A kernel method for multi-labelled classification

André Elisseeff and Jason Weston
BlOwulf Technologies, 305 Broadway, New York, NY 10007
{andre, j ason}@ar hi I I t echnol ogi es. com

Abstract

This article presents a Support Vector Machine (SVM) like learning sys-
tem to handle multi-label problems. Such problems are usually decom-
posed into many two-class problems but the expressive power of such a
system can be weak [5, 7]. We explore a new direct approach. It is based
on a large margin ranking system that shares a lot of common proper-
ties with SVMs. We tested it on a Yeast gene functional classification
problem with positive results.

1 Introduction

Many problems in Text Mining or Bioinformatics are multi-labelled. That is, each point
in a learning set is associated to a set of labels. Consider for instance the classification
task of determining the subjects of a document, or of relating one protein to its many
effects on a cell. In either case, the learning task would be to output a set of labels whose
size is not known in advance: one document can for instance be about food, meat and
finance, although another one would concern only food and fat. Two-class and multi-class
classification or ordinal regression problems can all be cast into multi-label ones. This
makes the latter quite attractive but at the same time it gives a warning: their generality
hides their difficulty to solve them. The number of publications is not going to contradict
this statement; we are aware of only a few works about the subject [4, 5, 7] and they all
concern text mining applications.

In Schapire and Singer’s work about Boostexter, one of the only general purpose multi-
label ranking systems [7], they observe that overfitting occurs on learning sets of relatively
small size (< 1000). They conclude that controlling the complexity of the overall learning
system is an important research goal. The aim of the current paper is to provide a way
of controlling this complexity while having a small empirical error. For that purpose, we
consider only architectures based on linear models and follow the same reasoning as for the
definition of Support Vector Machines [1]. Defining a cost function (section 2) and margin
for multi-label models, we focus our attention mainly on an approach based on a ranking
method combined with a predictor of the size of the sets (section 3 and 4). Sections 5 and
6 present experiments on a toy problem and on a real dataset.

2 Cost functions

Let X = R? be a d-dimensional input space. We consider as an output space the space
Y formed by all the sets of integer between 1 and) identified here as the labels of the

learning problem. Such an output space contains 2% elements and one output corresponds
to one set of labels. The learning problem we are interested in is to find from a learning set
S ={(z1,Y1),--, @m, Ym)} C (X xY)™, drawn identically and independently from
an unknown distribution D, a function f such that the following generalization error is as
low as possible:

R(f) = E(z,x)~p [c(f;2,Y)] @
The function ¢ is a real-valued loss and can take different forms depending on how f(z) is
computed. Here, we consider only linear models. Given @) vectors wy, .. ., wg and () bias
bi,...,bg, we follow two schemes:

With the binary approach: f (z) = sign ((w1,) + b1, ..., {wg,z) + bg), where the sign
function applies component-wise. The value of f(x) is a binary vector from which the set
of labels can be retrieved easily by stating that label & is in the set iff sign({wg,) +bx) > 0.
For example this can be achieved by using a SVM for each binary problem and applying
the latter rule [4].

With the ranking approach: assume that s(x), the size of the label set for the input z, is
known. We define: ri(z) = (wg, x) + b and consider that a label & is in the label set of
iff ri () is among the largest s(x) elements (r1(x), .., 7g(z)). The algorithm Boostexter
[7] is an example of such a system. The ranking approach is analyzed more precisely in
section 3.

We consider the same loss functions as in [7] for any multi-label system built from real
functions (f1, ., f@). It includes the so-called Hamming Loss defined as

HL(f,2,Y) = % | (@)AY|

where A stands for the symmetric difference of sets. When |Y| = 1 a multi-label sys-
tem is in fact a multi-class one and the Hamming Loss is % times the loss of the usual
classification loss. We also consider the one-error:

__ [0 ifargmax, fr(z) € Y
Lerr(f,,Y) = {1 otherwise
which is exactly the same as the classification error for multi-class problems (it ignores the
rankings apart from the highest ranked one and so does not address the quality of the other
labels).

Other losses concern only ranking systems (a system that specifies a ranking but no set size
predictor s(x)). Let us denote by Y the complementary set of Y in {1,..,Q}. We define
the Ranking Loss [7] to be:

RL(f,z,Y) €Y xY st r(z) < rj(a:)| (2

1
<o |(54)
i ¢
It represents the average fraction of pairs that are not correctly ordered. For ranking sys-

tems, this loss is natural and is related to the precision which is a common error measure
in Information Retrieval:

Hl € Y st r(x) > rp()}
€{1,.,Q} st r(z) > ri(z)}|

from which a loss can be directly deduced. All these loss functions have been discussed
in [7]. Good systems should have a high precision and a low Hamming or Ranking Loss.
We do not consider the one-error to be a good loss for multi-label systems but we retain it
because it was measured in [7].

precision(f,z,Y) = % > {1

keEY

For multi-label linear models, we need to define a way of minimizing the empirical error
measured by the appropriate loss and at the same time to control the complexity of the
resulting model. A direct method would be to use the binary approach and thus take the
benefit of good two-class systems. However, as it has been raised in [5, 7], the binary
approach does not take into account the correlation between labels and therefore does not
capture the structure of some learning problems. We propose here to instead focus on the
ranking approach. This will be done by introducing notions of margin and regularization
as has been done for the two-class case in the definition of SVMs.

