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Abstract. We study the problem of learning a kernel which minimizes
a regularization error functional such as that used in regularization net-
works or support vector machines. We consider this problem when the
kernel is in the convex hull of basic kernels, for example, Gaussian kernels
which are continuously parameterized by a compact set. We show that
there always exists an optimal kernel which is the convex combination of
at most m + 1 basic kernels, where m is the sample size, and provide a
necessary and sufficient condition for a kernel to be optimal. The proof
of our results is constructive and leads to a greedy algorithm for learning
the kernel. We discuss the properties of this algorithm and present some
preliminary numerical simulations.

1 Introduction

A common theme in machine learning is that a function can be learned from
a finite set of input/output examples by minimizing a regularization functional
which models a trade-off between an error term, measuring the fit to the data,
and a smoothness term, measuring the function complexity. In this paper we
focus on learning methods which, given examples {(z;,y;) : j € Ny} C X x IR,
estimate a real-valued function by minimizing the regularization functional

Quf )= Y alyj, fz;) + ullf Ik (1)
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where ¢ : IR x IR — R is a prescribed loss function, u is a positive parameter
and IN,;, := {1,...,m}. The minimum is taken over f € Hg, a reproducing
kernel Hilbert space (RKHS) with kernel K, see [1].

This approach has a long history. It has been studied, from different per-
spectives, in statistics [16], in optimal recovery [10], and more recently, has been
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a focus of attention in machine learning theory, see, for example [14,15] and
references therein. The choice of the loss function ¢ leads to different learning
methods among which the most prominent have been square loss regularization
and support vector machines.

As new parametric families of kernels are being proposed to model functions
defined on possibly complex/structured input domains (see, for example, [14]
for a review) it is increasingly important to develop optimization methods for
tuning kernel-based learning algorithms over a possibly large number of kernel
parameters. This motivates us to study the problem of minimizing functional
(1) not only over f but also over K, that is, we consider the variational problem

Qu(K) =inf{Qu(f, K) : f € Hk, K € K} (2)

where K is a prescribed convex set of kernels. This point of view was proposed
in [3, 8] where the problem (2) was mainly studied in the case of support vector
machines and when K is formed by combinations of a finite number of basic
kernels. Other related work on this topic appears in the papers [4,9,11,18].

In this paper, we present a framework which allows us to model richer families
of kernels parameterized by a compact set (2, that is, we consider kernels of the

type

k={ [ o) per] 3)

where P((2) is the set of all probability measures on 2. For example, when
2 C IRy and the function G(w) is a multivariate Gaussian kernel with variance
w then K is a subset of the class of radial kernels. The set-up for the family
of kernels in (3) is discussed in Section 2, where we also review some earlier
results from [9]. In particular, we establish that if ¢ is convex then problem (2)
is equivalent to solving a saddle-point problem. In Section 3, we derive optimality
conditions for problem (2). We present a necessary and sufficient condition which
characterizes a solution to this problem (see Theorem 2) and show that there
always exists an optimal kernel K with a finite representation. Specifically, for
this kernel the probability measure p in (3) is an atomic measure with at most
m+1 atoms (see Theorem 1). As we shall see, this implies, for example, that the
optimal radial kernel is a finite mixture of Gaussian kernels when the variance is
bounded above and away from zero. We mention, in passing, that a version of our
characterization also holds when (2 is locally compact (see Theorem 4). The proof
of our results is constructive and can be used to derive algorithms for learning
the kernel. In Section 4, we propose a greedy algorithm for learning the kernel
and present some preliminary experiments on optical character recognition.

2 Background and Notation

In this section we review our notation and present some background results from
[9] concerning problem (2).

We begin by recalling the notion of a kernel and RKHS Hg. Let X be a
set. By a kernel we mean a symmetric function K : X x X — IR such that for



every finite set of inputs x = {z; : j € N, } C X and every m € IN, the m x m
matrix Ky := (K(z;,z;) : i,j € INy,) is positive semi-definite. We let L(IR™)
be the set of m X m positive semi-definite matrices and £4 (IR™) the subset of
positive definite ones. Also, we use A(X) for the set of all kernels on the set X
and A, (X) for the set of kernels K such that, for each m € IN and each choice
of x, Kx € L (R™).

