
A DC-Programming Algorithm for Kernel Selection

Andreas Argyriou a.argyriou@cs.ucl.ac.uk

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Raphael Hauser raphael.hauser@comlab.ox.ac.uk

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Charles A. Micchelli

Department of Mathematics and Statistics, State University of New York, The University at Albany, 1400
Washington Avenue, Albany, NY, 12222, USA

Massimiliano Pontil m.pontil@cs.ucl.ac.uk

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Abstract

We address the problem of learning a kernel
for a given supervised learning task. Our ap-
proach consists in searching within the con-
vex hull of a prescribed set of basic kernels for
one which minimizes a convex regularization
functional. A unique feature of this approach
compared to others in the literature is that
the number of basic kernels can be infinite.
We only require that they are continuously
parameterized. For example, the basic ker-
nels could be isotropic Gaussians with vari-
ance in a prescribed interval or even Gaus-
sians parameterized by multiple continuous
parameters. Our work builds upon a formula-
tion involving a minimax optimization prob-
lem and a recently proposed greedy algorithm
for learning the kernel. Although this opti-
mization problem is not convex, it belongs to
the larger class of DC (difference of convex
functions) programs. Therefore, we apply re-
cent results from DC optimization theory to
create a new algorithm for learning the ker-
nel. Our experimental results on benchmark
data sets show that this algorithm outper-
forms a previously proposed method.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

1. Introduction

An essential ingredient in a wide variety of machine
learning algorithms is the choice of the kernel. The
performance of the algorithm is affected by which ker-
nel is used. Commonly used kernels are Gaussian or
polynomial ones. However, there are additional possi-
ble classes of kernels one can use. Recent interest has
focused on the question of learning the kernel from a
prescribed family of available kernels, K, which is of-
ten required to be convex. Generally, the method is
to specify an objective function of the kernel and to
optimize it over K. This task has been pursued from
different perspectives, see (Argyriou et al., 2005; Bach
et al., 2004; Lanckriet et al., 2004; Lin & Zhang, 2003;
Micchelli & Pontil, 2005; Ong et al., 2003; Sonnenburg
et al., 2006) and references therein. An essential aspect
of our perspective is that we consider the convex hull of
a continuous parameterized family. For example, the
family of Gaussians whose covariance is an arbitrary
positive multiple of the identity matrix, or the family
of polynomial kernels of arbitrary degree. This point
of view avoids deciding in advance which finite set of
variances must be chosen to specify a finite set of ker-
nels whose convex hull is then considered, see (Bach
et al., 2004; Lanckriet et al., 2004; Lin & Zhang, 2003).

Almost exclusively, Gaussians with isotropic covari-
ance have been considered up to now, that is, the
covariance is a multiple of the identity matrix. An
important departure from previous work that we take
in this paper is to consider the possibility that the co-
variance is a full matrix, although perhaps constrained
appropriately. This leads us to a challenging optimiza-
tion problem for choosing the covariance matrix as a
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function of the available data. In (Argyriou et al.,
2005) an algorithm was proposed for automatically
choosing the scalar covariance and its effectiveness was
demonstrated on a benchmark dataset. Here we pro-
pose a new technique for handling convex combina-
tions of basic kernels which are continuously param-
eterized by multiple parameters. A key ingredient is
the use of a DC (difference of convex functions) algo-
rithm from optimization. Such algorithms have seen
recent theoretical development (Horst & Thoai, 1999)
and have been used in a variety of application environ-
ments, see e.g. (Ellis & Nayakkankuppam, 2003; Neu-
mann et al., 2004). We demonstrate here that even in
the scalar covariance case we improve upon previous
computational performance in (Argyriou et al., 2005).

The paper is organized as follows. In Section 2 we
briefly review the convex optimization perspective for
learning the kernel. In Section 3 we discuss a greedy
algorithm for this problem which motivates the use of
DC-programming in Section 4. Finally, in Section 5
we present numerical simulations using our algorithm.