3 Ranking based system

Our goal is to define a linear model that minimizes the Ranking Loss while having a large
margin. For systems that rank the values of {wy,z) + by, the decision boundaries for =
are defined by the hyperplanes whose equations are (wy — wy,) + by, — b; = 0, where &
belongs to the label sets of 2 and [does not. So, the margin of (x, Y) can be expressed as:

(wp —wy,x) + by — by

min
kEY,lEY [lw — wl|
It represents the signed £ distance of x to the decision boundary. Considering that all the
data in the learning set S are well ranked, we can normalize the parameters wy, such that:
(wp, —wy,) + b —by > 1
with equality for some z € S, and (k,I) € Y x Y. Maximizing the margin on the whole
learning set can then be done via the following problem:

. . _ 1
w; ,E'I;al),(--,Q (2, Y)es MMk Y 1€V Ty —wi]]? 3
subjectto: (wyp — wy, ;) + by, — b > 1, (k1) € Y; xY; 4)

In the case where the problem is not ill-conditioned (two labels are always co-occurring),
the objective function can be replaced by: max,,; miny ; ”—15 = min,,, maxy [Jw—

wi—wi]
wi||?. In order to get a simpler optimization procedure we approximate this maximum by
the sum and, after some calculations (see [3] for details), we obtain:

Q
. 2 5
wyi=1,Q k; el (5)
subjectto: (wyp —wy,z;) + by, — b > 1, (k1) € Y; xY; (6)

To generalize this problem in the case where the learning set can not be ranked exactly we
follow the same reasoning as for the binary case: the ultimate goal would be to maximize
the margin and at the same time to minimize the Ranking Loss. The latter can be expressed
quite directly by extending the constraints of the previous problems. Indeed, if we have
(wg —wy, ;) + b — by > 1 — &y for (k,1) € Y; x Y, then the Ranking Loss on the
learning set S is:

e~ 1
1q~_ 1 O(=1+ &ina)
m ; IYal[Yil | ,e(ng,-)

where @ is the Heaviside function. As for SVMs we approximate the functions 8(—1+&;x;)
by only &;x; and this gives the final quadratic optimization problem:

Q m
1
min Z llwell* + CZ ST Z ikt)
Wi =@ k=1 = [YallYil (k1)EY; x Y:
subjectto: (wy —wy, ;) + by — by > 1 — &y, (k1) €Y x Y (8)

&ire >0)

In the case where the label sets Y; all have a size of 1 we find the same optimization prob-
lem as has been derived for multi-class Support Vector Machines [8]. For this reason, we
call the solution of this problem a ranking Support Vector Machine (Rank-SVVM). Another
common property with SVM is the possibility to use kernels rather than linear dot prod-
ucts. This can be achieved by computing the dual of the former optimization problem. We
refer the reader to [3] for the dual formluation and to [2] and references therein for more
information about kernels and SVMs.

Solving a constrained quadratic problem like those we just introduced requires an amount
of memory that is quadratic in terms of the learning set size and it is generally solved in
O(m?) computational steps where we have put into the O the number of labels. Such a
complexity is too high to apply these methods in many real datasets. To circumvent this lim-
itation, we propose to use a linearization method in conjunction with a predictor-corrector
logarithmic barrier procedure. Details are described in [3] with all the calculations relative
to the implementation. The memory cost of the method then becomes O(mQQ ,.q.) Where
Qmar = max; |Y;| is the maximum number of labels. In many applications @ is much
larger than Q... The time cost of each iteration is O(m?Q).