According to Aronszajn and Moore [1], every kernel is associated with an
(essentially) unique Hilbert space H g with inner product (:,-) . such that K is
its reproducing kernel. This means that for every f € Hx andz € X, (f, K,) =
f(z), where K (-) := K(z,-). Equivalently, any Hilbert space H of real-valued
functions defined everywhere on X’ such that the point evaluation functionals
L.(f) := f(z), f € H are continuous on H, admits a reproducing kernel K.

Let D := {(z;,y;) : j € N} C X x IR be prescribed data and y the
vector (y; : j € INy,). For each f € Hk, we introduce the information operator
L(f) == (f(z;) : § € INyy,) of values of f on the set x := {z; : j € N,,,}. We let
IR+ := [0,00), prescribe a nonnegative function @ : R™ — R4 and introduce
the regularization functional

Qu(f, K) = Q(Ix(f)) + pll Il (4)

where || f||% := (f, f)x and p is a positive constant. Note that @) depends on
y but we suppress it in our notation as it is fixed throughout our discussion.
For example, in equation (1) we have, for w = (w; : j € N,), that Q(w) =
Zje]Nm q(y;,w;), where ¢ is a loss function.

Associated with the functional @), and the kernel K is the variational problem

Qu(K) :=inf{Qu(f,K) : f € Hk} (5)

which defines a functional @, : A(X) — IR;. We remark, in passing, that all
of what we say about problem (5) applies to functions @ on IR™ which are
bounded from below as we can merely adjust the expression (4) by a constant
independent of f and K. Note that if @ : R™ — IR, is continuous and p is a
positive number then the infimum in (5) is achieved because the unit ball in H g
is weakly compact. In particular, when ) is convex the minimum is unique since
in this case the right hand side of equation (4) is a strictly convex functional of
f € Hi. Moreover, if f is a solution to problem (5) then it has the form

f@)= ) ¢iK(zj,z), z€X (6)
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for some real vector ¢ = (¢;j : j € IN,,). This result is known as the Representer
Theorem, see, for example, [14]. Although it is simple to prove, this result is
remarkable as it makes the variational problem (5) amenable to computations.
In particular, if @) is convex, the unique minimizer of problem (5) can be found
by replacing f by the right hand side of equation (6) in equation (4) and then
optimizing with respect to the vector ¢. That is, we have the finite dimensional
variational problem

Qu(K) := min{Q(Kxc) + u(c, Kxc) : c € R™} (7



where (-,) is the standard inner product on IR™. For example, when @ is the
square loss defined for w = (w; : j € N,,) € R™ as Q(w) = |lw — y|?> :=
2 jen,, (Wi — y;)? the function in the right hand side of (7) is quadratic in the
vector ¢ and its minimizer is obtained by solving a linear system of equations.

The point of view of this paper is that the functional (5) can be used as
a design criterion to select the kernel K. To this end, we specify an arbitrary
convex subset K of A(X) and focus on the problem

Qu(K) == inf{Qu(K) : K € K}. (8)

Every input set x and convex set K of kernels determines a convex set of
matrices in £L(IR™), namely K(x) := {Kx : K € K}. Obviously, it is this set of
matrices that affects the variational problem (8). For this reason, we say that the
set of kernels K is compact and convex provided that for all x the set of matrices
K(x) is compact and convex. The following result is taken directly from [9].

Lemma 1. If K is a compact and convex subset of Ay (X) and @ : IR™ - R is
continuous then the minimum of (8) exists.

The lemma requires that all kernels in K are in Ay (X). If we wish to use
kernels K only in A(X) we may always modify them by adding any positive
multiple of the delta function kernel A defined, for z,t € X, as

l,z=1
A(m,t)z{o’w#t

that is, replace K by K + aA where a is a positive constant.