2. Background

In this paper, we focus on learning a functional rela-
tionship from examples {(xj , yj) : j ∈ INm} where the
xj are in a prescribed input space X , the yj are scalars,
yj ∈ {−1, 1} for binary classification, and we use the
notation INm := {1, . . . ,m}. The method we employ
chooses the minimum of the regularization functional

Q(f) =
∑

j∈INm

q(yj , f(xj)) + µ‖f‖2
K . (1)

The first term on the right hand side of the above equa-
tion is the empirical error measured by a prescribed
loss function q : IR × IR → IR+ which we assume to
be convex in its second argument. The second term
is the square of the norm induced by a reproducing
kernel Hilbert space (RKHS) with kernel K, see e.g.
(Aronszajn, 1950). The norm is a mechanism to en-
sure smoothness of the desired function form which we
seek. This affects the statistical behavior on new data
so that the generalization error is well controlled by the
positive parameter µ, thereby preventing overfitting.

The theory of RKHS tells us that the solution we seek
has the form

f =
∑

j∈INm

cjK(xj , ·), (2)

where the cj are real numbers. This result is known
as the Representer Theorem, see, for example, (Shawe-
Taylor & Cristianini, 2004). Consequently, the prob-
lem of minimizing the functional Q above reduces to

a finite dimensional optimization problem. Further-
more, when the loss function is convex, such as the
square loss or the hinge loss used in support vector ma-
chines, the unique minimizer of functional (1) can be
found by replacing f by the right hand side of equation
(2) in equation (1) and then optimizing with respect
to the parameters cj .

Our presentation here has been brief since these issues
are well documented throughout the learning theory
literature, see e.g. (Shawe-Taylor & Cristianini, 2004)
and references therein. Instead, we wish to address
now the issue of how to choose the kernel K. In this
regard, we assume a limited collection of prescribed
basic kernels

G = {G(ω) : ω ∈ Ω},

where Ω is the kernel parameter space. Each choice
of a basic kernel leads to a learned functional form
(2). Our challenge is to find some convex combina-
tion of the basic kernels which “learns better” than
any specific choice of the basic kernels.1 This presents
us with a dilemma, namely if, for example, our basic
kernels are Gaussians parameterized by a covariance
matrix, how do we choose them? Should we fix them
in advance and then use convex combinations as in
(Lanckriet et al., 2004) or can we learn them from
data? Moreover, should our search for these covari-
ances be limited to a scalar multiple of the identity
matrix or can we effectively search through full covari-
ance matrices?

An essential aspect of our work is that we optimize
over a continuously parameterized set of basic kernels.
That is, we consider kernels in the set

K(G) =

{
∫

Ω

G(ω)dp(ω) : p ∈ P(Ω)

}

, (3)

where P(Ω) is the set of all probability measures on
Ω and G(·)(x, t) is continuous for all x, t ∈ X . For
example, when Ω = IR+ and the function G(ω) is a
multivariate Gaussian kernel with covariance which
is a scalar multiple of the identity matrix, namely
G(ω)(x, t) = e−ω‖x−t‖2

, x, t ∈ IRd, then K(G) is the
set of all radial functions which are kernels for any
finite choice of the input space dimension d (Schoen-
berg, 1938).

Returning to the issue of optimal kernel selection, we
recall that the minimum regularization error, defined

1A distinct problem would be that of learning a sin-
gle basic kernel from a class of parameterized kernels, see
(Chapelle et al., 2002; Rasmussen & Williams, 2005) and
references therein.



A DC-Programming Algorithm for Kernel Selection

as
E(K) = min{Q(f) : f ∈ HK}, (4)

is a convex function of the kernel (Micchelli & Pon-
til, 2005). This important property motivates us to
consider minimizing functional E(K) as a criterion for
choosing the kernel K. Specifically, we search for a
global minimum of E over the convex hull K(G) of ba-
sic kernels G, see equation (3). We note that the point
of view of learning an optimal kernel within the con-
vex hull of a finite set of kernels was studied in (Bach
et al., 2004; Lanckriet et al., 2004) where semidefinite
programming was employed for its practical implemen-
tation and independently in (Lin & Zhang, 2003) in the
context of smoothing splines.