4 Set size prediction

So far we have only developed ranking systems. To obtain a complete multi-label system
we need to design a set size predictor s(x). A natural way of doing this is to look for
inspiration from the binary approach. The latter can indeed be interpreted as a ranking
system whose ranks are derived from the real values (f1, .., fg). The predictor of the set
size is then quite simple: s(z) = |{fr(z) > 0}] is the number of f;, that are greater than 0.
The function s(z) is computed from a threshold value that differentiates labels in the target
set from others. For the ranking system introduced in the previous section we generalize
this idea by designing a function s(z) = |{fx(x) > t(x)}|. The remaining problem now
is to choose #(z) which is done by solving a learning problem. The training data are
composed by the (f1(x;), .., fo(x:)) given by the ranking system, and by the target values
defined by:

t(z;) = argmin, [{k € Y s.t. fr(z;) <t} + [{k € Y st fr(zi) > t}]

When the minimum is not unique and the optimal values are a segment, we choose the
middle of this segment. We refer to this method of predicting the set size as the threshold
based method. In the following, we have used linear least squares, and we applied it not
only to Rank-SVM but also to Boostexter in order to transform these algorithms from
ranking methods to multi-label ones.

Note that we could have followed a much simpler scheme to build the function s(z). A
naive method would be to consider the set size prediction as a regression problem on the
original training data with the targets (|'Y;|)i=1,..,., and to use any regression learning
system. This however does not provide a satisfactory solution mainly because it does not
take into account how the ranking is performed. In particular, when there are some errors in
the ranking, it does not learn how to compensate these errors although the threshold based
approach tries to learn the best threshold with respect to these errors.

5 Toy problem

As previously noticed the binary approach is not appropriate for problems where correla-
tion between labels exist. To illustrate this point consider figure 2. There are only three la-
bels. One of them (label 1) is present for all points in the learning set. The binary approach
leads to a system that will fail to separate, for instance, points with label 3 from points of

label sets not containing 3, that is, on points of label 1 and 2. We see then that the express-
ible power of a binary system can be quite low when simple configurations occur. If we
consider the ranking approach, one can imagine the following solution: wy = 0, b1 = oo,
(ws, by) is the hyperplane separating class 2 from class 3, and (w3, b3) = —(w2,bs). By
taking the number of labels at point z to be s(z) = {(w,z) + b where w = (—1,1) and
b = 0, we have a simple multi-label system that separates all the regions exactly.

Figure 2: Three labels and three
regions in the input space. The upper
left region is labelled with 1. The
bottom right region is partitioned into
two sub-regions with labels 1,2 or 1, 3.

To make this point more concrete we sampled 50 points uniformly on [0, 1]? and solved all
optimization problems with C' = oo. On the learning set the Hamming Loss for the binary
approach was 0.08 although for the direct approach it was 0 as expected.

6 Experimentson real data

Yeast

Saccharomyces cerevisiae

" Cell. Rescue,
L X T 1 || Transport L :0’“0 Defense, Cell Death
1 and Aging

Protein (Cell. Transport) | | eljular Cell. communication,
. .

Synthesis —{Transport Signal Ti
lechanism:

H Energy

Cell Growth, Protein Cellular [Transposable elements

7331\515';:‘5"’?:55 Destination | — Biogenesis iral and Plasmid proteins

YALO41W

Figure 3: First level of the hierarchy of the gene functional classes. There are 14 groups.
One gene, for instance the gene YAL041W can belong to different groups (shaded in grey
on the figure).

The Yeast dataset is formed by micro-array expression data and phylogenetic pro-
files with 1500 genes in the learning set and 917 in the test set. The input dimen-
sion is 103. Each gene is associated with a set of functional classes whose max-
imum size can be potentially more than 190. This dataset has already been ana-
lyzed with a two-class approach [6] and is known to be difficult. In order to make
it easier, we used the known structure of the functional classes. The whole set of
classes is indeed structured in a tree whose leaves are the functional categories (see
http://m ps. gsf.de/ proj/yeast/catal ogues/funcat/ for more details). Given
a gene, knowing which edge to take from one level to another leads directly to a leaf and

thus to a functional class. Here we try to predict which edge to take from the root to the
first level of the tree (see figure 3).

Since one gene can have many functional classes this is a multi-label problem: one gene is
associated to different edges. We then have) = 14 and the average number of labels for
all genes in the learning set is 4.2 £+ 1.6. We assessed the quality of our method from two
perspectives. First as a ranking system with the Ranking Loss and the precision. In that
case, for the binary approach, the real outputs of the two-class SVMs were used as ranking
values. Second, the methods were compared as multi-label systems using the Hamming
Loss. We computed the latter for the binary approach used in conjunction with SVMs, for
the Rank-SVM and for Boostexter. To measure the Hamming Loss with Boostexter we used
a threshold based s(z) function in combination with the ranking given by the algorithm.