There are two useful cases of the set I of kernels which are compact and
convex. The first is formed by the convex hull of a finite number of kernels in
A (X). The second case generalizes the above one to a compact Hausdorfl space
2 (see, for example, [12]) and a mapping G : 2 — A4 (X). For each w € (2, the
value of the kernel G(w) at z,t € X is denoted by G(w)(z,t) and we assume
that the function of w — G(w)(z,t) is continuous on (2 for each z,t € X. When
this is the case we say G is continuous. We let P(2) be the set of all probability
measures on (2 and observe that

K@) ={ [ ciw):pe @)} (9)

is a compact and convex set of kernels in Ay (X). The compactness of this set
is a consequence of the weak*-compactness of the unit ball in the dual space of
C(£2), the set of all continuous real-valued functions g on {2 with norm ||g||o :=
max{|g(w)| : w € 2}, see [12]. For example, we choose 2 = [wi,w2], where
0 < wi; <ws and G(w)(z,t) = e“"””_t”2, z,t € RY, w € 12, to obtain radial
kernels, or G(w)(z,t) = e“(*! to obtain dot product kernels. Note that the
choice 2 = IN,, corresponds to the first case.

Next, we establish that if the loss function @ : IR™ — IR is convex then the
functional @, : A (X) — IRy is convex as well, that is, the variational problem



(8) is a convex optimization problem. To this end, we recall that the conjugate
function of @, denoted by Q* : R™ — R U {+00}, is defined, for every v € R™,
as

Q*(v) = sup{(w,v) — Q(w) : w € R™} (10)
and it follows, for every w € IR™, that
Q(w) = sup{(w,v) — Q" (v) : v € R™} (11)

see [5]. See also [17] for a nice application of the conjugate function to linear
statistical models. For example, for the square loss defined above, the conjugate
function is given, for every v € R™, by

Q*(v) = max {(w,v) — lw —y|I* : w e R™} = illvll2 + (y,0)-

Note that @*(0) = —inf{Q(w) : w € R™} < oo since  is bounded from below.
This observation is used in the proof of the lemma below.

Lemma 2. If K € A(X), x is a set of m points of X such that Kx € L (IR™)
and Q : IR™ — IR a convex function then there holds the formula

Qu(K)=max{—i(v,va)—Q*(v) :vE]Rm}. (12)

The fact that the maximum above exists follows from the hypothesis that
Ky € £ (IR™) and the fact that Q*(v) > —Q(0) for all v € R™, which follows
from equation (10). The proof of the lemma is based on a version of the von
Neumann minimax theorem (see the appendix). This lemma implies that the
functional @, : A4 (X) — Ry is convex. Indeed, equation (12) expresses @, (K)
as the maximum of linear functions in the kernel K.

3 Characterization of an Optimal Kernel

Our discussion in Section 2 establishes that problem (8) reduces to the minimax
problem
Q. (K) = —max{min{R(¢, K) : c€e R™} : K € K} (13)

where the function R is defined as
1
R(c,K) = @(c, Kyc)+Q"(c), ceR™, KeK. (14)

In this section we show that problem (13) admits a saddle point, that is, the
minimum and maximum in (13) can be interchanged and describe the properties
of this saddle point. We consider this problem in the general case that K is
induced by a continuous mapping G : 2 — Ay (X) where 2 is a compact
Hausdorff space, so we write K as K(G), see equation (9).

We assume that the conjugate function is differentiable everywhere and de-
note the gradient of Q* at ¢ by VQ*(c).



Theorem 1. If 2 is a compact Hausdorff topological space and G : 2 — A, (X)
is continuous then there exists a kernel K = [, G(w)dp(w) € K(G) such that p
is a discrete probability measure on (2 with at most m + 1 atoms and, for any
atom @ € 12 of p, we have that

R(¢,G(w)) = max{R(¢,G(w)) : w € 2} (15)

where ¢ is the unique solution to the equation

1 -

o x¢+VQ*(é) =0. (16)
Moreover, for every c € R™ and K € K(G), we have that

R(¢,K) < R(¢,K) < R(c, K). (17)

Proof. Let us first comment on the nonlinear equation (16). For any kernel
K € K(G) the extremal problem

min{R(c,K) : ce R™}

has a wunique solution, since the function ¢ — R(c, K) is strictly convex and
lim)j¢ 00 R(c, K) = 0o. Moreover, if we let cx € IR™ be the unique minimizer,
it solves the equation

1
ﬂ xCK + VQ*(CK) =0.