2.1. Overfitting Issue

The fact that we consider an infinite set of basic kernels
may lead to concerns that our algorithm could overfit
the data. This would be the case if any positive mul-
tiple of a basic kernel is also a basic kernel. Indeed,
recall the following property of the reproducing kernel
norm, namely, for every kernel K and λ > 0, we have
that ‖·‖2

λK = 1
λ
‖·‖2

K . Therefore, if K interpolates the
data, for example in the case of a Gaussian kernel, the
minimum of the functional (4) over K ∈ K(G) is zero.

This problem is avoided when the basic kernels satisfy
the uniform boundedness condition, namely,

κ := max {G(ω)(x, x) : ω ∈ Ω, x ∈ X} < ∞. (5)

For the class of Gaussian kernels we have that κ = 1.
When condition (5) holds true, it is shown in (Mic-
chelli et al., 2005c) that, for a wide class of loss func-
tions, the minimum of the functional (4) over K(G) is
bounded below and away from zero and generalization
error bounds for the function (2) learned with the op-
timal convex combination of kernels in G are derived.

We note that the bound (5) implies both a bound on
the Frobenius norm and the trace of the kernel matrix
Kx, conditions imposed in (Lanckriet et al., 2004).

2.2. Minimax Problem

We now describe in detail the variational problem of
minimizing (4) over K. To this end, we recall, for each
y ∈ IR, that the conjugate function of q(y, ·), denoted
by q∗(y, ·) : IR → IR ∪ {+∞}, is defined, for every
v ∈ IR, as

q∗(y, v) = sup{wv − q(y, w) : w ∈ IR}

and it follows, for every w ∈ IR, that

q(y, w) = sup{wv − q∗(y, v) : v ∈ IR}.

Using this notion and a version of the von Neumann
minimax theorem, see (Micchelli & Pontil, 2005), we
can rewrite the variational problem (4) as

E(K) = − min
c∈IRm

{

1

4µ
〈c,Kxc〉 +

∑

i∈INm

q∗(y, ci)

}

, (6)

where 〈·, ·〉 is the standard inner product in IRm and
Kx is the m×m matrix with elements K(xi, xj), i, j ∈
INm, which we assume to be invertible. Equation (6)
reveals that E is a convex function of K.

We remark that, generally, E is not strictly convex.
In that case, we may add to it a positive multiple
of a strictly convex functional of K, for example, the
Frobenius norm of the matrix Kx.

2.3. Examples of Kernel Classes

Let x ∈ IRd and Σ be a d × d positive definite matrix.
A basic kernel can be built from the Gaussian kernel

G(Σ)(x, t) = e−〈(x−t),Σ−1(x−t)〉. (7)

The case Σ = σI was discussed above. As before,
we consider the question of finding the optimal ker-
nel among the convex hull of the kernels defined above
where Σ is constrained to lie in a compact set. How-
ever, to ensure that Σ plays the role of a covariance we
must bound its determinant away from zero. A special
case is provided by a block diagonal covariance

Σ = diag(Σ1, . . . ,Σ`),

where each Σi is a di × di matrix, i ∈ IN`, and
∑

i∈IN`
di = d. We write x as x = (xi, i ∈ IN`), where

xi ∈ IRdi . Thus, we obtain that

G(Σ)(x, t) =
∏

i∈IN`

e−〈(xi−ti),Σ−1

i
(xi−ti)〉.

Next, we present another example for the case of two
dimensions. For this purpose, we write Σ−1 = UΛU>

where Λ = diag(λ1, λ2), 0 < λ1 ≤ λ2 and U is unitary,
i.e. U11 = U22 = cos θ, U12 = −U21 = sin θ.

