models will then be done through the use of
Reproducing Kernel Hilbert Spaces (RKHS), see for exam-
ple [20, 25, 26]. In the case of classification each yit takes
the values ±1, and ft is the sign of wt ·x. Below we consider
this case – regression can be treated similarly.

All previously proposed frameworks and methods for multi–
task learning (i.e. those discussed in the introduction) are
based on some formal definition of the notion of relatedness
of the tasks. This relatedness is then formalized through
the design of a multi–task learning method. For example,
hierarchical Bayesian methods [1, 2, 4, 15] assume that all
functions wt come from a particular probability distribution
such as a Gaussian. This implies that all wt are “close” to
some mean function w0 (the mean of the Gaussian).

We follow the intuition of Hierarchical Bayes [1, 2, 15]. In
particular we assume that all wt can be written, for every
t ∈ {1, . . . , T}, as

wt = w0 + vt (1)

where the vectors vt are “small” when the tasks are similar
to each other. In other words we assume that the tasks are
related in a way that the true models are all close to some
model w0 (playing the role of the mean of the Gaussian
used for Hierarchical Bayes [1, 2]). We then estimate all vt

as well as the (common) w0 simultaneously. To this end we
solve the following optimization problem which is analogous
to SVMs used for single task learning:

Problem 2.1.

min
w0,vt,ξit

{
J(w0,vt, ξit) :=

=
T∑

t=1

m∑
i=1

ξit +
λ1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2

}
(2)

subject, for all i ∈ {1, 2, . . . , m} and t ∈ {1, 2, . . . , T}, to the
constraints that

yit(w0 + vt) · xit ≥ 1 − ξit (3)

ξit ≥ 0.

In this problem, λ1 and λ2 are positive regularization param-
eters and the ξit are slack variables measuring the error that
each of the final models wt makes on the data. We therefore
impose a regularization constraint on the “average” model
w0 and control how much the solutions wt differ from each
other by controlling the size of the vt. Intuitively, for a fixed
value of λ2 a large value of the ratio λ1

λ2
, say λ1

λ2
> 100, will

tend to make the models to be the same model (that is, the
vt are nearly equal to zero), while for a fixed value of λ1

a small value of the ratio λ1
λ2

, say λ1
λ2

< 0.01, will tend to

make all the tasks unrelated (w0 nearly equal to zero). In

particular, when λ1 tends to infinity problem 2.1 reduces to
solving one single–task learning problem (finding w0, hav-
ing vt = 0 for every t ∈ {1, . . . , T}). On the other hand
when λ2 tends to infinity problem 2.1 reduces to solving the
T tasks independently (finding the vt, having w0 = 0).

Let w∗
0 and v∗

t be the optimal solution of problem 2.1
and w∗

t := w∗
0 + v∗

t . Our next observation shows a relation
between these quantities.

Lemma 2.1. The optimal solution to the multi–task opti-
mization method (3) satisfies the equation

w∗
0 =

λ1

λ2 + λ1

1

T

T∑
t=1

w∗
t . (4)

Proof. This result follows by inspecting the Lagrangian
function for problem 2.1. This is given by the formula

L(w0,vt, αit, γit) = J(w0,vt, ξit) −

−
T∑

t=1

m∑
i=1

αit(yit(w0 +vt) ·xit − 1+ ξit)−
T∑

t=1

m∑
i=1

γitξit (5)

where αit and γit are nonnegative Lagrange multipliers. Set-
ting the derivative of L with respect to w0 to zero gives the
equation

w∗
0 =

1

2λ2

T∑
t=1

m∑
i=1

αityitxit.

The same operation for vt gives, for every t ∈ {1, . . . , T},
the equation

v∗
t =

T

2λ1

m∑
i=1

αityitxit.

By combining these equations we obtain that

w∗
0 =

λ1

Tλ2

T∑
t=1

v∗
t .

The result now follows by this equation and equation (1).