Hence, equation (16) says that ¢ = c.
Now let us turn to the existence of the kernel K described above. First, we
note the immediate fact that

max{R(c,K) : K € K(G)} = max{R(c,G(w)) : w € 2}.
Next, we define the function ¢ : R™ — IR by
o(c) := max{R(c,G(w)) :w € 2}, ce R™.

According to the definition of the conjugate function in equation (10) and the
hypotheses that G is continuous and {G(w) : w € 2} C A (X) we see that
lim)j¢ o0 (€) = oo0. Hence, ¢ has a minimum. We call a minimizer é. This
vector is characterized by the fact that the right directional derivative of ¢ at ¢
in all directions d € IR™ is nonnegative. We denote this derivative by ¢!, (¢;d).
Using Lemma 4 in the appendix, we have that

1
¢l (Gd) = max{ﬂ(d, Gx(w)e) + (VQ*(¢),d) rw € Q*}
where the set 2* is defined as

N ={w:we N, REGWw)) =¢@)}.



If we define the vectors z(w) = ﬁGx(w)é—i— VQ*(¢), w € 2*, the condition that

¢!, (¢;d) is nonnegative for all d € R™ means that
max{(z(w),d) :w € 2} >0, deR™

Since G is continuous, the set N := {z(w) : w € 2*} is a closed subset of R™.
Therefore, its convex hull M := co(N) is closed as well. We claim that 0 € M.
Indeed, if 0 ¢ M then there exists a hyperplane {c: ¢ € R™, (w,c) + a = 0},
a € R, w € R™, which strictly separates 0 from M, that is, (w,0) + a > 0 and
(w,z(w))+a <0, we N* see [12]. The first condition implies that o > 0 and,
so we conclude that

max{(w, z(w)) :w € 2*} <0

which contradicts our hypothesis that ¢ is a minimum of .

By the Caratheodory theorem, see, for example, [5, Ch. 2], every vector in
M can be expressed as a convex combination of at most m + 1 of the vectors in
N. In particular, we have that

0= Y Nz(w) (18)

JEINm 41

for some {w; : j € INmmy1} C £2* and nonnegative constants A; with 3~

Aj =
m+1
1. Setting

k= Y AG) = [ Gds)

where p = > JeNma1 Ai0w; (we denote by J,, the Dirac measure at w), we can
rewrite equation (18) as

1 5 e
% ¢+ VQ*() =0.
Hence, we conclude that ¢ = ¢ which means that
min{R(c, K) : ¢ € R™} = R(¢, K).

This establishes the upper inequality in (17). For the lower inequality we observe
that

R(e.K) = | R@GE)dI) = 30 AREGw).

JEN 41
Since ¢ = ¢, we can use the definition of the w; to conclude for any K € K(G)
by equation (18) and the definition of the function ¢ that
R(¢,K) = ¢(¢) > R(&, K). .

This theorem improves upon our earlier results in [9] where only the square
loss function was studied in detail. Generally, not all saddle points (¢, K) of R
satisfy the properties stated in Theorem 1. Indeed, a maximizing kernel may be



represented as K = [ G(w)dp(w) where p may contain more than m + 1 atoms
or even have uncountable support (note, though, that the proof above provides a
procedure for finding a kernel which is the convex combination of at most m + 1
kernels). With this caveat in mind, we show below that the conditions stated in
Theorem 1 are necessary and sufficient.

Theorem 2. Let ¢ € R™ and K = Jo G(w)dp(w), where p is a probability
measure with support 2 C 2. The pair (¢, K) is a saddle point of problem (13)
if and only if ¢ solves equation (16) and every @ € (2 satisfies equation (15).