A direct computation gives that

〈x,Σ−1x〉 =

(

λ1 + λ2

2
+

λ2 − λ1

2
cos(2θ − γ)

)

‖x‖2,

where γ depends only on x. Using this formula and
integrating (7) over the parameters θ, λ1, λ2 with the
measure 1

4W1(
λ1+λ2

2 )W2(
λ2−λ1

2 )dθdλ1dλ2, we obtain,

for x, t ∈ IR2, that

K(x, t) = H1(‖x − t‖2)H2(‖x − t‖2),
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where

H1(t) =

∫ ∞

0

e−tuW1(u)du, H2(t) = π

∫ ∞

0

I0(tv)W2(v)dv

and I0(t) = 1
π

∫ π

−π
e−t cos θdθ, the modified Bessel func-

tion of order zero.

2.4. Feature Space Formulation

An alternate point of view for learning the kernel fo-
cuses on the feature space representation of kernels.
The idea here is to reformulate the variational problem
described in detail above in the space associated with
the features of basic kernels. This issue is investigated
in generality in (Micchelli & Pontil, 2005b). Here, we
wish to highlight some of its main observations. To
keep the discussion accessible we restrict ourselves to
the case that the parameter set Ω is finite, that is,
Ω = INn and each of the basic kernels is determined
by a finite number of features. Hence, for each ` ∈ INn

we write G`(x, t) = 〈Φ`(x),Φ`(t)〉, where Φ`(t) ∈ IRs

and s is the number of features. With this representa-
tion of the basic kernels, we follow (Micchelli & Pontil,
2005b) and consider the variational problem

∑

j∈INm

q

(

yj ,
∑

`∈INn

〈w`,Φ`(xj)〉

)

+ µ
∑

`∈INn

‖w`‖
2. (8)

The minimizer (ŵ` : ` ∈ INn) of this variational prob-
lem provides an optimal kernel based on the features
defined above. In particular, the optimal kernel is
given by

K̂ =
∑

`∈INn

‖w`‖
∑

r∈INn
‖wr‖

G`.

A detailed explanation for this fact and its extensions
to the continuous case can be found in (Micchelli &
Pontil, 2005b, Thm. 2.1). As pointed out in that pa-
per, when there is one feature, namely s = 1, equation
(8) reduces to the `1-regularization problem. There
has been renewed interest in this problem because a
minimizing solution will often have few nonzero coef-
ficients, in other words will be sparse.

3. Learning Algorithm

Let us now turn to the theme which is central in the pa-
per, namely the problem of minimizing the functional
E in (6) over the convex hull K(G) of basic kernels G.
This problem is equivalent to a saddle point problem,
which we rewrite as

max {min {R(c,K) : c ∈ IRm} : K ∈ K(G)} , (9)

where we introduced the function

R(c,K) =
1

4µ
〈c,Kxc〉 +

∑

i∈INm

q∗(y, ci).

Algorithm 1 Computing an optimal convex combi-
nation of basic kernels in G = {G(ω) : ω ∈ Ω}.

Notation: g(K) = minc∈IRm R(c,K)

Initialization: Choose K(1) ∈ K(G)
for t = 1 to T : do

1. Compute c(t) = argmin{R(c,K(t)) : c ∈ IRm}
2. Find ω̂ = argmax{R(c(t), G(ω)) : ω ∈ Ω}.
if R(c(t), G(ω̂)) > R(c(t),K(t)) then

go to Step 3
else

terminate
3. Compute K(t+1) = argmax{g(K) : K ∈

co(G(ω̂),K(t))}

The analysis in (Argyriou et al., 2005) provides nec-
essary and sufficient conditions for a pair (ĉ, K̂) ∈
IRm × K(G) to be a saddle point. In particular, they
show that there always exists an optimal kernel K̂ with
a finite representation, that is,

K̂ =

∫

Ω

G(ω)dp̂(ω) =
∑

i∈INm+1

λ̂iG(ω̂i),

where λ̂i ≥ 0,
∑

i λ̂i = 1 and ω̂i ∈ Ω. This result
implies, in the case of isotropic Gaussians, that the
optimal kernel is a finite mixture of at most m + 1
Gaussians.