Rank-SVM Binary-SVM
degree 2 | 3] 4 1 5 2 | 3] 4 1 5
Precision 0.703 | 0.740 | 0.746 | 0.762 | 0.692 | 0.721 | 0.714 | 0.753
Ranking Loss 0.227 | 0.191 | 0.190 | 0.175 | 0.241 | 0.212 | 0.196 | 0.184
Hamming Loss || 0.238 | 0.217 | 0.209 | 0.201 || 0.247 | 0.224 | 0.211 | 0.207
one-error 0.334 | 0.262 | 0.255 | 0.232 || 0.341 | 0.306 | 0.267 | 0.250

Figure 4: Polynomials of degree 2-5. Loss functions for the rank-SVM and the binary
approach based on two-class SVMs. Considering the size of the problem, two values dif-
ferent from less than 0.01 are not significantly different. Bold values represent superior
performance comparing classifiers with the same kernel.

For rank-SVMs and for two-class SVMs in the binary approach we choose polynomial
kernels of degrees two to nine (experiments on two-class problems using the Yeast data in
[6] already showed that polynomial kernels were appropriate for this task). Boostexter was
used with the standard stump weak learner and was stopped after 1000 iterations. Results
are reported in tables 4, 5 and 6.

Rank-SVM Binary-SVM
degree 6 [7] 8 1 9 6 | 7] 8 [9
Precision 0.765 | 0.770 | 0.773 | 0.769 | 0.760 | 0.765 | 0.770 | 0.769
Ranking Loss || 0.170 | 0.166 | 0.163 | 0.163 || 0.176 | 0.170 | 0.165 | 0.164
Hamming Loss || 0.199 | 0.198 | 0.196 | 0.197 || 0.200 | 0.199 | 0.195 | 0.195
one-error 0.232 | 0.223 | 0.217 | 0.225 || 0.232 | 0.227 | 0.218 0.226

Figure 5: Polynomials of degree 6-9. Loss functions for the rank-SVM and the binary
approach based on two-class SVMs. Considering the size of the problem, two values dif-
ferent from less than 0.01 are not significantly different. Bold values represent superior
performance comparing classifiers with the same kernel.

| || Boostexter (1000 iterations) |

Precision 0.717
Ranking Loss 0.298
Hamming Loss 0.237

one-error 0.302

Figure 6: Loss functions for Boostexter. Note that these results are worse than with the
binary approach or with rank-SVM.

Note that Boostexter performs quite poorly on this dataset compared to SVM-based ap-
proaches. This may be due to the simple decision function realized by Boostexter. One

of the main advantages of the SVM-based approaches is the ability to incorporate priori
knowledge into the kernel and control complexity via the kernel and regularization. We
believe this may also be possible with Boostexter but we are not aware of any work in this
area.

To compare the binary and the rank-SVM we put in bold the best results for each kernel.
For all kernels and for almost all losses, the combination ranking based SVM approach is
better than the binary one. In terms of the Ranking Loss, the difference is significantly in
favor of the rank-SVM. It is consistent with the fact that this system tends to minimize this
particular loss function. It is worth noticing that when the kernel becomes more and more
complex the difference between rank-SVM and the binary method disappears.

7 Discussion and conclusion

In this paper we have defined a whole system to deal with multi-label problems. The main
contribution is the definition of a ranking based SVM that extends the use of the latter to
many problems in the area of Bioinformatics and Text Mining.

We have seen on complex, real data that rank-SVMs lead to better performance than Boost-
exter and the binary approach. On its own this could be interpreted as a sufficient argument
to motivate the use of such a system. However, we can also extend the rank-SVM sys-
tem to perform feature selection on ranking problems [3] . This application can be very
useful in the field of bioinformatics as one is often interested in interpretability of a multi-
label decision rule. For example one could be interested in a small set of genes which is
discriminative in a multi-condition physical disorder.

We have presented only first experiments using multi-labelled systems applied to Bioinfor-
matics. Our future work is to conduct more investigations in this area.

References

[1] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Fifth
Annual Workshop on Computational Learning Theory, pages 144-152, Pittsburgh, 1992. ACM.

[2] N. Cristianini and J. Shawe-Taylor. Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2000.

[3] André Elisseeff and Jason Weston. Kernel methods for multi-labelled classification and cate-
gorical regression problems. Technical report, BIOwulf Technologies, 2001. http://www.bht-
labs.com/public/.

[4] T. Joachims. Text categorization with support vector machines: learning with many relevant
features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th Eu-
ropean Conference on Machine Learning, number 1398, pages 137-142, Chemnitz, DE, 1998.
Springer Verlag, Heidelberg, DE.

[5] A. McCallum. Multi-label text classification with a mixture model trained by em. AAAI’'99
Workshop on Text Learning., 1999.

[6] P. Pavlidis, J. Weston, J. Cai, and W.N. Grundy. Combining microarray expression data and
phylogenetic profiles to learn functional categories using support vector machines. In RECOMB,
pages 242-248, 2001.

[7] R.E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Ma-
chine Learning, 39(2/3):135-168, 2000.

[8] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report 98-04, Royal
Holloway, University of London, 1998.