Proof. If (¢,K) is a saddle point of (13) then ¢ is the unique minimizer of the

A

function R(-, K) and solves equation (16). Moreover, we have that

A

[ R(¢,G(w))dp(w) = R(¢, K) = max{R(¢,G(w)) : w € 2}
o)

implying that equation (15) holds true for every & € £2.
On the other hand, if ¢ solves equation (16) we obtain the upper inequality
in equation (17) whereas equation (15) brings the lower inequality. |

Theorem 1 can be specified to the case that (2 is a finite set, that is £ =
co(K,,) where K,, = {K;: £ € IN,,} is a prescribed set of kernels. Below, we use
the notation Ky ¢ for the matrix (Kj)«.

Corollary 1. If K, = {K; : j € IN,} C A{(X) there ezists a kernel K =
> jen, NiKj € co(Ky) such that the set J = {j : j € Nn,A; > 0} contains at
most min(m + 1,n) elements and, for every j € J we have that

R(&, K;) = max{(R(&, K;) : £ € N,)} (19)

where ¢ is the unique solution to the equation
L g e vQr@e =0 (20)
— K¢ é) =0.
2p

Moreover, for every ¢ € R™ and K € co(K,) we have that

R(;,K) < R, K) < R(e, ). (21)

In the important case that 2 = [wy,ws] for 0 < w1 < we and G(w) is a
Gaussian kernel, G(w)(x,t) = exp(—w||z—t||?), z,t € R?, Theorem 1 establishes
that a mixture of at most m + 1 Gaussian kernels provides an optimal kernel.
What happens if we consider all possible Gaussians, that is, take 2 = IR,7
This question is important because Gaussians generate the whole class of radial
kernels. Indeed, we recall a beautiful result by I.J. Schoenberg [13].

Theorem 3. Let h be a real-valued function defined on Ry such that h(0) = 1.
We form a kernel K on RY x R by setting, for each z,t € IR?, K(z,t) =



h(||lz — t|?). Then K is positive definite for any d if and only if there is a
probability measure p on Ry such that

K(z,t) :/ e_“’”z_tHde(w), z,t € R%
R+

Note that the set IRy is not compact and the kernel G(0) is not in A, (IR?).
Therefore, on both accounts Theorem 1 does not apply in this circumstance. In
general, we may overcome this difficulty by a limiting process which can handle
kernel maps on locally compact Hausdorff spaces. This will lead us to an exten-
sion of Theorem 1 where (2 is locally compact. However, we only describe our
approach in detail for the Gaussian case and 2 = IRy. An important ingredi-
ent in the discussion presented below is that G(co) = A, the diagonal kernel.
Furthermore, in the statement of the theorem below it is understood that when
we say that p is a discrete probability measure on IR we mean that p can have
an atom not only at zero but also at infinity. Therefore, we can integrate any
function relative to such a discrete measure over the extended positive real line
provided such a function is defined therein.

Theorem 4. Let G : Ry — A(X) be defined as
Gw)(z,t) = el 2t e R, we R,.

Then there exists a kernel K = fIR+ G(w)dp(w) € K(G) such that p is a discrete
probability measure on R4 with at most m+1 atoms and, for any atom @ € R4
of p, we have that

R(¢,G(®)) = max{R(¢,G(w)) : w € R4} (22)

where ¢ is a solution to the equation
L R+ VQ (@) = 0 (23)
— K¢ é) =
2p

and the function Q* is continuously differentiable. Moreover, for every ¢ € R™
and K € K(G), we have that

~

R(¢,K) < R(¢,K) < R(¢, K). (24)