This lemma suggests that we can replace w0 in equation
(3) with an expression of vt and obtain an optimization
problem which involves only the vt’s. Replacing wt’s for
the vt’s and choosing appropriate regularization parameters
instead, leads to the following lemma:

Lemma 2.2. The multi–task problem 2.1 is equivalent to
solving the following optimization problem:

Problem 2.2.

min
wt,ξit

{
T∑

t=1

m∑
i=1

ξit+

+ρ1

T∑
t=1

‖wt‖2 + ρ2

T∑
t=1

∥∥∥∥∥wt − 1

T

T∑
s=1

ws

∥∥∥∥∥
2

 (6)

subject, for all i ∈ {1, 2, . . . , m}, t ∈ {1, 2, . . . , T}, to the
constraints that

yitwt · xit ≥ 1 − ξit

ξit ≥ 0

where the parameters ρ1 and ρ2 are related to λ1 and λ2 by
the equations

ρ1 =
1

T

λ1λ2

λ1 + λ2
(7)

and

ρ2 =
1

T

λ2
1

λ1 + λ2
. (8)

Proof. Using equations (1) and (4), we rewrite the sta-
bilizer in the objective function J in equation (2) as

λ1
1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2 =

= λ1
1

T

T∑
t=1

‖wt‖2 − 1

T 2

λ2
1

λ1 + λ2

∥∥∥∥∥
T∑

t=1

wt

∥∥∥∥∥
2

. (9)

On the other hand the stabilizer in equation (6),

ρ1

T∑
t=1

‖wt‖2 + ρ2

T∑
t=1

∥∥∥∥∥wt −
∑T

s=1 ws

T

∥∥∥∥∥
2

(10)

can be rewritten as

(ρ1 + ρ2)

T∑
t=1

‖wt‖2+

+ρ2

 1

T

∥∥∥∥∥
T∑

t=1

wt

∥∥∥∥∥
2

− 2

T

(
T∑

t=1

wt

)
·
(

T∑
s=1

ws

) =

= (ρ1 + ρ2)
T∑

t=1

‖wt‖2 − ρ2
1

T

∥∥∥∥∥
T∑

t=1

wt

∥∥∥∥∥
2

. (11)

The result now follows by observing that equations (9) and
(11) coincide provided that ρ1 and ρ2 satisfy equations (7)
and (8).

Thus our regularization method finds a trade off between
small size parameter vectors for each model and closeness of
these model parameters to the average of the model param-
eters. In SVMs language we are finding a trade off between
each SVM having large margin (this quantity is defined as
1/‖wt‖) and having each SVM close to the average SVM.

2.1 Dual Optimization Problem
We now derive the dual of problem 2.1. To this end, one

may follow the standard duality theory approach, see e.g.
[19] to optimize the Lagrangian function (5). However, the
following observation allows us to directly link the dual of
problem 2.1 to the standard SVM dual problem, see e.g.
[25].

The set of functions ft(x) = wt · x, t = 1, . . . , T can be
identified by a real–valued function

F : X × {1, . . . , T} → R

defined as

F (x, t) = ft(x). (12)

Learning this function requires examples of the type ((x, t), y),
where (x, t) ∈ X × {1, . . . , T} and y ∈ {−1, 1}.

We assume that the reader is familiar with the notion of
feature map and of kernels, see e.g. [25] for a discussion. We
note that F can be represented by means of the feature map

Φ((x, t)) = (
x√
µ

,0, . . . ,0︸ ︷︷ ︸
t−1

,x,0, . . . ,0︸ ︷︷ ︸
T−t

) (13)

where we have denoted by 0 the vector in R
d whose coor-

dinates are all zero, µ = Tλ2
λ1

, and we are now estimating a
vector

w = (
√

µw0,v1, . . . ,vT).

By construction we have that

w · Φ((x, t)) = (w0 + vt) · x
and

‖w‖2 =
T∑

t=1

‖vt‖2 + µ‖w0‖2.

It is then clear that solving the SVM multi–task problem
(1) is equivalent to learning the function F in equation (12)
with a standard SVM which uses the kernel associated to the
feature map (13). Consequently, using the standard SVM
dual problem, see e.g. [25], we have the following theorem:

Theorem 2.1. Let C := T
2λ1

, µ = Tλ2
λ1

, and define the
kernel

Kst(x, z) :=

(
1

µ
+ δst

)
x · z, s, t = 1, . . . , T. (14)

The dual problem of 2.1 is given by

Problem 2.3.

max
αit

{
m∑

i=1

T∑
t=1

αit−

1

2

m∑
i=1

T∑
s=1

m∑
j=1

T∑
t=1

αisyisαjtyjtKst(xis,xjt)

}
(15)

subject, for all i ∈ {1, 2, . . . , m} and t ∈ {1, 2, . . . , T}, to the
constraints that the constraint that

0 ≤ αit ≤ C.

In addition, if α∗
it is a solution to the above problem, the

solution to problem 2.1 is given by

f∗
t (x) =

m∑
i=1

T∑
s=1

α∗
isKst(xis,x).