These results motivate a greedy algorithm (Algorithm
1) for solving problem (9). The algorithm starts with
an initial kernel K(1) ∈ K(G) and from it computes the
unique vector c(1) = argmin{R(c,K(1)) : c ∈ IRm}.
A sequence of kernels {K(t) : t ∈ INT } ⊆ K(G) is
computed iteratively. After K(t) has been chosen, the
unique vector c(t) is computed (see Step 1) and, subse-
quently, the algorithm searches for a global maximizer
ω̂ ∈ Ω of the function R(c(t), G(ω)), or, equivalently,
of the function 〈c(t), Gx(ω)c(t)〉 (see Step 2). If the
inequality

〈c(t), Gx(ω̂)c(t)〉 > 〈c(t),K(t)
x

c(t)〉 (10)

holds, a new kernel K(t+1) is computed to be the opti-
mal convex combination of the kernels G(ω̂) and K(t)

(see Step 3). If no ω̂ satisfying inequality (10) can be
found, the algorithm terminates. We note that after
each iteration the objective function strictly increases
or the algorithm terminates, see (Argyriou et al., 2005)
for a proof.

Step 1 of the algorithm is a convex optimization prob-
lem. In our experiments below, for the square loss
q(y, v) = (y− v)2, the vector c(t) is simply determined
by solving a linear system of equations. Step 2 is im-
plemented by DC programming which we describe in
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the next section. For Step 3, we use a Newton method
on the function g(λG(ω̂) + (1 − λ)K(t)), λ ∈ [0, 1],
which is concave and whose derivative can be easily
computed.

3.1. Minimizing Sums of Exponentials

As we pointed out above, a key step in our algorithm
is to maximize the objective function

f(ω) = 〈c,Gx(ω)c〉 (11)

over ω ∈ Ω. Here we present some insights into this
problem in the case that the basic kernels are exponen-
tial functions, namely G(ω)(xi, xj) = e−ωd(xi,xj) and
Ω ⊆ IR+. Recall that G(ω) is a kernel for all ω ∈ IR+

if and only if the matrix D = (d(xi, xj) : i, j ∈ INm)
is conditionally negative definite, that is, 〈c,Dc〉 ≤ 0
whenever

∑

i∈INm
ci = 0. For example, in the Gaus-

sian case, d(xi, xj) = ‖xi − xj‖
2 has this property, see

e.g. (Schölkopf & Smola, 2002). We wish to bound
the number of local extrema on IR+ of the function

f(ω) =
∑

i∈INm

c2
i + 2

∑

i<j

cicje
−ωd(xi,xj).

For this purpose, define the univariate function g(x) =
∑

i∈INn
aie

λix, x ∈ IR, where ai ∈ IR, λ1 < · · · < λn.
We recall that Laguerre’s rule of signs states that the
number of nonnegative zeros of g (counting multiplici-
ties) does not exceed the number of sign changes in the
sequence a1, · · · , an, which is at most n−1. Moreover,
this result is sharp, see for example (Steinig, 1986).

In our simulations below we have only noticed between
two to five local maxima of f . This fact is confirmed
by Laguerre’s rule of signs. Indeed, in our simulations
the inputs xi clustered well in two groups, that is,
d(xi, xj) is small when yi = yj and larger when yi 6= yj .
Moreover, each ci usually has the same sign as yi

2.
Hence, when we order the d(xi, xj) in a non-decreasing
fashion the corresponding ordering of the coordinates
of the vector (cicj : i, j ∈ INm) has only a few sign
changes.

4. DC Programming

As we noted above, the objective function R(c,K) of
the minimax problem (9) is convex in c and linear in
K. Unfortunately, in general, R(c,G(ω)) is not convex
in ω. This makes Step 2 of Algorithm 1 a challenging
task. However, as we shall see, for a wide class of
basic kernels, the function R(c,G(·)) belongs to the
class of DC functions for which there are available well

2This would always be the case for support vector ma-
chines, see e.g. (Shawe-Taylor & Cristianini, 2004).

Algorithm 2 Cutting plane algorithm.

Inputs: A point y0 in the interior of Ω; a simplex
S0 ⊇ Ω with vertex set V (S0); a convex function
α : IRD → IR such that Ω = {ω ∈ IRD : α(ω) ≤
0}.