Proof. For every £ € IN we consider the Gaussian kernel map on the interval
2, := [¢=1,4] and appeal to Theorem 1 to produce a sequence of kernels K, =
/, ,G(Ww)dpe(w) and & € R™ with the properties described there. In particular,
is a discrete probability measure with at most m+1 atoms, a number independent
of £. Let us examine what may happen as ¢ tends towards infinity. Each of the
atoms of p; as well as their corresponding weights have subsequences which
converge. Some atoms may converge to zero while others to infinity. In either
case, the Gaussian kernel map approaches a limit. Therefore, we can extract a



convergent subsequence {pp, : £ € IN} of probability measures and kernels {K’W :
¢ € IN} such that limy_,o P, = P, limy_yoo Kp, = K, and K = Jr, Gw)dp(w)
with the provision that p may have atoms at either zero or infinity. In either case,
we replace the Gaussian by its limit, namely G(0), the identically one kernel, or
G(00), the delta kernel, in the integral which defines K.

To establish that K is an optimal kernel, we turn our attention to the se-
quence of vectors ¢,,. We claim that this sequence also has a convergent subse-
quence. Indeed, from equation (17) for every K = [, G(w)dp(w), p € P(f2) we
have that .

R(énz:K) S R(OJan) = Q*(O) < o0.

Using the fact that the function @* is bounded below (see our comments after
the proof of Lemma 2) we see that the sequence é,, has Euclidean norm bounded
independently of £. Hence, it has a convergent subsequence whose limit we call
¢. Passing to the limit we obtain equations (23) and (24) and, so, conclude that
(¢, K) is a saddle point. O

We remark that extensions of the results in this section also hold true for non-
differentiable convex functions (). The proofs presented above must be modified
in this general case in detail but not in substance. We postpone the discussion
of this issue to a future occasion.

4 A Greedy Algorithm for Learning the Kernel

The analysis in the previous section establishes necessary and sufficient condi-
tions for a pair (¢, K) € R™ x K(G) to be a saddle point of the problem

—Qu(G) :=max{min{R(c,K):c€e R™} : K € K(G)}.

The main step in this problem is to compute the optimal kernel K. Indeed, once
K has been computed, ¢ is obtained as the unique solution cx to the equation

1
ﬂKch +VQ*(cx) =0 (25)
for K = K.
With this observation in mind, in this section we focus on the computational
issues for the problem

—Qu(G) = max{g(K) : K € K(G)} (26)
where the function ¢ : A4 (X) - R is defined as
9(K) :=min{R(c,K):ce R™}, K e A (X). (27)

We present a greedy algorithm for learning an optimal kernel. The algorithm
starts with an initial kernel K1) € (@) and computes iteratively a sequence of
kernels K € K(G) such that

g(KEW) < g(K?) <o < g(K) (28)



Initialization: Choose K™ € K(G)
For t=1 to T:
1. Compute ¢ = argmin{R(c, K¥) : ¢ € R™} using equation (25)
2. Find @ € 2: (¢, Gx(@)c?) > (c(t),K,(:t)c(t)). If such & does not
exist terminate
3. Compute A = argmax{g(AG(&) + (1 —A)K®D): 1€ (0,1]}
4. Set KD = AG(Q) + (1 - NK®

Fig. 1. Algorithm to compute an optimal convex combination of kernels in the set
{GWw) :w € 2}.

where s is the number of iterations. At each iteration ¢, 1 <t < s, the algorithm
searches for a value @ € (2, if any, such that

(), Gx(@)eV) > (), KPc) (29)

where we have defined ¢ := ¢y . If such & is found then a new kernel K(¢+1)
is computed to be the optimal convex combination of the kernels G(&) and K®,
that is,

g(KHD)) = max {Q(AG(Q) +(1-NKD): xeo, 1]} : (30)

If no @ € 2 satisfying inequality (29) can be found, the algorithm terminates.
The algorithm is summarized in Figure 1.