It is therefore required to select two parameters: the pa-
rameter C for the training error as in the standard SVM
case, and the parameter µ that captures the similarity be-
tween the tasks. These two parameters can be selected
for example using a validation set or using some form of
cross-validation. For example one may select µ through a
task-cross-validation process where instead of leaving train-
ing points out as done for the typical cross validation case,
tasks are left out. We do not have any theoretical justifi-
cation for doing this or any theory that can lead to some

method for selecting parameter µ, and we leave this as an
open question. In the experiments below we either report
the performances for all the parameters we tested (to see
their effects) or simply selected both C and µ among a small
number of choices (less than 20 pairs (C, µ) in total) based
on the actual test performance. As observed in [13] when
the number of test data is large (for all experiments below
we have more than 2800 test data in total for all the tasks)
then model selection among only a small number of models
leads to a choice that has actual test performance similar to
the one observed on the test data used.

Moreover, notice that solving the optimization problem
2.3 requires solving a standard SVM problem with Tm train-
ing data. Assuming that a standard SVM training method
is used which requires O([number of training data]3]) time,
this implies that to solve problem 2.3 we need O(T 3m3)
time. Instead, if we were to solve each task independently
we would only need O(Tm3) time. In the experiments be-
low, since we had only relatively small T s and ms, we did
not have any significant differences in the training time of
single versus multi-task SVM training. In many practical
applications, however, this may be an issue. Optimizing the
running time of the multi-task learning method we propose
is therefore an important practical issue that we leave as
an open problem. We conjecture that with an appropriate
choice of kernels and parameters C for each task it may be
possible to solve T independent SVMs that will lead to the
same solutions as the ones found using the proposed multi-
task learning method.

2.2 Non–linear multi–task learning

An important characteristic of SVM is that they can be
used to estimate highly non-linear functions through the use
of kernels [25]. We can clearly generalize the linear multi-
task learning method outlined above to the non-linear case
using kernels as is done for SVM. Morevoer, the above ob-
servation in theorem 2.1 can be generalized to include non–
linear multi–task learning. We simply learn F by using a
nonlinear feature map

Φ : X × {1, . . . , T} → H
where H is a separable Hilbert space (the feature space).
The kernel associated to Φ is

G((x, t), (z, s)) = 〈Φ((x, t)), Φ((z, s))〉
where 〈·, ·〉 is the inner product in H. In general we can
also consider situations where each task is trained on differ-
ent number of examples. That is, we sample our examples
((xi, ti), yi) ∈ (X × {1, . . . , T})×{−1, 1}, i = 1, . . . , N , and
learn the coefficients βi for the function

F (x, t) =
N∑

1=1

βiG((x, t), (xi, ti)) (16)

by solving the standard SVM dual problem with kernel G,
namely

Problem 2.4.

max
βi

{
N∑

i=1

βi − 1

2

N∑
i=1

N∑
j=1

βiyiβjyjG((xi, ti), (xj , tj))

}
(17)

subject to the constraint that βi ∈ [0, C] for every i.

In particular problem 2.3 reduces to problem 2.4 if we set
N = mT , define, for i ∈ {1, . . . , N}

xi = x(i mod T)(i mod m)

yi = y(i mod T)(i mod m)

and use the kernel

G((xi, ti), (xj , tj)) = Ktitj (xi,xj)

where K is given by equation (14) where we can replace
the dot product x · z with a nonlinear kernel as is done
for standard SVM. We note that the above ideas appear
in greater generality in [20] where the notion of operator–
valued kernels is derived.

3. EXPERIMENTS

We run two types of experiments. The first one is with
simulated data in order to study the behavior of the pro-
posed approach under varying conditions. We then tested
the method on a real dataset.

3.1 Simulated Data

We tested the proposed method using data that capture
the preferences of individuals (consumers) when they choose
among products. This is the standard problem of conjoint
analysis [1, 2] for preference modeling. It turns out [12] that
this problem is equivalent to solving a classification problem,
therefore the results we report below can be seen as results
for a classification problem.

We followed the basic simulation design used by other
researchers in the past. In particular we simply replicated
the experimental setup of [3, 12, 24]. For completeness we
briefly describe that setup.