Initialization: Set ϕ0 = g(y0) − h(y0).
Compute a subgradient s ∈ ∂g(y0).
Choose t̄ > max{g(ω) : ω ∈ V (S0)} − ϕ̄, where

ϕ̄ = min{g(ω) : ω ∈ V (S0)}−max{h(ω) : ω ∈ V (S0)}.

Construct a polytope P 0 from S0, t̄ and y0.
Set k = 0.
Iteration k: Compute an optimal solution (ωk, tk)
of the problem min{−h(ω) + t : (ω, t) ∈ V (P k)}.
if −h(ωk) + tk = 0 then

Stop. yk is an optimal solution to (13) with opti-
mal value ϕk.

else {−h(ωk) + tk < 0}
Case 1: ωk ∈ Ω
Compute sk ∈ ∂g(ωk).
Case 1a: g(ωk) − h(ωk) < ϕk

Set yk+1 = ωk.
Case 1b: g(ωk) − h(ωk) ≥ ϕk

Set yk+1 = yk.
Case 2: ωk /∈ Ω
Compute sk ∈ ∂βk(ωk, tk), where βk(ω, t) :=
max{α(ω), g(ω) − t − ϕk}.
Compute the zero (ζk, θk) of βk(x, t) on the line
segment joining (ωk, tk) and (y0, t̄).
Case 2a: g(ζk) − h(ζk) < ϕk

Set yk+1 = ζk.
Case 2b: g(ζk) − h(ζk) ≥ ϕk

Set yk+1 = yk.
Construct the cutting plane (affine function)

`k(x, t) =















〈ω − ωk, sk〉 + g(ωk) − ϕk+1 − t,
if ωk ∈ Ω
〈(ω, t) − (ζk, θk), sk〉 + βk(ζk, θk),
if ωk /∈ Ω.

Set P k+1 = P k ∩ {(ω, t) : `k(ω, t) ≤ 0}.
Set k = k + 1 and continue to next iteration.

developed iterative algorithms. We first review a few
necessary definitions and results from the theory of DC
functions, as presented in (Horst & Thoai, 1999).

Let Ω be a closed convex subset of IRD. A function
f : Ω → IR is called DC on Ω if there exist two convex
functions g and h such that

f(ω) = g(ω) − h(ω), ω ∈ Ω.

A remarkable result by (Hartman, 1959) states that
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locally DC functions are DC. It also implies that every
twice continuously differentiable function on Ω is DC
and every continuous function on Ω is the limit of a
sequence of DC functions that converges uniformly on
Ω. Moreover, the class of DC functions is linear and
closed under multiplication and the finite min/max op-
erations. Optimization problems of the type

inf{f(ω) : ω ∈ Ω, fi(ω) ≤ 0, i ∈ INn}, (12)

where f and fi, i ∈ INn, are DC, are called DC pro-
grams.

We now derive a DC-programming formulation for the
problem of maximizing function (11). To this end, we
note that, for every c ∈ IRm, the function R(c,G(·))
is the limit of DC functions since, for every x, t ∈ X ,
we have assumed continuity of G(·)(x, t). In addition,
if G(·)(x, t) is twice continuously differentiable, maxi-
mizing (11) is a DC program.

Therefore, for most interesting continuous parame-
terizations, Gx(ω) and hence f(ω) in (11) are DC
functions. If, furthermore, the DC decomposition of
G(·)(x, t) is available, we obtain an optimization prob-
lem of the form

ϕ̂ = min{−f(ω) = g(ω) − h(ω) : ω ∈ Ω}, (13)

where g, h are convex.

In particular, in the case of Gaussian kernels as in (7),
D = d(d + 1)/2, ω consists of the lower triangular
elements of Σ−1 and the DC decomposition is given
by

f(ω) =
∑

{i,j:cicj>0}

cicje
−〈bij ,ω〉 +

∑

{i,j:cicj<0}

cicje
−〈bij ,ω〉,

where the indices i, j ∈ INm and, for every i, j, bij :=
((2 − δ(k, `))(xik − xjk)(xi` − xj`) : d ≥ k ≥ ` ≥ 1).
Here, g is the first term in the right hand side of the
above equation and h is minus the second term.