Step 2 of the algorithm is implemented with a local gradient ascent in (2.
If the value of w found locally does not satisfy inequality (29), the smallest
hyperrectangle containing the search path is removed and a new local search is
started in the yet unsearched part of (2, continuing in this way until either the
whole of (2 is covered or inequality (29) is satisfied. Although in the experiments
below we will apply this strategy when (2 is an interval, it also naturally applies to
more complex parameter spaces, for example a compact set in a Euclidean space.
Step 3 is a simple maximization problem which we solve using Newton method,
since the function g(AG(&%) + (1 — M)K®) is concave in A and its derivative
can be computed by applying Lemma 4. We also use a tolerance parameter €
to enforce a non-zero gap in inequality (29). A version of this algorithm for the
case when {2 = IN,, has also been implemented (below, we refer to this version
as the “finite algorithm”). It only differs from the continuous version in Step 2,
in that inequality (29) is tested by trial and error on randomly selected kernels
from /C,.

We now show that after each iteration, either the objective function g in-
creases or the algorithm terminates, that is, inequality (28) holds true. To this
end, we state the following lemma whose proof follows immediately from Theo-
rem 2.

Lemma 3. Let K1,Ks € AL (X). Then, A\ =0 is not a solution to the problem

max {g(AK; + (1 — A K>y) : A €[0,1]}



Table 1. Misclassification error percentage for the continuous and finite versions of
the algorithm and the SVM on different handwritten digit recognition tasks. See text
for description.

Task \ Method|Cont.|Finite]SVM|Cont. |Finite[SVM|Cont.|Finite[SVM

o € [75,25000] | o € [100,10000] | o € [500, 5000]

odd vs. even | 6.6 | 180 |11.8| 6.6 | 109 | 86 | 6.5 | 6.7 | 6.9
3 vs. 8 38 1 69 |60 | 38| 49 |51 |38 | 3.7 |38
4vs. 7 25 | 42 |28 | 25 | 2.7 |26 | 2.5 26 | 2.3
1vs. 7 1.8 39 | 18| 18 1.8 | 1.8 | 1.8 1.9 | 1.8

2 vs. 3 1.6 39 |31 |16 | 28 | 23| 1.6 1.7 | 1.6
0vs. 6 1.6 22 | 1.7] 16 1.7 | 1.5 | 1.6 1.6 | 1.5
2vs. 9 1.5 3.2 |19 ]| 15 1.9 | 1.8 | 1.5 14 | 14
0vs. 9 0912|1109 )| 10 10|09 |09 |10

if and only if R(ck,, K1) > R(ck,, K>).

Applying this lemma, to the case that K; = G() and K5 = K® we conclude
that
g(KH) > g(K®)

if and only if & satisfies the inequality
R(cY,G(@)) > R(cW, K®)

which is equivalent to inequality (29).

4.1 Experimental Validation

We have tested the above algorithm on eight handwritten digit recognition tasks
of varying difficulty from the MNIST data-set®. The data are 28 x 28 images with
pixel values ranging between 0 and 255. We used Gaussian kernels as the basic
kernels, that is, G(0)(z,t) = exp(—||z — t||*/0?), o € [01,02]. In all the experi-
ments, the test error rates were measured over 1000 points from the MNIST test
set.

The continuous and finite algorithms were trained using the square loss and
compared to an SVM*. In all experiments, the training set consisted of 500
points. For the finite case, we chose ten Gaussian kernels with o’s equally spaced
in an interval [o1,03]. For both versions of our algorithm, the starting value of
the kernel was the average of these ten kernels and the regularization parameter
was set to 10~7. This value typically provided the best test performance among
the nine values p = 107¢, £ € {3,...,11}. The performance of the SVM was
obtained as the best among the results for the above ten kernels and nine values
of p. This strategy slightly favors the SVM but compensates for the fact that

3 Available at: http://yann.lecun.com/exdb/mnist/index.html
4 Trained using SVM-light, see: http://wuw.cs.cornell.edu/People/tj/svm_light
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Fig. 2. Functional @, (solid line) and misclassification error (dotted line) after the first
iteration of the algorithm of Figure 1 for even vs. odd (left) and 3 vs. 8 (right).

the loss functions are different. The parameters € and T' of our algorithm were
chosen to be 1072 and 100 respectively.