We generated data describing products with 4 attributes
(i.e. size, weight, functionality, and ease–of–use of a prod-
uct), each attribute taking 4 values (i.e. very high value
(1000), high value (0100), low value (0010), very low value
(0001)). Therefore each product was represented by a 4×4 =
16 dimensional binary vector. Each question given to an in-
dividual consumer consists of 4 such (vectors) products to
choose from. Each question was subsequently transformed
into 6 data points (twice the number of comparisons of
the “winner” product among the four and the remaining
3 “loser” products) of 16 dimensions each that were used
for the classification learning problem corresponding to this
preference modeling problem [12]. Therefore the training
data for each task are 16-dimensonal vectors with elements
that take values only {+1,−1, 0} – the outcome of taking the
difference between two binary vectors describing two prod-
ucts. The questions were generated randomly. We generated
16 questions per individual, hence the individual classifica-
tion problems used 16×6 = 96 16–dimensional training data.
We simulated 100 or 30 individuals, hence we had a total of
100 (or 30) tasks: one task for each individual in order to es-
timate the “utility function” of that individual using his/her
responses to the 16 questions given represented with the ±1
labels (prefer or not prefer one product from another) of the
96 training data used for the classification problem for that
individual.

The four utility function coefficients (corresponding to
the four values an attribute can take) for each of the four
attributes were generated randomly from a Gaussian with

mean (
−β,−1

3
β,

1

3
β, β

)
.

We used the same Gaussian for each of the four attributes.
The actual utility function wt was therefore a vector

wt = (wt1, ..., wt4, wt5, ..., wt8, wt9, ..., wt12, wt12, ..., wt16)

where (wt1, ..., wt4), (wt5, ..., wt8), (wt9, ..., wt12), and
(wt12, ..., wt16) are four 4–dimensional vectors sampled from
the aforementioned Gaussian. Notice that the functions wt

we are estimating are real-valued, while the training data are
vectors with values only {+1,−1, 0} as described above. It
turns out that parameter β controls the noise of the data (i.e.
the response accuracy of the individual consumers) which is
modeled according to the assumptions of Hierarchial Bayes
(HB), see [1, 2]. As in [3, 12, 24] we used β = 3 for low noise
in the data and β = 0.5 for high noise in the data. We mod-
eled the similarity among the 100 (or 30) individuals, hence
the similarity among the 100 (or 30) tasks to be learned, by
varying the variance σ2 of the Gaussian from which the true
utility functions wt were generated. The covariance ma-
trix of the Gaussian was a diagonal matrix with all diagonal
elements being σ2. We modeled low similarity among the
tasks using σ2 = 3β, and high similarity using σ2 = 0.5β,
like again in [3, 12, 24]. As discussed in [3, 12, 24] these
parameters are chosen so that the range of average utility
functions, noise, and similarities among the preferences of
the individual consumers found in practice is covered.

Therefore in this experiment we tested all 2 × 2 scenarios
in terms of: a) the amount of noise in the data (low versus
high), and b) the similarity among the tasks to be learned
(low versus high). All experiments were repeated five times –
so a total of 500 (or 150) individual utility functions wt were
estimated – and the average performance is reported. We
used two measures of performance: a) the Root Mean Square
Error (RMSE) of the estimated utility functions relative to
the true (supposedly unknown) utility functions – an error
measure typically used for preference modeling [3, 12, 24];
b) the average hit errors (misclassification) of the estimated
functions on a test set of 16 questions per individual – hence
a total of 96 test data per individual for the corresponding
classification problem solved leading to 2880 and 9600 test
data for the 30 and 100 tasks cases, respectively. We note
that the conclusions are qualitatively the same for both error
measures, as also observed by [12, 24].

We compared our method with Hierarchical Bayes (HB)
[1, 2] which is considered to be a state of the art method for
preference modeling of a population of individual consumers.
It is important to note that in all cases we generated the
data in a way that gives an advantage to HB – that is, the
data were generated, as described above, according to the
probability distributions assumed by HB.

We tested various values (namely, 0.1, 0.5, 1, 2, 10, 1000)
of the task–coupling parameter µ used in the definition of
kernel (14) to examine its effects. We also tested the case
of using one SVM for all tasks as if we assume that all data
come from the same task – which corresponds to the limit
µ → 0. We did these for C = 0.1 and C = 1. In Figures 1
and 2 we show the effects of µ for C = 0.1 and for 30 and
100 tasks, respectively – the plots are similar for C = 1. We
report the results for RMSE – which are similar for the hit
test error. The left-most point at each graph is for solving
one SVM only for all tasks as if we assume that there is only

one task, corresponding to µ → 0 – clearly we do not log the
µ = 0 in the figure and we use instead a small µ to visualize
the results.