A necessary and sufficient condition for ω̂ to solve
problem (13) is that

min{−h(ω)+ t : ω ∈ Ω, t ∈ IR, g(ω)− t ≤ g(ω̂)−h(ω̂)}

equals zero, see, for example, (Horst & Thoai, 1999,
Proposition 4.4). This observation motivated a cutting
plane algorithm, a variant of which we have imple-
mented. The details appear in Algorithm 2. The algo-
rithm works by constructing outer polytopes P k+1 ⊆
P k which contain the optimal solution (ω̂, t̂ = h(ω̂)).
Subsequent polytopes are defined by cutting out the
current vertex (ωk, tk) while keeping the solution in-
side, namely

`k(ωk, tk) > 0,

`k(ω, t) ≤ 0, for (ω, t) ∈ IRD+1 : βk+1(ω, t) ≤ 0.

One can show that the sequence of function values
converges to the optimal one from above, that is, ϕ̂ ≤
ϕk+1 ≤ ϕk, see (Horst & Thoai, 1999) for a proof and
a more detailed explanation of the algorithm.

5. Experiments

We performed a series of experiments on the MNIST
data set of images of handwritten digits (available at
http://yann.lecun.com/exdb/mnist/index.html).
The data are 28×28 images with pixel values ranging
between 0 and 255. We compared the output of
the DC algorithm with the results in (Argyriou
et al., 2005), which were obtained using Gaussian
kernels with one variance parameter σ in a prescribed
interval [σ`, σu]. In that paper, a branch-and-bound
technique combined with local descent was used for
just improving (not fully optimizing) at Step 2 of
Algorithm 1.

Using the same set-up, we selected the first 500 train-
ing points and 1000 test points corresponding to each
task from MNIST. The initial kernel for the greedy
algorithm was the average of 5 Gaussian kernels with
σ’s equally spaced in [σ`, σu]. We have used the square
loss and set the regularization parameter to 10−7. The
maximum number of iterations was set to 100 and 300
for the greedy and DC algorithms, respectively.3

In Table 1, we present the results obtained using the
DC algorithm alongside the previous greedy algorithm,
an algorithm for learning the optimal convex combina-
tion of a finite number of basic kernels and SVM-light,
see (Argyriou et al., 2005) for more information. The
range of σ is [75, 25000] in columns 2–5, [100, 10000]
in columns 6–9 and [500, 5000] in columns 10–13. It is
clear from this table that the DC approach is equally
good for selecting a single variance.

Next, we performed experiments with multiple param-
eters. In such cases, the standard branch-and-bound
methods suffer from the curse of dimensionality. DC
approaches, however, enable us to tackle optimization
problems in several dimensions. In Table 2, we show
the performance of the DC algorithm simultaneously
learning two isotropic variances, one corresponding to
the left and one to the right part of the image. The
performance with two variances significantly improves
and the algorithm remains robust over different ranges
of σ1 and σ2, which is evidence that the optimiza-
tion subproblem was successfully solved. In the same
table, we present the performance of the finite ker-
nels method mentioned above using grids of 5× 5 and

3The code is available at http://www.cs.ucl.ac.uk/
staff/a.argyriou/code/dc
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Table 1. Misclassification error percentage for learning one kernel parameter on the MNIST tasks.
Method

Task DC standard finite SVM DC standard finite SVM DC standard finite SVM
σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 6.5 6.6 18.0 11.8 6.5 6.6 10.9 8.6 6.5 6.5 6.7 6.9
3 vs. 8 3.7 3.8 6.9 6.0 3.9 3.8 4.9 5.1 3.6 3.8 3.7 3.8
4 vs. 7 2.7 2.5 4.2 2.8 2.4 2.5 2.7 2.6 2.3 2.5 2.6 2.3

Table 2. Misclassification error percentage of DC algorithm vs. finite grid for 2 parameters on the MNIST tasks.