Table 1 shows the results obtained. The range of ¢ is [75,25000] in columns
2-4, [100,10000] in columns 5-7 and [500, 5000] in columns 8-10. Note that, in
most cases, the continuous algorithm finds a better combination of kernels than
the finite version. In general, the continuous algorithm performs better than the
SVM, whereas most of the time the finite algorithm is worse than the SVM.
Moreover, the results indicate that the continuous algorithm is not affected by
the range of o, unlike the other two methods.

Typically, the continuous algorithm requires less than 20 iterations to termi-
nate whereas the finite algorithm may require as much as 100 iterations. Figure
2 depicts the convergence behavior of the continuous algorithm on two different
tasks. In both cases o € [100,10000]. The actual values of @, are six orders of
magnitude smaller, but they were rescaled to fit the plot. Note that, in agreement
with inequality (28), @), decreases and eventually converges. The misclassifica-
tion error also converges to a lower value, indicating that @, provides a good
learning criterion.

5 Conclusion

We have studied the problem of learning a kernel which minimizes a convex error
functional over the convex hull of prescribed basic kernels. The main contribution
of this paper is a general analysis of this problem when the basic kernels are
continuously parameterized by a compact set. In particular, we have shown that
there always exists an optimal kernel which is a finite combination of the basic
kernels and presented a greedy algorithm for learning a suboptimal kernel. The
algorithm is simple to use and our preliminary findings indicate that it typically
converges in a small number of iterations to a kernel with a competitive statistical
performance. In the future we shall investigate the convergence properties of the



algorithm, compare it experimentally to previous related methods for learning
the kernel, such as those in [3,6,8], and study generalization error bounds for
this problem. For the latter purpose, the results in [4, 18] may be useful.
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A Appendix

The first result we record here is a useful version of the classical von Neumann
minimax theorem we have learned from [2, Ch. 7].

Theorem 5. Let h: A x B — IR where A is a closed convex subset of a Haus-
dorff topological vector space X and B is a convex subset of a vector space ). If
the function x — h(x,y) is conver and lower semi-continuous for every y € B,
the function y — h(x,y) is concave for every x € A and there exists a yo € B
such that for all X € R the set {x : z € A, h(z,y0) < A} is compact then there
is an xo € A such that

sup{h(zo,y) : y € B} = sup{inf{h(z,y) : z € A} : y € B}
In particular, we have that
min{sup{h(z,y) : y € B} : x € A} = sup{inf{h(z,y) : 2z € A} :y € B}. (31)

The hypothesis of lower semi-continuity means, for all A € IR and y € B, that
the set {z : z € A, h(z,y) < A} is a closed subset of A.

The next result concerns differentiation of a “max” function. Its proof can
be found in [9].

Lemma 4. Let X be a topological vector space, T a compact set and G(t,x) a
real-valued function on T X X such that, for every x € X G(-,x) is continuous
on T and, for every t € T, G(t,-) is conver on X. We define the real-valued
conver function g on X as

g9(z) :=max{G(t,x):t€T}, z€X
and the set M(z) :== {t:t € T,G(t,xz) = g(x)}. Then the right derivative of g
in the direction y € X 1is given by

g’ (z,y) = max{G', (t,x,y) : t € M(x)}
where G'_ (t,x,y) is the right derivative of G with respect to its second argument

in the direction y.

Proof of Lemma 2. Theorem 5 applies since Kx € £ (IR™). Indeed, we let
h(c,v) = (Kxc,v) — Q*(v) + (e, Kxc), A=TR™, B={v:Q*(v) < o0o,v € R™}
and vg = 0. Then, B is convex and, for any A € R, the set {c: ¢ € R™, h(c,v9) <
A} is compact. Therefore, all the hypotheses of Theorem 5 hold. Consequently,
using (11) in (7) we have that

Qu(K) = sup{min{(Kxc,v) — Q*(v) + p(c,Kxc) : c€ R™} :v € B}. (32)

For each v € B, the minimum over ¢ satisfies the equation Kxv + 2uKxc = 0,

implying that

(v, Kxv)
4p

and the result follows. O

min{(Kxc,v) — Q*(v) + p(c, Kxc) :c € R™} = — —Q*(v)