Firstly, the results show the importance of the parameter
µ, and that a wrong selection of µ may some times decrease
performance relative to solving T SVMs. This is for example
the case when the tasks have low similarity (the right side of
Figures 1 and 2) and we use a very small µ – where, in the
limit, using only one SVM for all the data as if there is only
one task (µ = 0) can hurt performance a lot. Moreover, the
optimal µ can have a significantly better performance than,
for example, a very large or a very small µ corresponding to
having T SVMs or 1 SVM for all tasks, respectively. It is
therefore important to select µ correctly, an issue for which
we do not have currently a method as discussed in section
2.1.

The results also show clearly the benefits of solving all
tasks simultaneously using the proposed method. The ad-
vantage of the proposed method relatively to learning each
task independently (estimating one utility function per in-
dividual) is higher when there is more similarity among the
tasks (similarity among the true utility functions of the in-
dividuals). Moreover, the proposed method performs sim-
ilarly or better than HB when µ is selected appropriately.
In Tables 1 and 2 we report the average performance of the
T independent SVMs, the performance of having a single
SVM for all tasks (as if we assume all data come from the
same task), the performance of HB, and the performance of
the proposed method for the best pair (C, µ) (from Figures 1
and 2) for both 30 and 100 tasks. Given that we have a large
test set (2880 and 9600 test data for the 30 and 100 tasks, re-
spectively) and we choose (C, µ) among only 2×6 = 12 pairs
(C, µ) ∈ {(0.1, 1) × (0.1, 0.5, 1, 2, 10, 1000)} (or just among
2 values of C (0.1, 1) for the T independent SVMs and for
the 1 SVM), the test performances we report are very close
to the actual test performances, as we discussed in section
2.1. Notice also that when there are few tasks (30 in this
case) the proposed method is relatively better than HB than
when there are many tasks (100 in this case).

Noise Similar HB µ = 0.1 T SVMs 1 SVM
H L 0.85 0.81∗ 0.84 1.32

26.14% 25.86%∗ 26.22% 38.2%
H H 0.90 0.86 0.97 0.96

31.03% 30.58% 31.60% 33.2%
L L 0.60 0.58∗ 0.65 1.00

14.34% 14.12%∗ 16.00% 24.1%
L H 0.48 0.46∗ 0.68 0.57

13.42% 13.19%∗ 17.11% 15.8%

Table 1: Comparison of methods using RMSE and
hit error rates. There are 30 individuals. The C
of both the T individual SVMs and the proposed
method is 0.1. Bold indicates best or not signif-
icantly different than best at p < 0.05. A ∗ indi-
cates best or not significantly different than best at
p < 0.10.

3.2 Using a Real Dataset

−4 −2 0 2 4 6 8
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

−4 −2 0 2 4 6 8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

−4 −2 0 2 4 6 8
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

−4 −2 0 2 4 6 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 1: Horizontal axis is the log(µ) (µ =
0.1, 0.5, 1, 2, 10, 1000) of the proposed method. As in
Table 1, the C of both the T individual SVMs and
the proposed method is 0.1. The Vertical axis is the
average RMSE of the estimated functions. Dashed
straight line is the RMSE of HB. Dotted horizon-
tal line is the average RMSE when we estimate one
SVM per individual. The solid line is the average
RMSE of the proposed method - the left-most point
at each graph is for solving one SVM only for all
tasks as if we assume that there is only one task - the
limit of µ = 0 (we don’t log µ = 0 clearly). There are
30 individuals. The C of both the individual SVMs
and of the proposed method is 0.1. Top: Noise is
low. Bottom: Noise is high. Left: Similarity of tasks
is high. Right: Similarity of tasks is low.