Number of parameters
Task DC 5 × 5 10 × 10 DC 5 × 5 10 × 10 DC 5 × 5 10 × 10

σ ∈ [75, 25000] σ ∈ [100, 10000] σ ∈ [500, 5000]

odd vs. even 5.8 15.8 11.2 5.8 10.1 6.2 5.8 6.8 5.8
3 vs. 8 2.7 6.5 5.1 2.5 4.6 2.5 2.6 3.5 2.5
4 vs. 7 1.8 3.9 2.9 1.7 2.7 2.0 1.8 2.0 1.8

10 × 10 kernels with equally spaced σ’s. This method
succeeds only in the smallest range of σ’s and with
the 10 × 10 grid. But in the absense of information
about σ, even with the finer grid the finite kernels
method is not competitive. We also performed exper-
iments with four isotropic variances (corresponding to
the four quadrants of the image), which did not further
improve the results.

As regards the computational cost, our method com-
pares favorably to the finite method. We implemented
both of them in Matlab and performed the exper-
iments on a 1GHz dual-processor machine running
Linux. For the local optimization of −h(x) + t in Al-
gorithm 2, we used Matlab’s fmincon() routine. We
observed that the finite method is much worse in time
cost than the DC algorithm (about 1 hour vs. 5 min-
utes with 2 parameters). The main computational
cost of our algorithm is incurred by the aforemen-
tioned local optimization, whereas the finite method
scales polynomially with the grid size. Still, the run-
ning time of our algorithm deteriorates fast with the
number of parameters. For example, it takes 1-2 min-
utes for learning one parameter, about 5 minutes for
2 parameters and about 1 hour for 4 parameters. We
speculate that faster local search exploiting linear pro-
gramming and the special nature of the function can
lead to further improvements in efficiency. With re-
spect to memory requirements, our algorithm is clearly
more efficient because it only needs to store the linear
constraints, whereas the grid method requires all the
kernels to be in memory.

We also observed that the greedy algorithm usually
required less than 20 iterations to terminate, which is
evidence in favor of the DC approach. The cutting
plane method usually required less than 100 iterations
to converge. Thus, the learned convex combination
has a small (usually less than 10) number of kernels.

Finally, in Figure 1 we present the learned kernel coeffi-
cients for two isotropic variances (left and right image)
in the range [100, 10000]. These indicate that for the
odd vs. even task it is better to combine several com-
plementary kernels focused on different parts of the
images than use a single Gaussian kernel. However,
for the 3-8, 4-7 tasks there is a clear winner among
the kernels. This conforms with the intuition that odd
vs. even is a more complex task than the binary ones.
Moreover, augmenting the parameter class for odd vs.
even results in a more complex (and more effective)
representation for the solution. In order to gain in-
sight into the nature of this solution, we have plotted
the corresponding variances for odd vs. even in Figure
2. It is clear that the learned kernels are either focused
exclusively on each half of the images or operate on the
image as a whole.

6. Summary

We have studied the problem of selecting a kernel in
the convex hull of a prescribed set of continuously pa-
rameterized basic kernels. A substantial innovation
of our approach is that it avoids deciding in advance
a finite subset of basic kernels. We have reviewed
recent work in this direction and discussed a greedy
algorithm for this problem. The algorithm relies on
a DC-programming formulation, a recently developed
technique for global optimization. We have provided
experimental results where the basic kernels are Gaus-
sians with constrained diagonal covariance matrices.
These computational results indicate the advantage
of working with a continuous parameterization as op-
posed to an a priori choice of a finite number of basic
kernels. The method is robust because the choice of
the optimal kernel is insensitive to the range of the
continuous parameters.
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Figure 1. Learned kernel coefficients for different classifica-
tion tasks and kernel parameterizations. Top plots are for
odd vs. even (the dimensionality is 1 on the left and 2 on
the right). Bottom plots are for the 3-8 task (left) and the
4-7 task (right), with dimensionality 2.
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Figure 2. Learned [σ1, σ2] parameters of the kernels in the
optimal convex combination, for the odd vs. even task.
The parameter range was [100,10000].
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