We also tested the method using the “school data” from
the Inner London Education Authority available at
multilevel.ioe.ac.uk/intro/datasets.html.
We selected this dataset to compare our method directly
with the work of [4] where a number of multi-task learn-
ing methods are compared using this dataset. This data
consists of examination records of 15362 students from 139
secondary schools. The goal is to predict the exam scores of
the students based on the following inputs: year of the exam,
gender, VR band, ethnic group, percentage of students eli-
gible for free school meals in the school, percentage of stu-
dents in VR band one in the school, gender of the school
(i.e. male, female, mixed), and school denomination. We
represented the categorical variables using binary (dummy)
variables, so the total number of inputs for each student in
each of the schools was 27. Since the goal is to predict the
exam scores of the students we run regression using the SVM
ε–loss function [25] for the multi–task learning method pro-
posed. We consider each school to be “one task”. Therefore
we had 139 tasks. We made 10 random splits of the data
into training (75% of the data, hence around 70 students
per school on average) and test (the remaining 25% of the
data, hence around 40 students per school on average) data
and we measured the generalization performance using the

−4 −2 0 2 4 6 8
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

−4 −2 0 2 4 6 8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−4 −2 0 2 4 6 8
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

−4 −2 0 2 4 6 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 2: Horizontal axis is the log(µ) (µ =
0.1, 0.5, 1, 2, 10, 1000) of the proposed method. As in
Table 1, the C of both the T individual SVMs and
the proposed method is 0.1. The Vertical axis is the
average RMSE of the estimated functions. Dashed
straight line is the RMSE of HB. Dotted horizon-
tal line is the average RMSE when we estimate one
SVM per individual. The solid line is the average
RMSE of the proposed method - the left-most point
at each graph is for solving one SVM only for all
tasks as if we assume that there is only one task - the
limit of µ = 0 (we don’t log µ = 0 clearly). There are
100 individuals. The C of both the individual SVMs
and of the proposed method is 0.1. Top: Noise is
low. Bottom: Noise is high. Left: Similarity of tasks
is high. Right: Similarity of tasks is low.

explained variance of the test data as a measure in order to
have a direct comparison with [4] where this error measure
is used. The explained variance is defined in [4] to be the
total variance of the data minus the sum–squared error on
the test set as a percentage of the total data variance, which
is a percentage version of the standard R2 error measure for
regression for the test data. Finally, we used a simple linear
kernel for each of the tasks.

The results for this experiment are reported in Table 3.
For comparison we also report the performance of the task
clustering method reported in [4]. We show the results for
all the parameters C and µ we tested, other than µ = 0 cor-
responding to having 1 SVM for all tasks. We let the ratio
µ = Tλ2

λ1
vary to see the effects. As with the previous exper-

iments, when µ is large we get the performance of solving
one SVM regression model per school (per task).

The results, although still preliminary, show the advan-
tage of learning all tasks (for all schools) simultaneously in-
stead of learning them one by one. Moreover, even the sim-
ple linear kernel (14) significantly outperforms the Bayesian
method of [4], which is in turn better than other methods
as compared in [4]. It turns out that for this dataset 1 SVM
for all tasks performs the same as the best performance we
report here for µ = 0.5, hence it appears that the particular

Noise Similar HB µ = 0.1 T SVMs 1 SVM
H L 0.81 0.79 0.82 1.31

24.65% 24.24% 24.98% 38.9%
H H 0.90 0.90 1.01 0.96

31.49% 31.48% 33.13% 33.0%
L L 0.59 0.58 0.66 0.98

13.97% 14.02% 15.57% 23.9%
L H 0.47 0.46 0.66 0.57

13.05% 13.28% 16.98% 15.8%

Table 2: Comparison of methods using RMSE and
hit rates. There are 100 individuals. The C of both
the T individual SVMs and the proposed method is
0.1. Bold indicates best or not significantly different
than best at p < 0.05. A ∗ indicates best or not
significantly different than best at p < 0.10

dataset is close to being from a single task (despite this ob-
servation, we use this dataset for direct comparison with [4])
– this indicates that when the tasks are the same task, using
the proposed multi-task learning method does not hurt as
long as a small enough µ is chosen.

µ = 0.5 34.30 ± 0.3 34.37 ± 0.4
µ = 1 34.28 ± 0.4 34.37 ± 0.3
µ = 2 34.26 ± 0.4 34.11 ± 0.4
µ = 10 34.32 ± 0.3 29.71 ± 0.4

µ = 1000 11.92 ± 0.5 4.83 ± 0.4

Bayesian 29.5 ± 0.4 29.5 ± 0.4

Table 3: School Data: first column shows the ex-
plained variance of the proposed method with C =
0.1 and second column with C = 1. The last row is
the explained variance for the Bayesian task cluster-
ing method of [4].

4. DISCUSSION

We presented a new method for multi–task learning using
a regularization approach. This is a natural extension of ex-
isting regularization based learning methods, such as SVMs,
from single–task to multi–task learning. We tested the ap-
proach using both simulated and real data, and compared
it with existing multi–task learning methods. The results
a) show the strength of the proposed approach relative to
other multi–task learning methods, and b) verify, in agree-
ment with past experimental work [4, 11, 15], the advantage
of multi–task learning relative to single task learning. The
proposed method also reduces to standard single–task learn-
ing when we set the task coupling parameter µ appearing in
the matrix–valued kernel (14) to be very large: hence there
is no risk using this multi–task learning method even when
the tasks are not related. It is a matter of choosing the
appropriate parameter µ, which may be possible to do for
example using some form of cross–validation or a validation
set [25]. How to select µ is currently an open problem which
we believe is also related to the general question of how to

model and measure the relatedness between tasks – e.g. how
do we know a priori that tasks are related?

A number of extensions of the methods discussed above
are possible. These concern for example the use of different
loss functions (i.e. square loss) and, especially, the use of
more general matrix–valued kernels. We discuss some of
these below.

• The learning methods presented in this paper concern
only SVMs with the Hinge loss function. These ideas
can be applied as well to other loss functions and con-
tinuous multi–task learning problems. In general this
problem is of the form

min
w

N∑
i=1

V (yi, 〈w, Φ(xi, ti)〉) + λ〈w,w〉

where V is the loss function and 〈·, ·〉 the inner prod-
uct in a feature space. For example, in the “school
dataset” each function is a regression function and we
used for V the ε–loss function of SVM regression [25].
In virtue of the representer theorem, see e.g. [20], the
solution to this problem, F ∗ = 〈w∗, Φ〉 has the form
in equation (16).

• We observed above that the regularizer in problem 2.2
(which is equivalent to problem 2.1) forces each model
parameters to be close to the average of the model
parameters. In many practical situations this assump-
tion may be too restrictive. Instead, we may know
that only tasks in some subgroups are similar to each
others. If I1, . . . , Ic ⊆ {1, . . . , T} denotes the (possi-
bly overlapping) index sets of these similar tasks, we
modify the stabilizer in problem 2.2 to be

ρ1

T∑
t=1

‖wt‖2 +
c+1∑
i=2

ρi

∑
t∈Ii

∥∥∥∥∥∥wt − 1

Ti

∑
s∈Ii

ws

∥∥∥∥∥∥
2

where Ti is the cardinality of the set Ii. We may even
consider learning these index sets. For example, one
way to do so would be to use the task clustering ap-
proach in [4].

• Equation (1) can be generalized in different ways by
means of nonlinear kernels. One immediate possibility
is to model ft as

ft = g + gt

where g is a function common to all tasks and gt are
individual functions for each task. If K1 is the kernel
used to model g and K2 is the kernel used to model
the gt, the matrix–valued kernel to be used in problem
2.4 becomes

Kst(x,z) :=
1

µ
K1(x, z) + δstK2(x,z), s, t = 1, . . . , T.

For example one can model g by a low-degree polyno-
mial and allow a higher degree polynomial kernel to
model the gt, for example K1(x, z) = x · z, K2(x, z) =
(x · z)2.

• Suppose each task/function uses different types of fea-
tures, that is we have a collection of sets, Xt, t =
1, . . . , T , and for each set we wish to learn a target
function gt : Xt → R. For example, we could have

Xt = R
dt , where dt are some positive integers. This

problem can be cast in the above framework by defin-
ing the input space

X := X1 × X2 × · · · XT

and the vector–valued function f : X → R
n whose

coordinates are given by ft(x) = gt(xt), where x =
(x1, . . . , xT) ∈ X .

For each s, t ∈ {1, . . . , T}, define the functions Cst :
Xs × Xt → R so that the matrix–valued kernel

Kst(x,z) = Cst(xs, zt), s, t ∈ {1, . . . , T}
satisfies the properties in Proposition 1 of [20], where
x = (x1, . . . , xT) and z = (z1, . . . , zT) ∈ X . In this
case the function

G((x, s), (z, t)) = Cst(xs, zt)

is a kernel (is it symmetric and positive definite) and
can be used in problem 2.4 indeed.

We leave the exploration of matrix–valued kernels for dif-
ferent types of multi–task learning applications as part of
future work. On the theoretical side another important
problem will be to study generalization error bounds for
the proposed methods. In particular, it may be possible to
link the matrix–valued kernels to the notion of relatedness
between tasks discussed in [8].

Acknowledgements

We wish to thank Sayan Mukherjee, Tomaso Poggio, and
especially Charlie Micchelli for useful discussions.

5. REFERENCES

[1] G.M. Allenby and P.E. Rossi. Marketing Models of
Consumer Heterogeneity. Journal of Econometrics,
89, p. 57–78, 1999.

[2] N. Arora G.M Allenby, and J. Ginter. A Hierarchical
Bayes Model of Primary and Secondary Demand.
Marketing Science, 17,1, p. 29–44, 1998

[3] N. Arora and J. Huber. Improving parameter
estimates and model prediction by aggregate
customization in choice experiments. Journal of
Consumer Research, Vol. 28, September 2001.

[4] B. Bakker and T. Heskes. Task clustering and gating
for Bayesian multi–task learning. Journal of Machine
Learning Research, 4: 83–99, 2003.

[5] J. Baxter. A Bayesian/Information Theoretic Model of
Learning to Learn via Multiple Task Sampling.
Machine Learning, 28, pp. 7–39, 1997.

[6] J. Baxter. A Model for Inductive Bias Learning.
Journal of Artificial Intelligence Research, 12, p.
149–198, 2000.

[7] S. Ben-David, J. Gehrke, and R. Schuller. A
Theoretical Framework for Learning from a Pool of
Disparate Data Sources. Proceedings of Knowledge
Discovery and Datamining (KDD), 2002.

[8] S. Ben-David and R. Schuller. Exploiting Task
Relatedness for Multiple Task Learning. Proceedings
of Computational Learning Theory (COLT), 2003.

[9] L. Breiman and J.H Friedman. Predicting
Multivariate Responses in Multiple Linear Regression.
Royal Statistical Society Series B, 1998.

[10] P.J. Brown and J.V. Zidek. Adaptive Multivariate
Ridge Regression. The Annals of Statistics, Vol. 8,
No. 1, p. 64–74, 1980.

[11] R. Caruana. Multi–Task Learning. Machine Learning,
28, p. 41–75, 1997.

[12] T. Evgeniou, C. Boussios, and G. Zacharia.
Generalized Robust Conjoint Estimation. INSEAD
Working Paper, 2002.

[13] T. Evgeniou, M. Pontil, and T. Poggio. Regularization
networks and support vector machines. Advances in
Computational Mathematics, 13:1–50, 2000.

[14] B. Heisele, T. Serre, M. Pontil, T. Vetter, and
T. Poggio. Categorization by Learning and Combining
Object Parts. In: Advances in Neural Information
Processing Systems 14, Vancouver, Canada, Vol. 2,
1239–1245, 2002.

[15] T. Heskes. Empirical Bayes for learning to learn.
Proceedings of ICML–2000, ed. Langley, P., pp.
367–374, 2000.

[16] M.I. Jordan and R.A. Jacobs. Hierarchical Mixtures of
Experts and the EM Algorithm. Neural Computation,
1993.

[17] J. Kim, G.M. Allenby, and P.E. Rossi. Modeling
Consumer Demand for Variety. Marketing Science,
Vol. 21, No. 3, pp. 229–250, Summer 2002.

[18] G.R.G. Lanckriet, T. De Bie, N. Cristianini,
M.I. Jordan, and W.S. Noble. A framework for
genomic data fusion and its application to membrane
protein prediction. Technical Report CSD–03–1273,
Division of Computer Science, University of
California, Berkeley, 2003.

[19] O.L. Mangasarian. Nonlinear Programming. Classics
in Applied Mathematics. SIAM, 1994.

[20] C.A. Micchelli and M. Pontil. On Learning
Vector–Valued Functions. Research Note RN/03/08,
Dept of Computer Science, UCL, July 2003.

[21] D.L. Silver and R.E Mercer. The parallel transfer of
task knowledge using dynamic learning rates based on
a measure of relatedness. Connection Science, 8, p.
277–294, 1996.

[22] S. Thrun and L. Pratt. Learning to Learn. Kluwer
Academic Publishers, November 1997.

[23] S. Thrun and J. O’Sullivan. Clustering Learning Tasks
and the Selective Cross–Task Transfer of Knowledge.
In Learning To Learn, Editors S. Thrun and L.Y.
Pratt, Kluwer Academic Publishers, 1998.

[24] O. Toubia, D.I. Simester, J.R. Hauser, and E. Dahan.
Fast Polyhedral Adaptive Conjoint Estimation.
Working paper, MIT Sloan School of Management,
2001.

[25] V. N. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

[26] G. Wahba. Splines Models for Observational Data.
Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

